Skip to main content

Towards an Intelligent Framework for Pressure-Based 3D Curve Drawing

  • Conference paper
Book cover Smart Graphics (SG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8698))

Included in the following conference series:

  • 1350 Accesses

Abstract

The act of controlling pressure through pencil and brush appears effortless, but to mimic this natural ability in the realm of electronic medium using tablet pen device is difficult. Previous pressure based interaction work have explored various signal processing techniques to improve the accuracy in pressure control, but a one-for-all signal processing solutions tend not to work for different curve types. We propose instead a framework which applies signal processing techniques tuned to individual curve type. A neural network classifier is used as a curve classifier. Based on the classification, a custom combination of signal processing techniques is then applied. Results obtained point to the feasibility and advantage of the approach. The results are generally applicable to the design of pressure based interaction technique and possibly unlock the potential of pressure based system for richer interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cechanowicz, J., Irani, P., Subramanian, S.: Augmenting the mouse with pressure sensitive input. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM (2007)

    Google Scholar 

  2. Mizobuchi, S., Terasaki, S., Keski-Jaskari, T., Nousiainen, J., Ryynanen, M., Silfverberg, M.: Making an impression: force-controlled pen input for handheld devices. In: CHI 2005 Extended Abstracts on Human Factors in Computing Systems. ACM (2005)

    Google Scholar 

  3. Ramos, G., Boulos, M., Balakrishnan, R.: Pressure widgets. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM (2004)

    Google Scholar 

  4. Ren, X., Yin, J., Zhao, S., Li, Y.: The adaptive hybrid cursor: A pressure-based target selection technique for pen-based user interfaces. In: Baranauskas, C., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4662, pp. 310–323. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Shi, K., Irani, P., Gustafson, S., Subramanian, S.: PressureFish: a method to improve control of discrete pressure-based input. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM (2008)

    Google Scholar 

  6. Ramos, G., Balakrishnan, R.: Zliding: fluid zooming and sliding for high precision parameter manipulation. In: Proceedings of the 18th Annual ACM Symposium on User Interface Software and Technology. ACM (2005)

    Google Scholar 

  7. Ramos, G.A., Balakrishnan, R.: Pressure marks. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM (2007)

    Google Scholar 

  8. Shi, K., Subramanian, S., Irani, P.: PressureMove: Pressure Input with Mouse Movement. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009. LNCS, vol. 5727, pp. 25–39. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Lai, C.-Y., Zakaria, N.: Pressure-based 3D curve drawing. In: Taylor, R., Boulanger, P., Krüger, A., Olivier, P. (eds.) Smart Graphics. LNCS, vol. 6133, pp. 156–159. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Barrett, R.C., Olyha Jr., R.S., Rutledge, J.D.: Graphical user interface cursor positioning device having a negative inertia transfer function. Google Patents (1996)

    Google Scholar 

  11. Ramos, G.A.: Pressure-sensitive pen interactions. University of Toronto (2008)

    Google Scholar 

  12. Rajendra Acharya, U., et al.: Classification of heart rate data using artificial neural network and fuzzy equivalence relation. Pattern Recognition 36(1), 61–68 (2003)

    Article  MATH  Google Scholar 

  13. Ceylan, M., Ceylan, R., Dirgenali, F., Kara, S., Ozbay, Y.: Classification of carotid artery Doppler signals in the early phase of atherosclerosis using complex-valued artificial neural network. Computers in Biology and Medicine 37(1), 28–36 (2007)

    Article  Google Scholar 

  14. Ceylan, R., Ceylan, M., Ozbay, Y., Kara, S.: Fuzzy clustering complex-valued neural network to diagnose cirrhosis disease. Expert Systems with Applications 38(8), 9744–9751 (2011)

    Article  Google Scholar 

  15. Engin, M.: ECG beat classification using neuro-fuzzy network. Pattern Recognition Letters 25(15), 1715–1722 (2004)

    Article  Google Scholar 

  16. Osowski, S., Linh, T.H.: ECG beat recognition using fuzzy hybrid neural network. IEEE Transactions on Biomedical Engineering 48(11), 1265–1271 (2001)

    Article  Google Scholar 

  17. Özbay, Y., Ceylan, R., Karlik, B.: A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Computers in Biology and Medicine 36(4), 376–388 (2006)

    Article  Google Scholar 

  18. Özbay, Y., Tezel, G.: A new method for classification of ECG arrhythmias using neural network with adaptive activation function. Digital Signal Processing 20(4), 1040–1049 (2010)

    Article  Google Scholar 

  19. Sternickel, K.: Automatic pattern recognition in ECG time series. Computer Methods and Programs in Biomedicine 68(2), 109–115 (2002)

    Article  Google Scholar 

  20. Subasi, A., Erçelebi, E.: Classification of EEG signals using neural network and logistic regression. Computer Methods and Programs in Biomedicine 78(2), 87–99 (2005)

    Article  Google Scholar 

  21. Tezel, G., Özbay, Y.: A new neural network with adaptive activation function for classification of ECG arrhythmias. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part I. LNCS (LNAI), vol. 4692, pp. 1–8. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Kotyrba, M., Volna, E., Brazina, D., Jarusek, R.: Elliott waves recognition via neural networks. In: Proceedings 26th European Conference on Modellingand Simulation, ECMS (2012)

    Google Scholar 

  23. Mandalapu, D., Subramanian, S.: Exploring pressure as an alternative to multi-touch based interaction. In: Proceedings of the 3rd International Conference on Human Computer Interaction. ACM (2011)

    Google Scholar 

  24. Rekimoto, J., Schwesig, C.: PreSenseII: bi-directional touch and pressure sensing interactions with tactile feedback. In: Extended Abstracts on Human Factors in Computing Systems, CHI 2006. ACM (2006)

    Google Scholar 

  25. Boger, Z., Guterman, H.: Knowledge extraction from artificial neural network models. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation. IEEE (1997)

    Google Scholar 

  26. Karsoliya, S.: Approximating number of hidden layer neurons in multiple hidden layer BPNN Architecture. Internat. J. Eng. Trends Technol. 3(6), 714–717 (2012)

    Google Scholar 

  27. Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: a sketching interface for 3D freeform design. In: ACM SIGGRAPH 2007 Courses. ACM (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lai, CY., Zakaria, N. (2014). Towards an Intelligent Framework for Pressure-Based 3D Curve Drawing. In: Christie, M., Li, TY. (eds) Smart Graphics. SG 2014. Lecture Notes in Computer Science, vol 8698. Springer, Cham. https://doi.org/10.1007/978-3-319-11650-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11650-1_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11649-5

  • Online ISBN: 978-3-319-11650-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics