Skip to main content

Loss of Microbiome Ecological Niches and Diversity by Global Change and Trophic Downgrading

  • Chapter
  • First Online:
Microbiome Community Ecology

Part of the book series: SpringerBriefs in Ecology ((BRIEFSECOLOGY))

Abstract

Microbiome is ubiquitous, and it plays a major role in global ecosystem functioning from cloud formation to plant and animal fitness. Microbiome drives several vital functions in the atmosphere, phyllosphere, rhizosphere, human, and animal habitats. However, in response to the anthropogenic activities such as land use and climate changes, these habitats are subject to tremendous alterations in their biophysical structure and physicochemistry, thus leading to dismantling of above- and below-ground multitrophic interactions, and biodiversity loss. The consequences of these adverse phenomena could potentially lead to the loss of microbiome ecological niches, diversity, functional traits, and vital functions. Moreover, invasion by micro-pollutants (e.g., antibiotics) may lead to the evolution of antibiotic resistance bacterial pathogens, could limit the potential of microbiome diversity to check the survival and persistence of pathogens. Simply by putting, all these consequences could potentially disturb the services provided by the global ecosystem. Meanwhile, predicting the consequences of loss of above- and below-ground microbial ecological niches, and developing conservation strategies are perquisite to address the menace of climate and land use changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amato P, Demeer F, Melaouhi A et al (2007) A fate for organic acids, formaldehyde and methanol in cloud water: their biotransformation by micro-organisms. Atmos Chem Phys 7:4159–4169. doi:10.5194/acp-7-4159-2007

    Article  CAS  Google Scholar 

  • Archetti M, Scheuring I, Hoffman M et al (2011) Economic game theory for mutualism and cooperation. Ecol Lett 14:1300–1312. doi:10.1111/j.1461-0248.2011.01697.x

    Article  PubMed  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362. doi:10.1016/j.tibtech.2007.05.005

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Hussain S, Saleem M (2008) Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by Pseudomonas aeruginosa. J Appl Microbiol 104:364–370. doi:10.1111/j.1365-2672.2007.03561.x

    CAS  PubMed  Google Scholar 

  • Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180. doi:10.1038/nature09944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi:10.1146/annurev.arplant.57.032905.105159

    Article  CAS  PubMed  Google Scholar 

  • Bazzaz FA (1975) Plant species diversity in old-field successional ecosystems in Southern Illinois. Ecology 56:485–488. doi:10.2307/1934981

    Article  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744. doi:10.1126/science.1171647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bomberg M, Timonen S (2009) Effect of tree species and mycorrhizal colonization on the archaeal population of boreal forest rhizospheres. Appl Environ Microbiol 75:308-315. doi:10.1128/AEM.01739−08

    Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631. doi:10.1111/j.1469-8137.2004.01066.x

    Article  Google Scholar 

  • Brodie EL, DeSantis TZ, Parker JPM et al (2007) Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci U S A 104:299–304. doi:10.1073/pnas.0608255104

    Google Scholar 

  • Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436-443. doi:10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2

    Google Scholar 

  • Carius HJ, Little TJ, Ebert D (2001) Genetic variation in a host-parasite association: potential for coevolution and frequency-dependent selection. Evolution Int J org Evolution 55:1136–1145. doi:10.1111/j.0014-3820.2001.tb00633.x

    Article  CAS  Google Scholar 

  • Casadevall A, Pirofski L (2000) Host-pathogen interactions: basic concepts of microbial commensalism, colonization, infection, and disease. Infect Immun 68:6511–6518. doi:10.1128/IAI.68.12.6511-6518.2000

    Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803. doi:10.1038/ismej.2013.196

    Article  CAS  PubMed  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814. doi:10.1016/j.cell.2006.02.008

    Article  CAS  PubMed  Google Scholar 

  • Coley PD (1987) Interspecific variation in plant anti-herbivore properties: the role of habitat quality and rate of disturbance. New Phytol 106:251–263

    Article  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899. doi:10.1126/science.230.4728.895

    Article  CAS  PubMed  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310. doi:10.1126/science.199.4335.1302

    Article  CAS  PubMed  Google Scholar 

  • Consortium THMP (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. doi:10.1038/nature11234

    Article  Google Scholar 

  • Cook RJ, Thomashow LS, Weller DM et al (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci U S A 92:4197–4201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Costello EK, Stagaman K, Dethlefsen L et al (2012) The application of ecological theory toward an understanding of the human microbiome. Science 336:1255–1262. doi:10.1126/science.1224203

    Google Scholar 

  • Day DA, Carroll BJ, Delves AC, Gresshoff PM (1989) Relationship between autoregulation and nitrate inhibition of nodulation in soybeans. Physiol Plant 75:37–42

    Google Scholar 

  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences, 107(33), 14691–14696. doi: 10.1073/pnas.1005963107

    Google Scholar 

  • DeLeon-Rodriguez N, Lathem TL, Rodriguez-R LM et al (2013) Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc Natl Acad Sci U S A 110:2575–2580. doi:10.1073/pnas.1212089110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delmotte N, Knief C, Chaffron S et al (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433. doi:10.1073/pnas.0905240106

    Google Scholar 

  • Demirjian DC, Morís-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151. doi:10.1016/S1367-5931(00)00183-6

    Google Scholar 

  • Drigo B, Pijl AS, Duyts H et al (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci U S A 107:10938–10942. doi:10.1073/pnas.0912421107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dulla GFJ, Lindow SE (2009) Acyl-homoserine lactone-mediated cross talk among epiphytic bacteria modulates behavior of Pseudomonas syringae on leaves. ISME J 3:825–834. doi:10.1038/ismej.2009.30

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, Thompson IP, Bailey MJ (1999) Temporal fluctuations in the pseudomonad population associated with sugar beet leaves. FEMS Microbiol Ecol 28:345–356. doi:10.1111/j.1574-6941.1999.tb00589.x

    Article  CAS  Google Scholar 

  • Estes JA, Terborgh J, Brashares JS et al (2011) Trophic downgrading of planet Earth. Science 333:301–306. doi:10.1126/science.1205106

    Google Scholar 

  • Eviner VT, III FSC (2003) Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu Rev Ecol Evol Syst 34:455–485

    Article  Google Scholar 

  • Ewald PW (1995) The evolution of virulence: a unifying link between parasitology and ecology. J Parasitol 81:659–669. doi:10.2307/3283951

    Article  CAS  PubMed  Google Scholar 

  • Fagan WF, Lewis MA, Neubert MG, Van Den Driessche P (2002) Invasion theory and biological control. Ecol Lett 5:148–157. doi:10.1046/j.1461-0248.2002.0_285.x

    Google Scholar 

  • Fürnkranz M, Wanek W, Richter A et al (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2:561–570. doi:10.1038/ismej.2008.14

    Article  PubMed  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270. doi:10.1146/annurev.phyto.42.012604.135455

    Article  CAS  PubMed  Google Scholar 

  • Gillespie JJ, Wattam AR, Cammer SA et al (2011) PATRIC: the comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. Infect Immun 79:4286–4298. doi:10.1128/IAI.00207-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9:244–253. doi:10.1038/nrmicro2537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guimarães PR Jr, Jordano P, Thompson JN (2011) Evolution and coevolution in mutualistic networks. Ecol Lett 14:877–885. doi:10.1111/j.1461-0248.2011.01649.x

    Article  PubMed  Google Scholar 

  • Gunderson LH (2000) Ecological resilience-in theory and application. Annu Rev Ecol Syst 31:425–439

    Article  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319. doi:10.1038/nrmicro1129

    Article  CAS  PubMed  Google Scholar 

  • Hamilton JG, Zangerl AR, DeLucia EH, Berenbaum MR (2001) The carbon-nutrient balance hypothesis: its rise and fall. Ecol Lett 4:86–95. doi:10.1046/j.1461-0248.2001.00192.x

    Article  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Quart Rev Biol 67:283–335

    Article  Google Scholar 

  • Hervàs A, Camarero L, Reche I, Casamayor EO (2009) Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in. Europe Environ Microbiol 11:1612–1623. doi:10.1111/j.1462-2920.2009.01926.x

    Article  Google Scholar 

  • Hill KA, Shepson PB, Galbavy ES et al (2007) Processing of atmospheric nitrogen by clouds above a forest environment. J Geophys Res 112:D11301. doi:10.1029/2006JD008002

    Article  Google Scholar 

  • Hirano SS, Upper CD (2000) Bacteria in the leaf ecosystem with emphasis onpseudomonas syringae-a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64:624–653. doi:10.1128/MMBR.64.3.624-653.2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273. doi:10.1126/science.1223490

    Article  CAS  PubMed  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University, Princeton

    Google Scholar 

  • Humphrey PT, Nguyen TT, Villalobos MM, Whiteman NK (2014) Diversity and abundance of phyllosphere bacteria are linked to insect herbivory. Mol Ecol 23:1497–1515. doi:10.1111/mec.12657

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Arshad M, Saleem M, Khalid A (2007) Biodegradation of alpha- and beta-endosulfan by soil bacteria. Biodegradation 18:731–740. doi:10.1007/s10532-007-9102-1

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Siddique T, Arshad M, Saleem M (2009a) Bioremediation and phytoremediation of pesticides: recent advances. Crit Rev Environ Sci Technol 39:843–907. doi:10.1080/10643380801910090

    Google Scholar 

  • Hussain S, Siddique T, Saleem M et al (2009b) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Adv Agron (Academic Press) pp 159–200

    Google Scholar 

  • Hussain S, Arshad M, Shaharoona B, Saleem M, Khalid A (2009c) Concentration dependent growth/non-growth linked kinetics of endosulfan biodegradation by Pseudomonas aeruginosa. World J Microbiol Biotechnol 25(5):853–858. doi:10.1007/s11274-009-9958-9

    Google Scholar 

  • Ives AR, Woody ST, Nordheim EV et al (2004) The synergistic effects of stochasticity and dispersal on population densities. Am Nat 163:375–387. doi:10.1086/an.2004.163.issue-3

    Article  PubMed  Google Scholar 

  • Johnson PTJ, Rohr JR, Hoverman JT et al (2012) Living fast and dying of infection: host life history drives interspecific variation in infection and disease risk. Ecol Lett 15:235–242. doi:10.1111/j.1461-0248.2011.01730.x

    Article  PubMed  Google Scholar 

  • Kamada N, Kim Y-G, Sham HP et al (2012) Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336:1325–1329. doi:10.1126/science.1222195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kau AL, Ahern PP, Griffin NW et al (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327–336. doi:10.1038/nature10213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecol Lett 9:485–498. doi:10.1111/j.1461-0248.2006.00885.x

    Article  CAS  PubMed  Google Scholar 

  • Keesing F, Belden LK, Daszak P et al (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468:647–652. doi:10.1038/nature09575

    Article  CAS  PubMed  Google Scholar 

  • Kembel SW, Jones E, Kline J et al (2012) Architectural design influences the diversity and structure of the built environment microbiome. ISME J 6:1469–1479. doi:10.1038/ismej.2011.211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiers ET, Denison RF, Kawakita A, Herre EA (2011) The biological reality of host sanctions and partner fidelity. Proc Natl Acad Sci U S A 108:E7. doi:10.1073/pnas.1014546108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kinkel LL, Andrews JH, Berbee FM, Nordheim EV (1987) Leaves as islands for microbes. Oecologia 71:405–408. doi:10.1007/BF00378714

    Article  Google Scholar 

  • Knief C, Ramette A, Frances L et al (2010) Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 4:719–728. doi:10.1038/ismej.2010.9

    Article  CAS  PubMed  Google Scholar 

  • Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382-396. doi:10.1002/1522-2624(200208)165:43.0.CO;2-#

    Google Scholar 

  • Lamb EG, Kennedy N, Siciliano SD (2011) Effects of plant species richness and evenness on soil microbial community diversity and function. Plant Soil 338:483–495. doi:10.1007/s11104-010-0560-6

    Article  CAS  Google Scholar 

  • Lambais MR, Crowley DE, Cury JC et al (2006) Bacterial diversity in tree canopies of the atlantic forest. Science 312:1917–1917. doi:10.1126/science.1124696

    Article  CAS  PubMed  Google Scholar 

  • Lederberg J, Mccray A (2001) ‘Ome sweet’ omics—a genealogical treasury of words. Scientist 15:8–10.

    Google Scholar 

  • Ley RE, Hamady M, Lozupone C et al (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651. doi:10.1126/science.1155725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li L, Li S-M, Sun J-H et al (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci U S A 104:11192–11196

    Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883. doi:10.1128/AEM.69.4.1875-1883.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu W, Hao Lu H, Wu W et al (2008) Transgenic Bt rice does not affect enzyme activities and microbial composition in the rhizosphere during crop development. Soil Biol Biochem 40:475–486. doi:10.1016/j.soilbio.2007.09.017

    Article  CAS  Google Scholar 

  • Loreau M, Naeem S, Inchausti P et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808. doi:10.1126/science.1064088

    Article  CAS  PubMed  Google Scholar 

  • Ma K, Qiu Q, Lu Y (2010) Microbial mechanism for rice variety control on methane emission from rice field soil. Glob Change Biol 16:3085–3095. doi:10.1111/j.1365-2486.2009.02145.x

    Article  Google Scholar 

  • Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205. doi:10.1111/j.1365-2745.2008.01476.x

    Article  Google Scholar 

  • Menge DNL, Levin SA, Hedin LO (2008) Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation. Proc Natl Acad Sci U S A 105:1573–1578

    Google Scholar 

  • Meyer KM, Leveau JHJ (2012) Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia 168:621–629. doi:10.1007/s00442-011-2138-2

    Article  PubMed Central  PubMed  Google Scholar 

  • Miki T, Yamamura N (2005) Intraguild predation reduces bacterial species richness and loosens the viral loop in aquatic systems: “kill the killer of the winner” hypothesis. Aquat Microb Ecol 40:1–12. doi:10.3354/ame040001

    Article  Google Scholar 

  • Miki T, Ushio M, Fukui S, Kondoh M (2010) Functional diversity of microbial decomposers facilitates plant coexistence in a plant-microbe-soil feedback model. Proc Natl Acad Sci U S A 107:14251–14256. doi:10.1073/pnas.0914281107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Monier JM, Lindow SE (2004) Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Applied and environmental microbiology, 70(1), 346–355. doi: 10.1128/AEM.70.1.346-355.2004

    Google Scholar 

  • Nadell CD, Bassler BL (2011) A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms. Proc Natl Acad Sci U S A 108:14181–14185. doi:10.1073/pnas.1111147108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naeem (2002) Biodiversity and ecosystem functioning: synthesis and perspective. Oxford University Press

    Google Scholar 

  • Nicholson JK, Holmes E, Kinross J et al (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267. doi:10.1126/science.1223813

    Article  CAS  PubMed  Google Scholar 

  • Nix-Stohr S, Moshe R, Dighton J (2008) Effects of propagule density and survival strategies on establishment and growth: further investigations in the phylloplane fungal model system. Microb Ecol 55:38–44. doi:10.1007/s00248-007-9248-8

    Article  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763-775. doi:10.1038/nrmicro1987

    Google Scholar 

  • Paula FS, Rodrigues JLM, Zhou J et al (2014) Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Mol Ecol. doi:10.1111/mec.12786

    Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013a) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799. doi:10.1038/nrmicro3109

    Google Scholar 

  • Philippot L, Spor A, Hénault C et al (2013b) Loss in microbial diversity affects nitrogen cycling in soil. ISME J 7:1609–1619. doi:10.1038/ismej.2013.34

    Google Scholar 

  • Phillips DA, Ferris H, Cook DR, Strong DR (2003) Molecular control points in rhizosphere food webs. Ecology 84:816–826. doi:10.1890/0012-9658 (2003) 084[0816:MCPIRF]2.0.CO;2

    Article  Google Scholar 

  • Pointing SB, Chan Y, Lacap DC et al (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci U S A 106:19964–19969. doi:10.1073/pnas.0908274106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ravel J, Gajer P, Abdo Z et al (2011) Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 108(Suppl 1):4680–4687. doi:10.1073/pnas.1002611107

    Google Scholar 

  • Remus-Emsermann MNP, Tecon R, Kowalchuk GA, Leveau JHJ (2012) Variation in local carrying capacity and the individual fate of bacterial colonizers in the phyllosphere. ISME J 6:756–765. doi:10.1038/ismej.2011.209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodrigues JLM, Pellizari VH, Mueller R et al (2013) Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Natl Acad Sci U S A 110:988–993. doi:10.1073/pnas.1220608110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saleem M (2012) Bacteria-protist interactions in the context of biodiversity and ecosystem functioning research. Dissertation.

    Google Scholar 

  • Saleem M, Moe LA (2014) Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice. Trends Biotechnol (in press)

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648. doi:10.1007/s10295-007-0240-6

    Article  CAS  PubMed  Google Scholar 

  • Saleem M, Brim H, Hussain S, Arshad M, Leigh MB (2008) Perspectives on microbial cell surface display in bioremediation. Biotechnol Adv 26(2):151–161. doi:10.1016/j.biotechadv.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  • Saleem M, Fetzer I, Dormann CF et al (2012) Predator richness increases the effect of prey diversity on prey yield. Nat Commun 3:1305. doi:10.1038/ncomms2287

    Article  PubMed  Google Scholar 

  • Saleem M, Fetzer I, Harms H, Chatzinotas A (2013) Diversity of protists and bacteria determines predation performance and stability. ISME J 7:1912–1921. doi:10.1038/ismej.2013.95

    Article  PubMed Central  PubMed  Google Scholar 

  • Saleem M, Fetzer I, Harms H, Chatzinotas A (2015) Trophic complexity in aqueous systems: Bacterial species richness and protistan predation regulate DOC and DTN removal

    Google Scholar 

  • Sanchez C (2011) Microbial ecology: Bacteria reinforce plant defences. Nat Rev Microbiol 9:483. doi:10.1038/nrmicro2598

    Article  CAS  PubMed  Google Scholar 

  • Sandhu A, Halverson LJ, Beattie GA (2007) Bacterial degradation of airborne phenol in the phyllosphere. Environ Microbiol 9:383–392. doi:10.1111/j.1462-2920.2006.01149.x

    Article  CAS  PubMed  Google Scholar 

  • Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133. doi:10.1146/annurev.mi.31.100177.000543

    Article  CAS  PubMed  Google Scholar 

  • Schleper C, Puehler G, Holz I et al (1995) Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177:7050–7059

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schulz S, Giebler J, Chatzinotas A et al (2012) Plant litter and soil type drive abundance, activity and community structure of alkB harbouring microbes in different soil compartments. ISME J 6:1763–1774. doi:10.1038/ismej.2012.17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176. doi:10.1016/S0169-5347(02)02495-3

    Article  Google Scholar 

  • Shivaji S, Chaturvedi P, Begum Z et al (2009) Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. Int J Syst Evol Microbiol 59:2977–2986. doi:10.1099/ijs.0.002527-0

    Article  CAS  PubMed  Google Scholar 

  • Siciliano SD, Theoret CM, de Freitas JR et al (1998) Differences in the microbial communities associated with the roots of different cultivars of canola and wheat. Can J Microbiol 44:844–851. doi:10.1139/w98-075

    Article  CAS  Google Scholar 

  • Singh BK, Quince C, Macdonald CA et al (2014) Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environ Microbiol. doi:10.1111/1462-2920.12353

    Google Scholar 

  • Sliwinski MK, Goodman RM (2004) Spatial heterogeneity of crenarchaeal assemblages within mesophilic soil ecosystems as revealed by pcr-single-stranded conformation polymorphism profiling. Appl Environ Microbiol 70:1811–1820. doi:10.1128/AEM.70.3.1811-1820.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stieglmeier M, Wirth R, Kminek G, Moissl-Eichinger C (2009) Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms. Appl Environ Microbiol 75:3484–3491. doi:10.1128/AEM.02565-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suen G, Scott JJ, Aylward FO et al (2010) An insect herbivore microbiome with high plant biomass-degrading capacity. PLoS Genet 6:e1001129. doi:10.1371/journal.pgen.1001129

    Article  PubMed Central  PubMed  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago , Chicago

    Google Scholar 

  • Van der Gast CJ,W, Stressmann FA et al (2011) Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J 5:780–791. doi:10.1038/ismej.2010.175

    Google Scholar 

  • Vokou (2007) Allelochemicals, allelopathy and essential oils: A field in search of definitions and structure. Allelopath J 19:119–134

    Google Scholar 

  • Wallace JW, Mansell RL (eds) (1976) Biochemical interaction between plants and insects. Recent advances in phytochemistry, vol 10. Plenum Press

    Google Scholar 

  • Wang S, Chang L-Y, Wang Y-J et al (2009) Nanoparticles affect the survival of bacteria on leaf surfaces. FEMS Microbiol Ecol 68:182–191. doi:10.1111/j.1574-6941.2009.00664.x

    Google Scholar 

  • Wedekind C, Gessner MO, Vazquez F et al (2010) Elevated resource availability sufficient to turn opportunistic into virulent fish pathogens. Ecology 91:1251–1256

    Google Scholar 

  • Weitz JS, Hartman H, Levin SA (2005) Coevolutionary arms races between bacteria and bacteriophage. Proc Natl Acad Sci U S A 102:9535–9540. doi:10.1073/pnas.0504062102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348. doi:10.1146/annurev.phyto.40.030402.110010

    Article  CAS  PubMed  Google Scholar 

  • West SA, Griffin AS, Gardner A, Diggle SP (2006) Social evolution theory for microorganisms. Nat Rev Microbiol 4:597–607. doi:10.1038/nrmicro1461

    Article  CAS  PubMed  Google Scholar 

  • Woody ST, Ives AR, Nordheim EV, Andrews JH (2007) Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces. Ecology 88:1513–1524. doi:10.1890/05-2026

    Article  PubMed  Google Scholar 

  • Yang C-H, Crowley DE, Borneman J, Keen NT (2001) Microbial phyllosphere populations are more complex than previously realized. Proc Natl Acad Sci U S A 98:3889–3894. doi:10.1073/pnas.051633898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227. doi:10.1038/nature11053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Q, Lambert G, Liao D et al (2011) Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333:1764–1767. doi:10.1126/science.1208747

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Saleem .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saleem, M. (2015). Loss of Microbiome Ecological Niches and Diversity by Global Change and Trophic Downgrading. In: Microbiome Community Ecology. SpringerBriefs in Ecology. Springer, Cham. https://doi.org/10.1007/978-3-319-11665-5_4

Download citation

Publish with us

Policies and ethics