Skip to main content

Cellular Localization of Small GTPases

  • Chapter
  • First Online:
GTPases

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT))

  • 576 Accesses

Abstract

Rho of plants (ROPs) are membrane-associated proteins known to partition between submicroscopic domains of the plasma and endo membrane. ROPs are soluble proteins and their segregation to membrane is dictated by specific determinants that are so far poorly understood. However, studies have now shown that the post-translational modifications facilitate the partition of ROP GTPases within plasma membrane. Based on the type of lipid modifications supervened by ROPs, they are classified into two major subgroups. Type-I ROPs are known to undergo prenylation predominantly by geranylgeranyltransferase I (GGT-I), whereas Type-II ROPs are stabilized by S-acylation modification to facilitate their attachment to plasma membrane. This suggests that the nature of lipid modifications on proteins is necessary to determine their submicroscopic localization, membrane interaction dynamics, and cell signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Molendijk AJ, Bischoff F, Rajendrakumar CS, Friml J, Braun M, Gilroy S, et al. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J. 2001;20(11):2779–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Molendijk AJ, Ruperti B. Palme K Small GTPases in vesicle trafficking. Curr Opin Plant Biol. 2004;7:694–700.

    Article  CAS  PubMed  Google Scholar 

  3. Vernoud V, Horton AC, Yang Z, Nielsen E. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol. 2003;131(3):1191–208.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lin YA, Wang Y, Zhu JK, Yang Z. Localization of a Rho GTPase implies a role in tip growth and movement of the generative cell in pollen tubes. Plant Cell. 1996;8:293–303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Jones MA, Shen JJ, Fu Y, Li H, Yang Z, Grierson CS. The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell. 2002;14(4):763–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, et al. Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol. 1999;145(2):317–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Li H, Lin Y, Heath RM, Zhu MX, Yang Z. Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell. 1999;11(9):1731–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Fu Y, Li H, Yang Z. The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell. 2002;14:777–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lemichez E, Wu Y, Sanchez JP, Mettouchi A, Mathur J, Chua NH. Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes Dev. 2001;15(14):1808–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Yang Z. Small GTPases: versatile signaling switches in plants. Plant Cell. 2002;14(Suppl):S375–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Hazak O, Bloch D, Poraty L, Sternberg H, Zhang J, Friml J, et al. A rho scaffold integrates the secretory system with feedback mechanisms in regulation of auxin distribution. PLoS Biol. 2010;8(1):e1000282.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Klahre U, Becker C, Schmitt AC, Kost B. Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. Plant J. 2006;46(6):1018–31.

    Article  CAS  PubMed  Google Scholar 

  13. Michaelson D, et al. Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J Cell Biol. 2001;152:111–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Winge P, Brembu T, Kristensen R, Bones AM. Genetic structure and evolution of RAC-GTPases in Arabidopsis thaliana. Genetics. 2000;156(4):1959–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Ivanchenko M, Vejlupkova Z, Quatrano RS, Fowler JE. Maize ROP7 GTPase contains a unique, CaaX box-independent plasma membrane targeting signal. Plant J. 2000;24(1):79–90.

    Article  CAS  PubMed  Google Scholar 

  16. Lavy M, Bracha-Drori K, Sternberg H, Yalovsky S. A cell-specific, prenylation-independent mechanism regulates targeting of type II RACs. Plant Cell. 2002;14(10):2431–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lavy M, Yalovsky S. Association of Arabidopsis type-II ROPs with the plasma membrane requires a conserved C-terminal sequence motif and a proximal polybasic domain. Plant J. 2006;46(6):934–47.

    Article  CAS  PubMed  Google Scholar 

  18. Thole JM, Perroud PF, Quatrano RS, Running MP. Prenylation is required for polar cell elongation, cell adhesion, and differentiation in Physcomitrella patens. Plant J. 2014;78(3):441–51.

    Article  CAS  PubMed  Google Scholar 

  19. Nibau C, Wu HM, Cheung AY. RAC/ROP GTPases: ‘hubs’ for signal integration and diversification in plants. Trends Plant Sci. 2006;11(6):309–15.

    Article  CAS  PubMed  Google Scholar 

  20. Kawano Y, Fujiwara T, Yao A, Housen Y, Hayashi K, Shimamoto K. Palmitoylation-dependent membrane localization of the rice R protein Pit is critical for the activation of the small GTPase OsRac1. J Biol Chem. 2014;289(27):19079–88. doi:10.1074/jbc.M114.569756.

    Article  CAS  PubMed  Google Scholar 

  21. Berken A, Thomas C, Wittinghofer A. A new family of RhoGEFs activates the Rop molecular switch in plants. Nature. 2005;436(7054):1176–80.

    Article  CAS  PubMed  Google Scholar 

  22. Gu Y, Li S, Lord EM, Yang Z. Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control Rho GTPase-dependent polar growth. Plant Cell. 2006;18(2):366–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Basu D, Le J, Zakharova T, Mallery EL, Szymanski DB. A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes. Proc Natl Acad Sci U S A. 2008;105(10):4044–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wu G, Li H, Yang Z. Arabidopsis RopGAPs are a novel family of rho GTPase-activating proteins that require the Cdc42/Rac-interactive binding motif for Rop-specific GTPase stimulation. Plant Physiol. 2000;124(4):1625–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hwang JU, Vernoud V, Szumlanski A, Nielsen E, Yang Z. A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr Biol. 2008;18(24):1907–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Mongrand S, Morel J, Laroche J, Claverol S, Carde JP, Hartmann MA, Bonneu M, Simon-Plas F, Lessire R, Bessoule JJ. Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane. J Biol Chem. 2004;279:36277–86.

    Article  CAS  PubMed  Google Scholar 

  27. Zacharias DA, Violin JD, Newton AC, Tsien RY. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science. 2002;296:913–6.

    Article  CAS  PubMed  Google Scholar 

  28. Bloch D, Lavy M, Efrat Y, Efroni I, Bracha-Drori K, Abu-Abied M, et al. Ectopic expression of an activated RAC in Arabidopsis disrupts membrane cycling. Mol Biol Cell. 2005;16(4):1913–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Fodor-Dunai C, Fricke I, Potocky M, Dorjgotov D, Domoki M, Jurca ME, et al. The phosphomimetic mutation of an evolutionarily conserved serine residue affects the signaling properties of Rho of plants (ROPs). Plant J. 2011;66(4):669–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Pandey, G.K., Sharma, M., Pandey, A., Shanmugam, T. (2015). Cellular Localization of Small GTPases. In: GTPases. SpringerBriefs in Plant Science. Springer, Cham. https://doi.org/10.1007/978-3-319-11611-2_7

Download citation

Publish with us

Policies and ethics