Skip to main content

Conservation Agriculture and Climate Change

  • Chapter
  • First Online:

Abstract

This chapter review aims at developing a clear understanding of the impacts and benefits of conservation agriculture (CA) with respect to climate change, and examining if there are any misleading findings at present in the scientific literature. Most of the world’s agricultural soils have been depleted of organic matter and soil health over the years under tillage-based agriculture (TA), compared with their state under natural vegetation. This degradation process can be reversed and this chapter identifies the conditions that can lead to increase in soil organic matter content and improvement in soil health under CA practices which involve minimum soil disturbance, maintenance of soil cover, and crop diversity. The chapter also discusses the need to refer to specific carbon pools when addressing carbon sequestration, as each carbon category has a different turnover rate. With respect to greenhouse gas emissions, sustainable agricultural systems based on CA principles are described which result in lower emissions from farm operations as well as from machinery manufacturing processes, and that also help to reduce fertilizer use. This chapter describes that terrestrial carbon sequestration efficiently be achieved by changing the management of agricultural lands from high soil disturbance, as TA practices to low disturbance, as CA practices, and by adopting effective nitrogen management practices to provide a positive nitrogen balance for carbon sequestration. However, full advantages of CA in terms of carbon sequestration can usually be observed only in the medium to longer term when CA practices and associated carbon sequestration processes in the soil are well established.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acton SD, Baggs EM (2011) Interactions between N application rate, CH4 oxidation and N2O production in soil. Biogeochemistry 103:15–26

    CAS  Google Scholar 

  • Acutis M, Ducco G, Grignani C (2000) Stochastic use of the LEACHN model to forecast nitrate leaching in different maize cropping systems. Eur J Agron 13:191–206

    CAS  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    PubMed  Google Scholar 

  • Akbolat D, Evrendilek F, Coskan A, Ekinci K (2009) Quantifying soil respiration in response to short-term tillage practices: a case study in southern Turkey. Acta Agric Scand Sect B Plant Soil Sci 59:50–56

    Google Scholar 

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG (2006) Global observed changes in daily climate extremes of temperature and precipitation (1984–2012). J Geophys Res Atmos 111(D5)

    Google Scholar 

  • Al-Kaisi M (2008) Impact of tillage and crop rotation systems on soil carbon sequestration. Iowa State University, Iowa

    Google Scholar 

  • Alston J (2010) The benefits from agricultural research and development, innovation, and productivity growth. OECD Food, agriculture and fisheries working papers, No. 31. OECD Publ., Paris, France

    Google Scholar 

  • Alvear M, Rosas A, Rouanet JL, Borie F (2005) Effects of three soil tillage systems on some biological activities in an Ultisol from southern Chile. Soil Till Res 82:195–202

    Google Scholar 

  • Alves AC, Setter TL (2004) Response of cassava leaf area expansion to water deficit: cell proliferation, cell expansion and delayed development. Ann Bot 94:605–613

    PubMed Central  PubMed  Google Scholar 

  • Alves BJR, Zotarelli L, Boddey RM, Urquiaga S (2002) Soybean benefit to a subsequent wheat cropping system under zero tiIIage In: Nuclear techniques in integrated plant nutrient, water and soil management: proceedings of a Symposium held in Vienna, 16–20 October 2000 Vienna: IAEA 2002, pp 87–93

    Google Scholar 

  • Alves BJR, Boddey RM, Urquiaga S (2003) The success of BNF in soybean in Brazil. Plant Soil 252:1–9

    CAS  Google Scholar 

  • Alves BJR, Zotarelli L, Fernandes FM, Heckler JC, Macedo RAT, Boddey RM, Jantalia CP, Urquiaga S (2006) Biological nitrogen fixation and nitrogen fertilizer on the nitrogen balance of soybean, maize and cotton. Pesq Agrop Bras 41-3:449–456

    Google Scholar 

  • Amado TJC, Costa CN (2004) Solos sob sistema Plantio Direto no Brasil podem atuar como importante tampão ambiental. Jornal Direto no Cerrado 37:21–22

    Google Scholar 

  • Amado TJC, Mielniczuck J, Fernandes SBV, Bayer C (1999) Culturas de cobertura, acúmulo de nitrogenio total no solo e produtividade de milho. Rev Bras Ciência Solo 23:679–686

    Google Scholar 

  • Amado TJC, Bayer C, Eltz FLF, Brum AC (2001) Potencial de culturas de cobertura em acumular carbono e nitrogenio no solo no plantio direto e a melhoria da qualidade ambiental. Rev Bras Ciência Solo 25:189–197

    CAS  Google Scholar 

  • Ambus P, Jensen ES, Robertson GP (2001) Nitrous oxide and N-leaching losses from agricultural soil: influence of crop residue particle size, quality and placement, Phyton-Ann. REI Bot 41:7–15

    CAS  Google Scholar 

  • Andersen A (1999) Plant protection in spring cereal production with reduced tillage. II. Pests and beneficial insects. Crop Prot 18:651–657

    Google Scholar 

  • Angers DA, Bolinder MA, Carter MR, Gregorich EG, Drury CF, Liang BC, Voroney RP, Simard RR, Donald RG, Beyaert RP, Martel J (1997) Impact of tillage practices on organic carbon and nitrogen storage in cool, humid soils of eastern Canada. Soil Till Res 41:191–201

    Google Scholar 

  • Azooz RH, Arshad MA (1996) Soil infiltration and hydraulic conductivity under long-term no-tillage and conventional tillage systems. Can J Soil Sci 76:143–152

    Google Scholar 

  • Baggs EM, Chebii J, Ndufa JK (2006) A short-term investigation of trace gas emissions following tillage and no-tillage of agroforestry residues in western Kenya. Soil Till Res 90:69–76

    Google Scholar 

  • Bailey VL, Smith JL, Bolton HJ (2002) Fungal-to-bacterial ratios in soils investigated for enhanced carbon sequestration. Soil Biol Biochem 34:1385–1389

    CAS  Google Scholar 

  • Baker JM, Ochsner TE, Venterea RT, Griffis TJ (2007) Tillage and soil carbon sequestration-what do we really know? Agric Ecosyst Environ 118:1–5

    CAS  Google Scholar 

  • Balabane M, Bureau F, Decaens T, Akpa M, Hedde M, Laval K, Puget P, Pawlak B, Barray S, Cluzeau D, Labreuche J, Bodet JM, Le Bissonnais Y, Saulas P, Bertrand M, Guichard L, Picard D, Houot S, Arrouays D, Brygoo Y, Chenu C (2005) Restauration de fonctions et proprietes des sols de grande culture intensive: effets de systemes de culture alternatifs sur les matieres organiques et la structure des sols limoneux, et approche du role fonctionnel de la diversitè biologique des sols. GESSOL/projet Dmostra. Rapport final, p 119

    Google Scholar 

  • Ball BC, Scott A, Parker JP (1999) Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil Till Res 53:29–39

    Google Scholar 

  • Balota EL, Colozzi A, Andrade DS, Dick RP (2004) Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. Soil Till Res 77:137–145

    Google Scholar 

  • Barnes BT, Ellis FB (1979) Effects of different methods of cultivation and direct drilling and disposal of straw residues on populations of earthworms. J Soil Sci 30:679

    Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244

    CAS  PubMed  Google Scholar 

  • Bayer C, Bertol I (1999) Características químicas de um Cambissolo húmico afetadas por sistemas de preparo, com enfase à matéria organica. Rev Bras Ciência Solo 23:687–694

    CAS  Google Scholar 

  • Bayer C, Mielniczuck J (1997) Nitrogênio total de um solo submetido a diferentes métodos de preparo e sistemas de culturas. Rev Bras Ciência Solo 21:235–239

    CAS  Google Scholar 

  • Bayer C, Martin-Neto L, Mielniczuck J, Ceretta CA (2000a) Effect of no-tillage cropping systems on SOM in a sandy clay loam Acrisol from Southern Brazil monitored by electron spin resonance and nuclear magnetic resonance. Soil Till Res 53:95–104

    Google Scholar 

  • Bayer C, Mielniczuck J, Amado TJC, Martin-Neto L, Fernandes SBV (2000b) Organic matter storage in a sandy clay loam Acrisol affected by tillage and cropping systems in southern Brazil. Soil Till Res 54:101–109

    Google Scholar 

  • Beare MH, Parmelee RW, Hendrix PF, Cheng W, Coleman DC, Crossley DA (1992) Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecol Monogr 62:569–591

    Google Scholar 

  • Beare MH, Pohlad BR, Wright DH, Coleman DC (1993) Residue placement and fungicide effects on fungal communities in conventional and no-tillage soils. Soil Sci Soc Am J 57:392–399

    CAS  Google Scholar 

  • Beaudoin N, Saad JK, Van Laethem C, Machet JM, Maucorps J, Mary B (2005) Nitrate leaching in intensive agriculture in Northern France: effect of farming practices, soils and crop rotations. Agric Ecosyst Environ 111:292–310

    CAS  Google Scholar 

  • Ben Moussa-MachraouiS, Errouissi F, Ben-Hammouda M, Nouira S (2010) Comparative effects of conventional and no-tillage management on some soil properties under Mediterranean semi-arid conditions in North-Western Tunisia. Soil Till Res 106:247–253

    Google Scholar 

  • Berntsen J, Grant R, Olesen JE, Kristensen IS, Vinther FP, Molgaard JP, Petersen BM (2006) Nitrogen cycling in organic farming systems with rotational grass-clover and arable crops. Soil Use Manage 22:197–208

    Google Scholar 

  • Bindi M, Olesen JE (2011) The responses of agriculture in Europe to climate change. Reg Environ Change 11:S151–158

    Google Scholar 

  • Bindi M, Fibbi L, Gozzini B, Orlandini S, Miglietta F (1996) Modeling the impact of future climate scenarios on yield and yield variability of grapevine. Clim Res 7:213–224

    Google Scholar 

  • Black HIJ, Okwakol MJN (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of termites. Appl Soil Ecol 6:37–53

    Google Scholar 

  • Black AL, Tanaka DL (1997) A conservation tillage-cropping systems study in the Northern Great Plains of the United States. In: Paul EA et al (eds) Soil organic matter in temperate agroecosystems—Long-term experiments in North America. CRC, New York, 335–342

    Google Scholar 

  • Blanchart E, Albrecht A, Brown G, Decaens T, Duboisset A, Lavelle P, Mariani L, Roose E (2004) Effects of tropical endogeic earthworms on soil erosion. Agric Ecosyst Environ 104:303–315

    Google Scholar 

  • Blevins RL, Thomas GW, Cornelius PL (1977) Influence of no-tillage and nitrogen fertilization on certain soil properties after 5 years of continuous corn. Agron J 69:383–386

    CAS  Google Scholar 

  • Blevins RL, Lal R, Doran JW, Langdale GW, Frye WW (1998) Conservation tillage for erosioncontrol and soil quality. In: Pierce FJ, Frye WW (eds) Advances in soil and water conservation. Ann Arbor Press, Michigan, pp 51–68

    Google Scholar 

  • Bøckman OChr OHW (1998) Fertilizers, agronomy and N2O. Nutr Cycl Agroecosyst 52:165–170

    Google Scholar 

  • Boddey RM, de Moraes SJC, de Alves M, Urquiaga BJR (1997) The contribution of biological nitrogen fixation for sustainable agricultural systems in the tropics. Soil Biol Biochem 29:787–799

    CAS  Google Scholar 

  • Boddey RM, Alves BJR, Soares LH deB, Jantalia CP, Urquiaga S (2009) Biological nitrogen fixation and mitigation of greenhouse gas emissions. In: Emerich DW, Krishnan HB (eds) Agronomy Monograph Nitrogen Fixation in Crop Production. Am Soc Agron, Crop Sci Soc Am, and Soil Sci Soc Am Madison, Wisconsin, pp 387–413

    Google Scholar 

  • Bol R, Kandeler E, Amelung W, Glaser B, Marx MC, Preedy N, Lorenz K (2003) Short-term effects of dairy slurry amendment on carbon sequestration and enzyme activities in a temperate grassland. Soil Biol Biochem 35:1411–1421

    CAS  Google Scholar 

  • Boone FR, Slager S, Miedema R, Eleveld R (1976) Some influences of zero-tillage on the structure and stability of fine textured river levee soil. Neth J Agric Sci 24:105–119

    Google Scholar 

  • Born M, Dorr H, Levin J (1994) Methane consumption in aerated soils of the temperate zone. Tellus B 42:2–8

    Google Scholar 

  • Bouwman AF, Lee DS, Asman AH, Dentener EJ, Van Der Hoe KW, Olivier JGJ (1997) A global high-resolution emission inventory for ammonia. Global Biogeochem Cycles 11:561–587

    CAS  Google Scholar 

  • Bradford JM, Peterson GA (2000) Conservation tillage. In: Summer ME (ed) Handbook of soil science. CRC, Boca Raton, pp G247–269

    Google Scholar 

  • Bronson KF, Neue HU, Singh U, Abao EB Jr (1997) Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil: I. Residue nitrogen and water management. Soil Sci Soc Am J 61:981–987

    CAS  Google Scholar 

  • Butterbach-Bahl K, Dannenmann M (2011) Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Curr Opin Environ Sustain 3:389–395

    Google Scholar 

  • Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ 20:1175–1183

    CAS  Google Scholar 

  • Buyanovsky GA, Wagner GH (1998) Carbon cycling in cultivated land and its global significance. Global Change Biol 4:131–141

    Google Scholar 

  • Carter MR, Steed GR (1992) The effects of direct-drilling and stubble retention on hydraulic-properties at the surface of duplex soils in North-Eastern Victoria. Aust J Soil Res 30:505–516

    Google Scholar 

  • Cai ZC, Xing GX, Yan XY, Xu H, Tsuruta H, Yagi K, Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil 196:7–14

    CAS  Google Scholar 

  • Campbell CA, McConkey BG, Zentner RP, Dyck FB, Selles F, Curtin D (1996a) Longterm effects of tillage and crop rotations on soil organic C and total N in a clay soil in southwestern Saskatchewan. Can J Soil Sci 76:395–401

    Google Scholar 

  • Campbell CA, McConkey BG, Zentner RP, Selles F, Curtin D (1996b) Tillage and crop rotation effects on soil organic C and N in a coarse-textured Typic Haploboroll in southwestern Saskatchewan. Soil Till Res 37:3–14

    Google Scholar 

  • Campbell CA, Lafond GP, Moulin AP, Townley-Smith L, Zentner RP (1997) Crop production and soil organic matter in long-term crop rotations in the sub-humid northern Great Plains of Canada. In: Paul EA et al. (eds) Soil organic matter in temperate agroecosystems-Long-term experiments in North America. CRC, New York, 297–315

    Google Scholar 

  • Cantero-Martinez C, Gabina D, Arrue JL (2007) Evaluation of conservation agriculture technology in Mediterranean agriculture systems. In: Fares SB, Asfary A, Belloum A, Steiner K, Friedrich T (eds) Proceedings of the International Workshop on Conservation Agriculture for Sustainable Land Management to Improve the Livelihood of People in Dry Areas 2007 May 7–9, Damascus, Syria. ACSAD and GTZ, p 157–164

    Google Scholar 

  • Carozzi M, Loubet B, Acutis M, Rana G, Ferrara RM (2013a) Inverse dispersion modelling highlights the efficiency of slurry injection to reduce ammonia losses by agriculture in the Po Valley (Italy). Agric Forest Meteorol 171-172:306–318

    Google Scholar 

  • Carozzi M, Ferrara RM, Rana G, Acutis M (2013b) Evaluation of mitigation strategies to reduce ammonia losses from slurry fertilisation on arable lands. Sci Total Environ 449:126–133

    Google Scholar 

  • Chadwick DR, van der Weerden T, Martinez J, Pain BF (1998) Nitrogen transformations and losses following pig slurry applications to a natural soil filter system (Solepur process) in Britany, France. J Agr Eng Res 69:85–93

    Google Scholar 

  • Chan KY (1997) Consequences of changes in particulate organic carbon in vertisols under pasture and cropping. Soil Sci Soc Am J 61:1376–1382

    CAS  Google Scholar 

  • Chan KY (2001) An overview of some tillage impacts on earthworm population abundance and diversity—implications for functioning in soils. Soil Till Res 57:179–191

    Google Scholar 

  • Chan KY, Heenan DP (1993) Surface hydraulic-properties of a red earth under continuous cropping with different management-practices. Aust J Soil Res 31:13–24

    Google Scholar 

  • Chan KY, Bowman A, Oates A (2001) Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys. Soil Sci 166:61–67

    CAS  Google Scholar 

  • Chan KY, Heenan DP, Oates A (2002) Soil carbon fractions and relationship to soil quality under different tillage and stubble management. Soil Till Res 63:133–139

    Google Scholar 

  • Chantigny MH, Rochette P, Angers DA (2001) Short-term C and N dynamics in a soil amended with pig slurry and barley straw: a field experiment. Can J Soil Sci 81:131–137

    CAS  Google Scholar 

  • Chen YT, Borken W, Stange CF, Matzner E (2011) Effects of decreasing water potential on gross ammonification and nitrification in an acid coniferous forest soil. Soil Biol Biochem 43:333–338

    CAS  Google Scholar 

  • Christensen B, Montgomery JM, Fawcett RS, Tierney D (1995) Best management practices for water quality. Conservation Technology Information Center, West Lafayette, pp 1–3

    Google Scholar 

  • Cicerone RJ, Delwiche CC, Tyler SC, Zimmerman PR (1992) Methane emissions from California rice paddies with varied treatments. Global Biogeochem Cycles 6:233–248

    CAS  Google Scholar 

  • Clausen JC, Jokela WE, Potter FI, Williams JW (1996) Paired watershed comparison of tillage effects on runoff, sediment, and pesticide losses. J Environ Qual 25:1000–1007

    CAS  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365

    PubMed  Google Scholar 

  • Cochran VL, Sparrow SD, Sparrow EB (1994) Residue effect on soil micro- and macroorganisms. In: Unger PW (ed) Managing agricultural residues. CRC, Boca Raton, pp 163–184

    Google Scholar 

  • Confalonieri R, Donatelli Bregaglio S, Tubiello FN, Fernandes E (2012) Agroecological zones simulator: A component based, open-access, transparent platform for climate change - crop productivity impact assessment in Latin America. iEMSs 6th International Congress, Leipzig, 1–5 July

    Google Scholar 

  • Corsi S, Friedrich T, Kassam A, Pisante M, Sà J de M (2012) Soil organic carbon accumulation and greenhouse gas emission reductions from conservation agriculture: a literature review. Integrated crop management, vol 16. Plant Production and Protection Division, Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Dai A, Fung IY, DelGenio AD (1997) Surface observed global land precipitation variations during 1900-1998. J Climate 10:2943–2962

    Google Scholar 

  • Dass A, Sudhishri S, Lenka NK, Patnaik US (2010) Runoff capture through vegetative barriers and planting methodologies to reduce erosion, and improve soil moisture, fertility and crop productivity in southern Orissa. India Nutr Cycl Agroecosyst 10:1–13

    Google Scholar 

  • De Alba S, Lacasta C, Benito G, Perez-Gonzalez A (2001) Influence of soil management on water erosion in a Mediterranean semi-arid environment in Central Spain. In: Garcıa-Torres L, Benites J, Martınez-Vilela A (eds) Conservation agriculture, a worldwide challenge, vol 2. ECAF and FAO, Spain

    Google Scholar 

  • De laRD, Diaz-Pereira E, Mayol F, Czyz EA, Dexter AR, Dumitru E, Enache R, Fleige H, Horn R, Rajkay K, Simota C (2005) SIDASS project Part2. Soil erosion as a function of soil type and agricultural management in Sevilla olive area, Southern Spain. Soil Till Res 82:19–28

    Google Scholar 

  • de Maria IC, Nnabude PC, de Castro OM (1999) Long-term tillage effects on soil chemical properties of a Rhodic Ferralsol in Southern Brazil. Soil Till Res 51:71–79

    Google Scholar 

  • De MSàJCM, Cerri CC, Dick WA, Lal R, Filho SPV, Piccolo MC, Feigl BE (2001) Organic matter dynamics and carbon sequestration rates for a tillage chronosequence in a Brazilian Oxisol. Soil Sci Soc Am J 65:1486–1499

    Google Scholar 

  • Decaëns T, Jimenez JJ (2002) Earthworm communities under an agricultural intensification gradient in Colombia. Plant Soil 240:133–143

    Google Scholar 

  • Deibert EJ, Utte RA, Schwert DP (1991) Tillage system influence on earthworms (Lumbricidae) in North Dakota. N Dak Farm Res 48:10–12

    Google Scholar 

  • Del Río S, Herrero L, Pinto-Gomes C, Penas A (2011) Spatial analysis of mean temperature trends in Spain over the period 1961–2006. Glob Planet Change 79:65–75

    Google Scholar 

  • Denier vanderGHAC, Neue HU (1995) Influence of organic matter incorporation on the methane emission from a wetland rice field. Glob Biogeochem Cycles 9:11–22

    Google Scholar 

  • Dennis P, Thomas MB, Sotherton NW (1994) Structural features of field boundaries which influence the overwintering densities of beneficial arthropod predators. J Appl Ecol 31:361–370

    Google Scholar 

  • Derpsch R, Franzluebbers AJ, Duiker SW, Reicosky DC, Koeller K, Friedrich T, Sturny WG, Sa´ JCM, Weiss K (2014) Why do we need to standardize no-tillage research? (Letter to the Editor). Soil Till Res 137:16–22

    Google Scholar 

  • Diekow J, Mielniczuk J, Knicker H, Bayer C, Dick DP, Kogel-Knabner I (2005) Soil C and N stocks as affected by cropping systems and nitrogen fertilisation in a Southern Brazil Acrisol managed under no-tillage for 17 years. Soil Till Res 81:87–95

    Google Scholar 

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. SSSA special publication no. 35, Madison, pp 3–21

    Google Scholar 

  • Doran JW, Liebig MA, Santana DP (1998) Soil health and global sustainability. In: Transactions of the 16th World Congress of Soil Science. Montepellier. 20–26 August, France

    Google Scholar 

  • Drijber RA, Doran JW, Parkhurst AM, Lyon DJ (2000) Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biol Biochem 32:1419–1430

    CAS  Google Scholar 

  • Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396:262–265

    CAS  Google Scholar 

  • Du Preez CC, Steyn JT, Kotze E (2001) Long-term effects of wheat residue management on some fertility indicators of a semi-arid Plinthosol. Soil Till Res 63:25–33

    Google Scholar 

  • Duiker SW, Beegle DB (2006) Soil fertility distributions in long-term no-till, chisel/disk and moldboard plow/disk systems. Soil Till Res 88:30–41

    Google Scholar 

  • Eagle AJ, Henry LR, Olander LP, Haugen-Kozyra KH, Millar N, Robertson GP (2011) Greenhouse gas mitigation potential of agricultural land management in the United States: a synthesis of the literature, 2nd edn. Nicholas Institute for Environmental Policy Solutions, Durham, North Carolina

    Google Scholar 

  • Easterling W, Apps M (2005) Assessing the consequences of climate change for food and forest resources: a view from the IPCC. Clim Change 70:165–189

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Chapman and Hall, London

    Google Scholar 

  • Edwards JH, Wood CW, Thurlow DL, Ruf ME (1992) Tillage and crop-rotation effects on fertility status of a hapludult soil. Soil Sci Soc Am J 56:1577–1582

    Google Scholar 

  • Entry IA, Mitchell CC, Backman CB (1996) Influence of management practices on soil organic matter, microbial biomass and cotton yield in Alabama’s “Old Rotation”. Biol Fertil Soils 23-4:353–358

    Google Scholar 

  • Erenstein O (2002) Crop residue mulching in tropical and semi-tropical countries: an evaluation of residue availability and other technological implications. Soil Till Res 67:115–133

    Google Scholar 

  • Evans R (1996) Soil erosion and its impacts in England and Wales. Friends of the Earth, London, p 121

    Google Scholar 

  • FAO (2001) World Soil Resources Reports 96: Soil carbon sequestration for improved land management. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • FAO (2008) The case for improving soil health. In: Proceedings of the International Technical Workshop on Investing in Sustainable Crop Intensification, 22–24 July. Integrated Crop Management, vol 6. FAO, Rome

    Google Scholar 

  • FAO (2009) Food security and agricultural mitigation in developing countries: options for capturing synergies. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • FAO (2011) What is conservation agriculture? FAO conservation agriculture website. http://www.fao.org/ag/ca/1a.html

  • FAO (2012) Soil organic carbon accumulation and greenhouse gas emission reductions from conservation agriculture: a literature review. Integr Crop Manag 16:89

    Google Scholar 

  • FAO (2014) FAOSTAT database. FAO, Rome, Italy. http://www.fao.org/faostat. Accessed 10 Feb 2014

  • Farrar JF (1996) Sinks, integral parts of a whole plant. J Exp Bot 47:1273–1279

    CAS  PubMed  Google Scholar 

  • Ferguson HJ, McPherson RM (1985) Abundance and diversity of adult carabidae in 4 soybean cropping systems in Virginia. J Entomol Sci 20:163–171

    Google Scholar 

  • Ferreras LA, Costa JL, García FO, Pecorari C (2000) Effect of no-tillage on some soil physical properties of a structural degraded Petrocalcic Paleudoll of the southern “Pampa” of Argentina. Soil Till Res 54:31–39

    Google Scholar 

  • Filho CC, Lourenco A, Guimaraes MDF, Fonseca ICB (2002) Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil. Soil Till Res 65:45–51

    Google Scholar 

  • Flessa H, Beese F (2000) Laboratory estimates of trace gas emissions following surface application and injection of cattle slurry. J Environ Qual 29:262–268

    CAS  Google Scholar 

  • Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7:1221–1244

    Google Scholar 

  • Fontaine S (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280

    CAS  PubMed  Google Scholar 

  • Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004) Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–320

    Google Scholar 

  • Francis GS, Knight TL (1993) Long-term effects of conventional and no-tillage on selected soil properties and crop yields in Canterbury, New Zealand. Soil Till Res 26:193–210

    Google Scholar 

  • Franzaring J, Högy P, Fangmeier A (2008) Effects of free-air CO2 enrichment on the growth of summer oilseed rape (Brassica napus cv. Campino). Agric Ecosyst Environ 128:127–134

    CAS  Google Scholar 

  • Franzluebbers AJ, Hons FM (1996) Soil-profile distribution of primary and secondary plantavailable nutrients under conventional and no tillage. Soil Till Res 39:229–239

    Google Scholar 

  • Franzluebbers AJ, Hons FM, Zuberer DA (1995a) Tillage and crop effects on seasonal soil carbon and nitrogen dynamics. Soil Sci Soc Am J 59:1618–1624

    Google Scholar 

  • Franzluebbers K, Weaver RW, Juo ASR, Franzluebbers AJ (1995b) Mineralization of carbon and nitrogen from cowpea leaves decomposing in soils with different levels of microbial biomass. Biol Fertil Soils 19:100–102

    Google Scholar 

  • Franzluebbers AJ, Haney RL, Hons FM, Zuberer DA (1999) Assessing biological soil quality with chloroform fumigation-incubation: why subtract a control? Can J Soil Sci 79:521–528

    Google Scholar 

  • Frey SD, Elliott ET, Paustian K (1999) Bacterial and fungal abundance and biomass inconventional and no-tillage agroecosystems along two climatic gradients. Soil Biol Biochem 31:573–585

    CAS  Google Scholar 

  • Friebe B, Henke W (1991) Bodentiere und deren Strohabbauleistungen bei reduzierter Bodenbearbeitung. Z. f. Kulturtechnik und Landentwicklung 32:121–126

    Google Scholar 

  • Frielinghaus M (2002) Soil erosion and pesticide translocation control. In: Pimental D (ed) Encyclopedia of pest management. CRC, New York, pp 777–780

    Google Scholar 

  • Gál A, Vyn TJ, Michéli E, Kladivko EJ, Mcfee WW (2007) Soil carbon and nitrogen accumulation with long-term no-till versus moldboard plowing overestimated with tilled-zone sampling depths. Soil Till Res 96:42–51

    Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    CAS  PubMed  Google Scholar 

  • Gerard BM, Hay RKM (1979) The effect on earthworms of plowing, tined cultivation, direct drilling and nitrogen in a barley monoculture system. J Agr Sci 93:147–155

    Google Scholar 

  • Giannakopoulos C, Le Sager P, Bindi M, Moriondo M, Kostopoulou A, Goodess CM (2009) Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Glob Planet Change 68:209–224

    Google Scholar 

  • Gicheru PT (1994) Effects of residue mulch and tillage on soil-moisture conservation. Soil Technol 7:209–220

    Google Scholar 

  • Goddard T, Haugen-Kozyra K, Ridge A (2009) Conservation agriculture protocols for green house gas offsets in a working carbon market. Paper presented at the IV World Congress on Conservation Agriculture, 3–7 February 2009, New Delhi, India

    Google Scholar 

  • Gómez JA, Giraldez JV, Fereres E (2005) Water erosion in olive orchards in Andalusia (Southern Spain): a review. Geophys Res Abst 7

    Google Scholar 

  • Gotwald WH (1986) The beneficial economic role of ants. In: Vinson SB (ed) Economic impact and control of social insects. Praeger, New York, pp 290–313

    Google Scholar 

  • Govaerts B, Sayre KD, Lichter K, Dendooven L, Deckers J (2007) Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rain fed maize/wheat systems. Plant Soil 291:39–54

    CAS  Google Scholar 

  • Grandy AS, Robertson GP, Thelen KD (2006) Do productivity and environmental trade-offs ustify periodically cultivating no-till cropping systems? Agron J 98:1377–1383

    CAS  Google Scholar 

  • Greb BW (1966) Effect of surface-applied wheat straw on soil water losses by solar distillation. Soil Sci Soc Am Proc 30:786

    Google Scholar 

  • Gregorich EG, Drur CF, Baldock JA (2001) Changes in soil carbon under long-term maize in monoculture and legume-based rotation. Can J Soil Sci 81:21–31

    CAS  Google Scholar 

  • Gregorich EG, Rochette P, VandenBygaart AJ, Angers D (2005) Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil Till Res 81:53–72

    Google Scholar 

  • Guggenberger G, Frey SD, Six J, Paustian K, Elliott ET (1999) Bacterial and fungal cellwall residues in conventional and no-tillage agroecosystems. Soil Sci Soc Am J 63:1188–1198

    CAS  Google Scholar 

  • Haines PJ, Uren NC (1990) Effectsof conservation tillage farming on soil microbial biomass, organic matter and earthworm population, in north-eastern Victoria. Aust J Exp Agric 30:365–371

    Google Scholar 

  • Hansen S, Maehlum JE, Bakken LR (1993) N2O and CH4 fluxes in soil influenced by fertilization and tractor traffic. Soil Biol Biochem 25:621–630

    CAS  Google Scholar 

  • Hansen EM, Munkholm LJ, Melander B, Olesen JE (2010) Can non-inversion tillage and straw retainment reduce N leaching in cereal-based crop rotations? Soil Till Res 109:1–8

    Google Scholar 

  • Harper D (1992) Eutrophication of fresh waters. Chapman & Hall, Saffolk, p 327

    Google Scholar 

  • Harper LA (2005) Ammonia: measurement issues. In: Hatfield JL, Baker JM, Viney MK (eds) Micrometeorology in agricultural systems, Agronomy Monograph, vol 47. ASA, Madison, pp 345–379

    Google Scholar 

  • Harrison PA, Butterfield R, Downing TE (1995) Climate change and agriculture in Europe: assessment of impacts and adaptations. Research Report No. 9, Environmental Change Unit, University of Oxford, pp 330–388

    Google Scholar 

  • Hatfield JL, Sauer TJ, Prueger JH (2001) Managing soils to achieve greater water use efficiency: a review. Agric J 93:271–280

    Google Scholar 

  • Havlin JL, Kissel DE, Maddux LD, Claassen MM, Long JH (1990) Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Sci Soc Am J 54:448–452

    Google Scholar 

  • Hernanz JL, Lopez R, Navarrete L, Sanchez-Giron V (2002) Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain. Soil Till Res 66:129–141

    Google Scholar 

  • Hernanz L, Sánchez-Girón V, Navarrete L (2009) Soil carbon sequestration and stratification in a cereal/leguminous crop rotation with three tillage systems in semiarid conditions. Agric Ecosyst Environ 133:114–122

    CAS  Google Scholar 

  • Herrero EV, Mitchell JP, Lanini WT, Temple SR, Miyao EM, Morse RD, Campiglia E (2001) Soil properties change in no-till tomato production. Calif Agric 55:30–34

    Google Scholar 

  • Holland JM, Reynolds CJM (2003) The impact of soil cultivation on arthropod (Coleoptera and Araneae) emergence on arable land. Pedobiologia 47:181–191

    Google Scholar 

  • Holt JA, Robertson LN, Radford BJ (1993) Effects of tillage and stubble residue treatments on termite activity in 2 central Queensland vertosols. Aust J Soil Res 31:311–317

    Google Scholar 

  • Horáček J, Ledvina R, Raus A (2001) The content of quality of organic matter in cambisol in a long-term no tillage system. Rostlinná Výroba 47:205–210

    Google Scholar 

  • House GJ, Stinner BR (1983) Arthropods in no-tillage soybean agroecosystems—community composition and ecosystem interactions. Environ Manag 7:23–28

    Google Scholar 

  • House GJ, Parmelee RW (1985) Comparison of soil arthropods and earthworms from conventional and no-tillage agroecosystems. Soil Till Res 5:351–360

    Google Scholar 

  • Hu ZH, Ling H, Chen ST, Shen SH, Zhang H, Sun YY (2013) Soil respiration, nitrification, and denitrification in a wheat farmland soil under different managements. Commun Soil Sci Plant Anal 44:3092–3102

    CAS  Google Scholar 

  • Huijsmans JFM, Hol JMG, Vermeulen GD (2003) Effect of application method, manure characteristics, weather and filed conditions on ammonia volatilization from manure applied to arable land. Atmos Environ 37:3669–3680

    CAS  Google Scholar 

  • Hulme M, Osborn TJ, Johns TC (1998) Precipitation sensitivity to global warming: comparisons of observations with HadCM2 simulations. Geophys Res Lett 25:3379–3382

    Google Scholar 

  • Hussain A, Mulholland BJ, Black CR, Taylor IB, Roberts JA (1999a) Novel approaches for examining the effects of differential soil compaction on xylem sap ABA concentration, stomatal conductance and growth in barley (Hordeum vulgare L.). Plant Cell Environ 22(11):1377–1388

    Google Scholar 

  • Hussain I, Olson KR, Ebelhar SA (1999b) Long-term tillage effects on soil chemical properties and organic matter fractions. Soil Sci Soc Am J 63:1335–1341

    Google Scholar 

  • Hütsch BW (1998) Tillage and land use effects on methane oxidation rates and their vertical profiles in soil. Biol Fertil Soils 27:284–292

    Google Scholar 

  • Hütsch BW (2001) Methane oxidation, nitrification, and counts of methanotrophic bacteria in soils from a long-term fertilization experiment (‘‘Ewiger Roggenbau’’at Halle). J Plant Nutr Soil Sci 164:21–28

    Google Scholar 

  • Hütsch BW, Webster CP, Powlson DS (1993) Long term effects of nitrogen fertilization on methane oxidation in soil of the broadbalk wheat experiment. Soil Biol Biochem 25:1307–1315

    Google Scholar 

  • IPCC (2001) Climate Change 2001: The Scientific Basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 881

    Google Scholar 

  • IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University , Cambridge, p 996

    Google Scholar 

  • IPCC (2013) Climate Change 2013: The Physical Science Basis 2013

    Google Scholar 

  • Jagtap V, Bhargava S, Streb P, Feierabend J (1998) Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.) Moench. J Exp Bot 49:1715–1721

    CAS  Google Scholar 

  • Jarecki MK, Lal R (2003) Crop management for soil carbon sequestration. Crit Rev Plant Sci 22:471–502

    Google Scholar 

  • Jiang Y, Huang B (2001) Drought and heat stress injury to two cool season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci 41:436–442

    CAS  Google Scholar 

  • Johnson AM, Hoyt GD (1999) Changes to the soil environment under conservation tillage. HortTechnology 9:380–393

    CAS  Google Scholar 

  • Kassam A, Friedrich T, Shaxson F, Pretty J (2009) The spread of conservation agriculture: justification, sustainability and uptake. Int J Agric Sustainabil 7:292–320

    Google Scholar 

  • Kassam A, Basch G, Friedrich T, Shaxson F, Goddard T, Amado T, Crabtree B, Hongwen L, Mello I, Pisante M, Mkomwa S (2013) Soil management is more than what and how crops are grown. In: Lal R, Stewart BA (eds) Principles of sustainable soil management in agroecosystems. Series: advances in soil sciences. CRC, Boca Raton, pp 338–387, ISBN: 978-1-4665-1346–4

    Google Scholar 

  • Kay BD (1990) Rates of change of soil structure under different cropping systems. Adv Soil Sci 12:1–52

    Google Scholar 

  • Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Advn Agron 77:293–368

    Google Scholar 

  • Kirkby MJ, Jones RJA, Irvine B, Gobin A, Govers G, Cerdan O, Van Rompaey AJJ, Le Bissonnais Y, Daroussin J, King D, Montanarella L, Grimm M, Vieillefont V, Puigdefabregas J, Boer M, Kosmas C, Yassoglou N, Tsara M, Mantel S, Van Lynden G (2004) Pan-European soil erosion risk assessment: the PESERA Map, Version 1 October 2003. Explanation of special publication Ispra 2004 No73 (S.P.I.04.73). European Soil Bureau Research Report No. 16, EUR 21176, 18 pp. and I map in ISO B1 format. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Kladivko EJ (2001) Tillage systems and soil ecology. Soil Till Res 61:61–76

    Google Scholar 

  • Kladivko EJ, Akhouri NM, Weesies G (1997) Earthworm populations and species distributions under no-till and conventional tillage in Indiana and Illinois. Soil Biol Biochem 29:613–615

    CAS  Google Scholar 

  • Klein T, Holzkamper A, Calanca P, Seppelt R, Fuhrer J (2013) Adapting agricultural land management to climate change: a regional multi-objective optimization approach. Landscape Ecol 28:2029–2047

    Google Scholar 

  • Knowles TA, Singh B (2003) Carbon storage in cotton soils of northern New South Wales. Aust J Soil Res 41:889–903

    CAS  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    CAS  Google Scholar 

  • Laflen JM, Roose EJ (1998) Methodologies for assessment of soil degradation due to water erosion. In: Lal etal (eds) Methods for assessment of soil degradation: advances in soil science. CRC, Boca Raton, pp 31–55

    Google Scholar 

  • Lafond GP, Walley F, Schoenau J, May WE, Holzapfel CB, McKell J, Halford J (2008) Long-term vs. short-term conservation tillage: 28-43. In: Proceedings of the 20th annual meeting and conference of the Saskatchewan Soil Conservation Association, Regina, Saskatchewan, 12–13 February

    Google Scholar 

  • Lal R, Follett RF, Stewart BA, Kimble JM (2007) Soil carbon sequestration to mitigate climate change and advance food security. Soil Sci 172(12):943–956

    CAS  Google Scholar 

  • Lampurlanés J, Cantero-Martınez C (2006) Hydraulic conductivity, residue cover and soil surface roughness under different tillage systems in semiarid conditions. Soil Till Res 5:13–26

    Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50

    CAS  Google Scholar 

  • Lessard R, Rochette P, Topp GC, Pattey E, Desjardins RL (1994) Methane and carbon dioxide fluxes from poorly drained adjacent cultivated and forest sites. Can J Soil Sci 74:139–146

    CAS  Google Scholar 

  • Levy PE, Burden A, Cooper MDA, Dinsmore KJ, Drewer J, Evans C, Fowler D, Gaiawyn J, Gray A, Jones SK, Jones T, McNamara NP, Mills R, Ostle N, Sheppard LJ, Skiba U, Sowerby A, Ward SE, Zielinskli P (2012) Methane emissions from soils: synthesis and analysis of a large UK data set. Glob Change Biol 18:1657–1669

    Google Scholar 

  • Li HW, Gao HW, Wu HD, Li WY, Wang XY, He J (2007) Effects of 15 years of conservation tillage on soil structure and productivity of wheat cultivation in northern China. Aust J Soil Res 45:344–350

    Google Scholar 

  • Linn DM, Doran JW (1984) Aerobic and anaerobic microbial populations in no-till and plowed soils. Soil Sci Soc Am J 48:794–799

    Google Scholar 

  • Lobb D, Lindstrom MJ (1999) Tillage translocation and tillage erosion. Poster Presentation at Manitoba Soil Science Society Meeting Winnipeg, Manitoba, vol 75, pp 211–218, 1–2 February 1999

    Google Scholar 

  • Lobb D, Kachanoski RG, Miller MH (1995) Tillage translocation and tillage erosion on shoulder slope landscape positions measured using 137Cs as a tracer. Can J Soil Sci 75:211–218

    Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett 2

    Google Scholar 

  • López MV, Arrue JL (2005) Soil tillage and wind erosion in fallow lands of Central Aragaon, Spain: an overview. In: Faz A, Ortiz R, Mermut AR (eds) Sustainable use management of soils: arid semiarid regions Advances in Geo Ecology, vol 36. Catena, Reiskirchen, 93–102

    Google Scholar 

  • Lopez MV, Gracia R, Arrue JL (2001) An evaluation of wind erosion hazards in fallow lands of semiarid Aragon (NE Spain). J Soil Water Conserv 56:212–219

    Google Scholar 

  • López-Bellido RJ, Fontán JM, López-Bellido FJ, López-Bellido L (2010) Carbon sequestration by tillage, rotation, and nitrogen fertilization in a mediterranean vertisol. Agron J 102:310–318

    Google Scholar 

  • Lopez-Fando C, Pardo MT (2001) The impact of tillage systems and crop rotations on carbon sequestration in calcic luvisol of central Spain. I World Congress on Conservation Agriculture. Madrid, 1–5 October

    Google Scholar 

  • López-Fando C, Dorado J, Pardo MT (2007) Effects of zone-tillage in rotation with no-tillage on soil properties and crop yields in a semiarid soil from central Spain. Soil Till Res 95:266–276

    Google Scholar 

  • Lupwayi NZ, Monreal MA, Clayton GW, Grant CA, Johnston AM, Rice WA (2001) Soil microbial biomass and diversity respond to tillage and sulphur fertilizers. Can J Soil Sci 81:577–589

    Google Scholar 

  • Magdoff F, Weil RR (2004) Soil organic matter management strategies. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC, New York, pp 45–65

    Google Scholar 

  • Mando A, Miedema R (1997) Termite-induced change in soil structure after mulching degraded (crusted) soil in the Sahel. Appl Soil Ecol 6:241–249

    Google Scholar 

  • Marasas ME, Sarandon SJ, Cicchino AC (2001) Changes in soil arthropod functional group in a wheat crop under conventional and no tillage systems in Argentina. Appl Soil Ecol 18:61–68

    Google Scholar 

  • Mele PM, Carter MR (1999) Impact of crop management factors in conservation tillage farming on earthworm density, age structure and species abundance in south-eastern Australia. Soil Till Res 50:1–10

    Google Scholar 

  • Mitchell CC, Arriaga FJ, Entry JA, Novak JL, Goodman WR, Reeves DW, Runge MW, Traxler GJ (1996) The Old Rotation, 1896–1996 100 Years of Sustainable Cropping Research. Alabama Agricultural Experiment Station, Auburn, AL.z < 1

    Google Scholar 

  • Miyazawa K, Tsuji H, Yamagata M, Nakano H, Nakamoto T (2002) The effects of cropping systems and fallow managements on microarthropod populations. Plant Prod Sci 5:257–265

    Google Scholar 

  • Mojeremane W, Rees RM, Mencuccini M (2011) The effects of site preparation practices on carbon dioxide methane and nitrous oxide fluxes from a peaty gley soil. Forestry 19:1–15

    Google Scholar 

  • Montzka SA, Dlugokencky EJ, Butler JH (2011) Non-CO2 greenhouse gases and climate change. Nature 476:43–50

    CAS  PubMed  Google Scholar 

  • Moreno F, Murillo JM, Pelegrín F, Girón IF (2006) Long-term impact of conservation tillage on stratification ratio of soil organic carbon and loss of total and active CaCO3. Soil Till Res 85:86–93

    Google Scholar 

  • Moretto AS, Distel RA, Didone NG (2001) Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semiarid grassland. Appl Soil Ecol 18:31–37

    Google Scholar 

  • Moriondo M, Bindi M, Kundzewicz ZW, Szwed M, Chorynski A, Matczak P et al (2010) Impact and adaptation opportunities for European agriculture in response to climatic change and variability. Mitig Adapt Strateg Glob Change 15:657–679

    Google Scholar 

  • Mrabet R (2008) No-tillage systems for sustainable dryland agriculture in Morocco. Institut National de la Recherche Agronomique, Tangier

    Google Scholar 

  • Mrabet R, Saber N, El-Brahli A, Lahlou S, Bessam F (2001) Total particulate organic matter and structural stability of a calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco. Soil Till Res 57:225–235

    Google Scholar 

  • Mudge F, Adger WN (1995) Methane fluxes from artificial wetlands: a global appraisal. Environ Manag 19:39–55

    Google Scholar 

  • Mupangwa W, Twomlow S, Walker S, Hove L (2007) Effect of minimum tillage and mulching on maize (Zea mays L.) yield and water content of clayey and sandy soils. Phys Chem Earth 32:1127–1134

    Google Scholar 

  • Nesbit SP, Breitenbeck GA (1992) A laboratory study of factors influencing methane uptake by soils. Agric Ecosyst Environ 41:39–54

    CAS  Google Scholar 

  • Neue HU (1997) Fluxes of methane from rice fields and potential for mitigation. Soil Use Manag 13:258–267

    Google Scholar 

  • Newcombe CP, Macdonald DD (1991) Effects of suspended sediments on aquatic ecosystems. N Am J Fisheries Manag 11(1):72–82

    Google Scholar 

  • Nisbet MC (2009) Communicating climate change: why frames matter for public engagement. Environ Sci Policy Sustain Develop 51(2):12–23

    Google Scholar 

  • Nkem JN, de Bruyn LAL, Grant CD, Hulugalle NR (2000) The impact of ant bioturbation and foraging activities on surrounding soil properties. Pedobiologia 44:609–621

    Google Scholar 

  • Nouchi I, Hosono T, Aoki K, Minami K (2010) Seasonal variation in methane flux from rice paddies associated with methane concentration in soil water, rice biomass and temperature, and its modeling. Plant Soil 161:195–208

    Google Scholar 

  • Novak SM, Fiorelli JL (2010) Greenhouse gases and ammonia emission from organic mixed crop—dairy systems: a critical review of mitigation options. Agron Sustain Dev 30:215–236

    CAS  Google Scholar 

  • Nuutinen V (1992) Earthworm community response to tillage and residue management on different soil types in Southern Finland. Soil Till Res 23:221–239

    Google Scholar 

  • OECD (2009) The organisation for economic co-operation and development (OECD) annual report. OECD Publ., Paris

    Google Scholar 

  • OECD (2011) Fostering productivity and competitiveness in agriculture. OECD, Paris

    Google Scholar 

  • Olesen JE, Trnka M, Kersebaum KC, Skjelvåg AO, Seguin B, Peltonen-Sainio P et al (2011) Impacts and adaptation of European crop production systems to climate change. Eur J Agron 34:96–112

    Google Scholar 

  • Olesen JE, Børgensen CD, Elsgaard L, Palosuo T, Rötter R, Skjelvåg AO (2012) Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food Addit Contam A 29(10):1527–1542

    CAS  Google Scholar 

  • Owens LB, Malone RW, Hothem DL, Starr GC, Lal R (2002) Sediment carbon concentration and transport from small watersheds under various conservation tillage. Soil Till Res 67:65–73

    Google Scholar 

  • Palm C, Blanco-Canqui H, De Clerck F, Gatere L, Grace P (2013) Conservation agriculture and ecosystem services: an overview. Agric Ecosyst Environ 187:87–105

    Google Scholar 

  • Papendick RI, Lindstro MJ, Cochran VL (1973) Soil mulch effects on seedbed temperature and water during fallow in Eastern Washington. Soil Sci Soc Am J 37:307–314

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Google Scholar 

  • Pelster DE, Chantigny MH, Rochette P, Angers DA, Laganière J, Zebarth B, Goyer C (2013) L̕apport de résidus de culture au sol modifie les émissions de protoxyde d̕azote induites par les cycles gel-dégel. Can J Soil Sci 93:415–425

    CAS  Google Scholar 

  • Peltonen-Sainio P, Jauhiainen L, Hakala K, Ojanen H (2009) Climate change and prolongation of growing season: changes in regional potential for field crop production in Finland. Agric Food Sci 18:171–190

    Google Scholar 

  • Perego A, Basile A, Bonfante A, De Mascellis R, Terribile F, Brenna S, Acutis M (2012) Nitrate leaching under maize cropping systems in Po Valley (Italy). Agric Ecosyst Environ 47:57–65

    Google Scholar 

  • Phillips FA, Leuning R, Baigent R, Kelly KB, Denmead OT (2007) Nitrous oxide flux measurements from an intensively managed irrigated pasture using micrometeorological techniques. Agric For Meteorol 143:92–105

    Google Scholar 

  • Pinheiro EFM, Pereira MG, Anjos LHC (2004) Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil. Soil Till Res 77:79–84

    Google Scholar 

  • Pisante M (2002) Tecniche agronomiche conservative per la riduzione dei processi di degradazione del suolo. Atti convegno nazionale “Desertificazione: la nuova emergenza del bacino del mediterraneo”, Catania-Caltagirone-Palermo, 22–25 maggio 2001, pp 3–9

    Google Scholar 

  • Pisante M, Corsi S, Amir K, Friedrich T (2010) The challenge of agricultural sustainability for Asia and Europe. Transit Stud Rev 17(4):662–667. doi:10.1007/s11300-010-0181-z

    Google Scholar 

  • Pisante M, Stagnari F, Grant C (2012) Agricultural innovations for sustainable crop production intensification. Ital J Agron 7(4):300–311

    Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH (2006a) Adverse high temperature effects on pollen viability, seed-set, grain yield and harvest index of grain sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric For Meteorol 139:237–251

    Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH, Sheehy JE, Thomas JMG (2006b) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res 95:398–411

    Google Scholar 

  • Prasad PVV, Staggenborg SA (2008) Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In: Ajuha LR, Reddy VR, Saseendran SA, Yu Q (eds) Response of crops to limited water: understanding and modeling water stress effects on plant growth processes. American Society of Agronomy, Madison, pp 301–356

    Google Scholar 

  • Puget P, Chenu C, Balesdent J (1995) Total and young organic matter distributions in aggregates of silty cultivated soils. Eur J Soil Sci 46:449–459

    Google Scholar 

  • Qaderi MM, Reid DM (2005) Growth and physiological responses of canola (Brassica napus) to UV-B and CO2 under controlled environment conditions. Physiol Plant 125:247–259

    CAS  Google Scholar 

  • Quine TA, Walling DE (1993) Use of caesium—137 measurements to investigate relationships between erosion rates and topography. In: Thomas DSG, Allison RJ (eds) Landscape sensitivity. Wiley, Chichester, pp 31–48

    Google Scholar 

  • Rao KPC, Steenhuis TS, Cogle AL, Srinivasan ST, Yule DF, Smith GD (1998) Rainfall infiltration and runoff from an Alfisol in semiarid tropical India. I. No-till systems. Soil Till Res 48:51–59

    Google Scholar 

  • Raper RL, Reeves DW, Schwab EB, Burmester CH (2000) Reducing soil compaction of Tennessee Valley soils in conservation tillage systems. J Cotton Sci 4(2):84–90

    Google Scholar 

  • Rasmussen KJ (1999) Impact of ploughless soil tillage on yield and soil quality: a Scandinavian review. Soil Till Res 53:3–14

    Google Scholar 

  • Reeleder RD, Miller JJ, Coelho BRB, Roy RC (2006) Impacts of tillage, cover crop, and nitrogen on populations of earthworms, microarthropods, and soil fungi in a cultivated fragile soil. Appl Soil Ecol 33:243–257

    Google Scholar 

  • Regina K, Alakukku L (2010) Greenhouse gas fluxes in varying soil types under conventional and no-tillage practices. Soil Till Res 109:144–152

    Google Scholar 

  • Reicosky DC (1997) Tillage-induced CO2 emissions from soil. Nutr Cycl Agroesyst 49:273–285

    CAS  Google Scholar 

  • Reicosky DC (1998) Effect of Tillage on the release of CO2. Paper presented to the Symposium “Conservation Tillage: can it assist in mitigating the Greenhouse Gas Problem?”. The University of Queensland

    Google Scholar 

  • Reicosky DC, Lindstrom MJ (1993) Fall tillage methods: effect on short-term carbon dioxide flux from soil. Agron J 85-6:1237–1243

    Google Scholar 

  • Reicosky DC, Lindstrom MJ (1995) Impact of fall tillage and short-term carbon dioxide flux. In: Lal R, Kimble J, Levine E, Stewart B (eds) Soil Global Change. Lewis , Chelsea, pp 177–187

    Google Scholar 

  • Reicosky DC, Lindstrom MJ, Schumacher TE, Lobb D, Malo DD (2005) Tillage-induced CO2 loss across an eroded landscape. Soil Till Res 81(2):183–194

    Google Scholar 

  • Rhoton FE, Shipitalo MJ, Lindbo DL (2002) Runoff and soil loss from midwestern and southeastern US silt loam soils as affected by tillage practice and soil organic matter content. Soil Till Res 66:1–11

    Google Scholar 

  • Riley HCF, Bleken MA, Abrahamsen S, Bergjord AK, Bakken AK (2005) Effects of alternative tillage systems on soil quality and yield of spring cereals on silty clay loam and sandy loam soils in the cool, wet climate of central Norway. Soil Till Res 80:79–93

    Google Scholar 

  • Rizhsky LH, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robertson LN, Kettle BA, Simpson GB (1994) The influence of tillage practices on soil macrofauna in a semiarid agroecosystem in Northeastern Australia. Agric Ecosyst Environ 48:149–156

    Google Scholar 

  • Robertson GP, Bruulsema TW, Gehl RJ, Kanter D, Mauzerall DL, Rotz CA, Williams CO (2012) Nitrogen-climate interactions in US agriculture. Biogeochemistry 114:41–70

    Google Scholar 

  • Robinson CA, Cruse RM, Ghaffarzadeh M (1996) Cropping system and nitrogen effects on Mollisol organic carbon. Soil Sci Soc Am J 60:264–269

    CAS  Google Scholar 

  • Rochette P (2008) No-till only increases N2O emissions in poorly-aerated soils. Soil Till Res 101:97–100

    Google Scholar 

  • Rochette P, Janzen HH (2005) Towards a revised coefficient for estimating N2O emissions from legumes. Nutr Cycl Agroecosyst 73:171–179

    CAS  Google Scholar 

  • Rochette P, Angers DA, Chantigny MH, Bertrand N (2008) N2O emissions respond differently to no-till in a loam and a heavy clay soil. Soil Sci Soc Am J 72:1363–1369

    CAS  Google Scholar 

  • Röhrig R, Langmaack M, Schrader S, Larink O (1998) Tillage systems and soil compaction: their impact on abundance and vertical distribution of Enchytraeidae. Soil Till Res 46:117–127

    Google Scholar 

  • Roth CH, Meyer B, Frede HG, Derpsch R (1988) Effect of mulch rates and tillage systems on infiltrability and other soil physical-properties of an oxisol in Parana, Brazil. Soil Till Res 11:81–91

    Google Scholar 

  • Rötter RP, Palosuo T, Pirttioja NK, Dubrovski M, Salo T, Fronzek S, Aikasalo R, Trnka M, Ristolainen A, Carter TR (2011) What would happen to barley production in Finland if global warming exceeded 4°C? A model-based assessment. Eur J Agron 35:205–214

    Google Scholar 

  • Rovira AD, Smettem KRJ, Lee KE (1987) Effect of rotation and conservation tillage on earthworms in a red-brown earth under wheat. Aust J Agric Res 38:829–834

    Google Scholar 

  • Sauer TJ, Hatfield JL, Prueger JH (1996) Corn residue age and placement effects on evaporation and soil thermal regime. Soil Sci Soc Am J 60:1558–1564

    CAS  Google Scholar 

  • Sauer TJ, Hatfield JL, Prueger JH (1997) Over-winter changes in radiant energy exchange of a corn residue-covered surface. Agric Forest Meteorol 85:279–287

    Google Scholar 

  • Schütz H, Holzapfel-Pschorn A, Conrad R, Rennenberg H, Seiler W (1989) A three years continuous record on the influence of daytime, season and fertilizer treatment on methane emission rates from an Italian rice paddy field. J Geophys Res 94:16405–16416

    Google Scholar 

  • Seghers D, Top EM, Reheul D, Bulcke R, Boeckx P, Verstraete W, Siciliano SD (2003) Long-term effects of mineral versus organic fertilizers on activity and structure of the methanotrophic community in agricultural soils. Environ Microbiol 5:867–877

    CAS  PubMed  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York, pp 1–1203

    Google Scholar 

  • Sidiras N, Pavan MA (1985) Influencia do sistema de manejo do solo no seu nivel de fertilidade. Rev Bras Cienc Solo 9:244–254

    Google Scholar 

  • Sisti CPJ, dos Santos HP, Kohhann R, Alves BJR, Urquiaga S, Boddey RM (2004) Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil Till Res 76:39–58

    Google Scholar 

  • Six J, Elliot ET, Paustian K, Doran JW (1998) Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci Soc Am J 62:1367–1377

    CAS  Google Scholar 

  • Six J, Ogle SM, Breidt FJ, Conant RT, Mosier AR, Paustian K (2004) The potential to mitigate global warming no-tillage management is only realized when practiced in the long run. Global Change Biol 10:155–160

    Google Scholar 

  • Skjøth CA, Geels C (2013) The effect of climate and climate change on ammonia emissions in Europe. Atmos Chem Phys 13:117–128

    Google Scholar 

  • Smith P, Olesen JE (2010) Synergies between the mitigation of, and adaptation to, climate change in agriculture. J Agric Sci 148:543–552

    CAS  Google Scholar 

  • Smith P, Powlson DS, Glendenning MJ, Smith JU (1998) Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming. Global Change Biol 4:679–685

    Google Scholar 

  • Smith P, Goulding KW, Smith KA, Powlson DS, Smith JU, Falloon P, Coleman K (2001) Enhancing the carbon sink in European agricultural soils: including trace gas fluxes in estimates of carbon mitigation potential. Nutr Cycl Agroecosyst 60:237–252

    Google Scholar 

  • Soane BD, Ball BC, Arvidsson J, Basch G, Moreno F, Roger-Estrade J (2012) No-till in northern, western and south-western Europe: a review of problems and opportunities for crop production and the environment. Soil Till Res 118:66–87

    Google Scholar 

  • Sommer SG, Hutchings NJ (2001) Ammonia emission from field applied manure and its reduction—invited paper. Eur J Agron 15:1–15

    CAS  Google Scholar 

  • Sommer SG, Schjoerring JK, Denmead OT (2004) Ammonia emission from mineral fertilizers and fertilized crops. Adv Agron 82:558–622

    Google Scholar 

  • Soussana JF, Lüscher A (2007) Temperate grasslands and the global atmospheric change: a review. Grass Forage Sci 62:127–134

    CAS  Google Scholar 

  • Southworth J, Randolph JC, Habeck M, Doering OC, Pfeifer RA, Rao DG et al (2000) Consequences of future climate change and changing climate variability on maize yields in the midwestern United States. Agric Ecosyst Environ 82:139–158

    Google Scholar 

  • Spedding TA, Hamel C, Mehuys GR, Madramootoo CA (2004) Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol Biochem 36:499–512

    CAS  Google Scholar 

  • Springett JA (1992) Distribution of lumbricid earthworms in New Zealand. Soil Biol Biochem 24:1377–1381

    Google Scholar 

  • Stagnari F, Ramazzotti S, Pisante M (2009) Conservation agriculture: a different approach for crop production through sustainable soil and water management: a review. Agronomy for sustainable development. In: Lichtfouse E (ed) Organic farming, pest control and remediation of soil pollutants, sustainable agriculture reviews 1. Springer, New York, pp 55–83. doi:10.1007/978-1-4020-9654-9

    Google Scholar 

  • Stahl PD, Parkin TB, Christensen M (1999) Fungal presence in paired cultivated and uncultivated soils in central Iowa, USA. Biol Fertil Soils 29:92–97

    Google Scholar 

  • Steiner JL (1989) Tillage and surface residue effects on evaporation from soils. Soil Sci Soc Am J 53:911–916

    Google Scholar 

  • Stinner BR, House GJ (1990) Arthropods and other invertebrates in conservation-tillage agriculture. Annu Rev Entomol 35:299–318

    Google Scholar 

  • Stockfisch N, Forstreuter T, Ehlers W (1999) Ploughing effects on soil organic matter after twenty years of conservation tillage in Lower Saxony, Germany. Soil Till Res 52:91–101

    Google Scholar 

  • Stuart M, Gooddy D, Bloomfield J, Williams A (2011) A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Sci Total Environ 409(15):2859–2873

    CAS  PubMed  Google Scholar 

  • Sudhishri S, Dass A, Lenka NK (2008) Efficacy of vegetative barriers for rehabilitation of degraded hill slopes in eastern India. Soil Till Res 99:98–107

    Google Scholar 

  • Supit I, Van Diepen CA, De Wit AJW, Kabat P, Baruth B, Ludwig F (2010) Recent changes in the climatic yield potential of various crops in. Europe Agric Syst 103:683–694

    Google Scholar 

  • Sutton M (2006) Scope and overview of the UNECE Expert Workshop on Ammonia. C. E. H. Clean Air, December, Edinburgh, pp 1–8

    Google Scholar 

  • Tebrügge F (2001) No-tillage visions-protection of soil, water and climate and influence on management and farm income. Garcia-Torres L Benites J Martınez-Vilela A (eds) Conservation agriculture-a worldwide challenge World Congress on Conservation Agriculture 1:303–316

    Google Scholar 

  • Tebrügge F (2000) No-tillage visions—protection of soil, water and climate. Justus-Liebig University, Giessen

    Google Scholar 

  • Tebrügge F, During RA (1999) Reducing tillage intensity—a review of results from a long-term study in Germany. Soil Till Res 53:15–28

    Google Scholar 

  • Terman GL (1979) Volatilization of nitrogen as ammonia from surface applied fertilizers, organic amendments and crop residues. Agron J 31:189–223

    CAS  Google Scholar 

  • Thierfelder E, Amézquita C, Stahr K (2005) Effects of intensifying organic manuring and tillage practices on penetration resistance and infiltration rate. Soil Till Res 82(2):211–226

    Google Scholar 

  • Tolk JA, Howell TA, Evett SR (1999) Effect of mulch, irrigation, and soil type on water use and yield of maize. Soil Till Res 50:137–147

    Google Scholar 

  • Tubiello FN, Amthor JS, Boote KJ, Donatelli M, Easterling W, Fischer G et al (2007) Crop response to elevated CO2 and world food supply. A comment on ‘Food for Thought… ’ by Long et al. Science 312, 1918–1921. Eur J Agron 26:215–233

    CAS  Google Scholar 

  • Unger PW (1991) Organic-matter, nutrient, and ph distribution in no-tillage and conventional-tillage semiarid soils. Agric J 83:186–189

    CAS  Google Scholar 

  • Unger PW, Parker JJ (1976) Evaporation reduction from soil with wheat, sorghum, and cotton residues. Soil Sci Soc Am J 40:938–942

    Google Scholar 

  • Uri ND, Atwood JD, Sanabria J (1998) The environmental benefits and costs of conservation tillage. Sci Total Environ 216:13–32

    CAS  Google Scholar 

  • Ussiri DAN, Lal R, Jarecki MK (2009) Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio. Soil Till Res 104:247–255

    Google Scholar 

  • Van derMJ, Van Faassen HG, Vertregt N, Bussink W, Den Boer DJ (1989) Ammonia emissions from arable and grassland soils. In: Hansen JA, Hendricksen K (eds) Nitrogen in organic wastes applied to soil. Academic, Waltham, pp 185–201

    Google Scholar 

  • Van DBosscheA, De Bolle S, De Neve S, Hofman G (2009) Effect of tillage intensity on N mineralization of different crop residues in a temperate climate. Soil Till Res 103:316–324

    Google Scholar 

  • Van denHRN, Bakker SE, Jetten MSM, Hefting MM (2011) Decreased N2O reduction by low soil pH causes high N2O emissions in a riparian ecosystem. Geobiology 9:294–300

    Google Scholar 

  • Van Groenigen JW, Oenema O, Van Groenigen KJ, Velthof G, Van Kessel C (2011) Best nitrogen management practices to decrease greenhouse gas emissions. Better Crops 95(2):16–17

    Google Scholar 

  • Van Kessel C, Farrell RE, Roskoski JP (1994) Recycling of the naturally-occurring 15 N in an established stand of Leucaena leucocephala. Soil Biol Biochem 26:757–762

    Google Scholar 

  • Van Kessel C, Venterea R, Ix JS, Adviento-Borbe MA, Linquist B, van Groenige KJ (2013) Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta-analysis. Global Change Biol 19:33–44

    Google Scholar 

  • Van den Bygaart AJ, Yang XM, Kay BD, Aspinall JD (2002) Variability in carbon sequestration potential in no-till soil landscapes of southern Ontario. Soil Till Res 65(2):231–241

    Google Scholar 

  • Van den Bygaart AJ, Gregorich EG, Angers DA (2003) Influence of agricultural management on soil organic carbon: a compendium and assessment of Canadian studies. Can J Soil Sci 83:363–380

    Google Scholar 

  • Venterea RT, Dolan MS, Ochsner TE (2010) Urea decreases nitrous oxide emissions compared with anhydrous ammonia in a Minnesota corn cropping system. Soil Sci Soc Am J 74:407–418

    CAS  Google Scholar 

  • Wanniarachchi SD, Voroney RP, Vyn TJ, Beyaert RP, MacKenzie AF (1999) Tillage effects on the dynamics of total and corn-residue-derived soil organic matter in two southern Ontario soils. Can J Soil Sci 79:473–480

    Google Scholar 

  • Wardle DA (1995) Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices. In: Begon M, Fitter AH (eds) Advances in ecological research. Academic, New York, pp 105–185

    Google Scholar 

  • Wassmann R, Wang MX, Shangguan XJ, Xie XL, Shen RX, Wang YS, Papen H, Rennenberg H, Seiler W (1993) First records of a field experiment on fertilizer effects on methane emission from rice fields in Hunan-province (PR China). Geophys Res Lett 20:2071–2074

    Google Scholar 

  • Webb J, Pain B, Bittman S, Morgan J (2010) The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response-A review. Agric Ecosyst Environ 137:39–46

    Google Scholar 

  • West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J 66(6):1930–1946

    CAS  Google Scholar 

  • Wheeler TR, Ellis RH, Hadley P, Morison JIL, Batts GR, Daymond AJ (1996) Assessing the effects of climate change on field crop production. Aspects Appl Biol 45:49–54

    Google Scholar 

  • Whitbread AM, Lefroy RDB, Blair GJ (1998) A survey of the impact of cropping on soil physical and chemical properties in north-western New South Wales. Aust J Soil Res 36:669–681

    Google Scholar 

  • Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth Sci Rev 57:177–221

    CAS  Google Scholar 

  • Wuest SB (2001) Earthworm, infiltration, and tillage relationships in a dryland pea-wheat rotation. Appl Soil Ecol 18:187–192

    Google Scholar 

  • Wyss E, Glasstetter M (1992) Tillage treatments and earthworm distribution in a swiss experimental corn field. Soil Biol Biochem 24:1635–1639

    Google Scholar 

  • Xu H, Cai ZC, Tsuruta H (2003) Soil moisture between rice-growing seasons affects methane emission, production, and oxidation. Soil Sci Soc Am J 67:1147–1157

    CAS  Google Scholar 

  • Xu L, Penner JE (2012) Global simulations of nitrate and ammonium aerosols and their radiative effects. Atmos Chem Phys 12:9479–9504

    CAS  Google Scholar 

  • Yang SS, Chang HL (2001) Methane emission from paddy fields in Taiwan. Biol Fertil Soils 33:157–165

    CAS  Google Scholar 

  • Yang XM, Kay BD (2001) Impacts of tillage practices on total, loose- and occluded-particulate, and humified organic carbon fractions in soils within a field in southern Ontario. Can J Soil Sci 81:149–156

    CAS  Google Scholar 

  • Yano T, Aydin M, Haraguchi T (2007) Impact of climate change on irrigation demand and crop growth in a Mediterranean environment of Turkey. Sensors 7:2297–2315

    PubMed Central  Google Scholar 

  • Zavattaro L, Monaco S, Sacco D, Grignani C (2012) Options to reduce N loss from maize in intensive cropping systems. Agric Ecosyst Environ 147:24–35

    CAS  Google Scholar 

  • Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943

    CAS  PubMed  Google Scholar 

  • Zunino M (1991) Food relocation behaviour: a multivalent strategy of Coleoptera. In: Zunino M, Bellés X, Blas M (eds) Advances in coleopterology. AEC, Barcelona, pp 297–313

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pisante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pisante, M. et al. (2015). Conservation Agriculture and Climate Change. In: Farooq, M., Siddique, K. (eds) Conservation Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-11620-4_22

Download citation

Publish with us

Policies and ethics