Advertisement

GTPases pp 57-62 | Cite as

Cellular Localization of Small GTPases

  • Girdhar K. Pandey
  • Manisha Sharma
  • Amita Pandey
  • Thiruvenkadam Shanmugam
Chapter
Part of the SpringerBriefs in Plant Science book series (BRIEFSPLANT)

Abstract

Rho of plants (ROPs) are membrane-associated proteins known to partition between submicroscopic domains of the plasma and endo membrane. ROPs are soluble proteins and their segregation to membrane is dictated by specific determinants that are so far poorly understood. However, studies have now shown that the post-translational modifications facilitate the partition of ROP GTPases within plasma membrane. Based on the type of lipid modifications supervened by ROPs, they are classified into two major subgroups. Type-I ROPs are known to undergo prenylation predominantly by geranylgeranyltransferase I (GGT-I), whereas Type-II ROPs are stabilized by S-acylation modification to facilitate their attachment to plasma membrane. This suggests that the nature of lipid modifications on proteins is necessary to determine their submicroscopic localization, membrane interaction dynamics, and cell signaling.

Keywords

G proteins Small GTPases Signal transduction Lipid modification Prenylation Acylation 

References

  1. 1.
    Molendijk AJ, Bischoff F, Rajendrakumar CS, Friml J, Braun M, Gilroy S, et al. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J. 2001;20(11):2779–88.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Molendijk AJ, Ruperti B. Palme K Small GTPases in vesicle trafficking. Curr Opin Plant Biol. 2004;7:694–700.PubMedCrossRefGoogle Scholar
  3. 3.
    Vernoud V, Horton AC, Yang Z, Nielsen E. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol. 2003;131(3):1191–208.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Lin YA, Wang Y, Zhu JK, Yang Z. Localization of a Rho GTPase implies a role in tip growth and movement of the generative cell in pollen tubes. Plant Cell. 1996;8:293–303.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Jones MA, Shen JJ, Fu Y, Li H, Yang Z, Grierson CS. The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell. 2002;14(4):763–76.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, et al. Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol. 1999;145(2):317–30.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Li H, Lin Y, Heath RM, Zhu MX, Yang Z. Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell. 1999;11(9):1731–42.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Fu Y, Li H, Yang Z. The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell. 2002;14:777–94.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Lemichez E, Wu Y, Sanchez JP, Mettouchi A, Mathur J, Chua NH. Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes Dev. 2001;15(14):1808–16.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Yang Z. Small GTPases: versatile signaling switches in plants. Plant Cell. 2002;14(Suppl):S375–88.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Hazak O, Bloch D, Poraty L, Sternberg H, Zhang J, Friml J, et al. A rho scaffold integrates the secretory system with feedback mechanisms in regulation of auxin distribution. PLoS Biol. 2010;8(1):e1000282.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Klahre U, Becker C, Schmitt AC, Kost B. Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. Plant J. 2006;46(6):1018–31.PubMedCrossRefGoogle Scholar
  13. 13.
    Michaelson D, et al. Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J Cell Biol. 2001;152:111–26.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Winge P, Brembu T, Kristensen R, Bones AM. Genetic structure and evolution of RAC-GTPases in Arabidopsis thaliana. Genetics. 2000;156(4):1959–71.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Ivanchenko M, Vejlupkova Z, Quatrano RS, Fowler JE. Maize ROP7 GTPase contains a unique, CaaX box-independent plasma membrane targeting signal. Plant J. 2000;24(1):79–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Lavy M, Bracha-Drori K, Sternberg H, Yalovsky S. A cell-specific, prenylation-independent mechanism regulates targeting of type II RACs. Plant Cell. 2002;14(10):2431–50.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Lavy M, Yalovsky S. Association of Arabidopsis type-II ROPs with the plasma membrane requires a conserved C-terminal sequence motif and a proximal polybasic domain. Plant J. 2006;46(6):934–47.PubMedCrossRefGoogle Scholar
  18. 18.
    Thole JM, Perroud PF, Quatrano RS, Running MP. Prenylation is required for polar cell elongation, cell adhesion, and differentiation in Physcomitrella patens. Plant J. 2014;78(3):441–51.PubMedCrossRefGoogle Scholar
  19. 19.
    Nibau C, Wu HM, Cheung AY. RAC/ROP GTPases: ‘hubs’ for signal integration and diversification in plants. Trends Plant Sci. 2006;11(6):309–15.PubMedCrossRefGoogle Scholar
  20. 20.
    Kawano Y, Fujiwara T, Yao A, Housen Y, Hayashi K, Shimamoto K. Palmitoylation-dependent membrane localization of the rice R protein Pit is critical for the activation of the small GTPase OsRac1. J Biol Chem. 2014;289(27):19079–88. doi: 10.1074/jbc.M114.569756.PubMedCrossRefGoogle Scholar
  21. 21.
    Berken A, Thomas C, Wittinghofer A. A new family of RhoGEFs activates the Rop molecular switch in plants. Nature. 2005;436(7054):1176–80.PubMedCrossRefGoogle Scholar
  22. 22.
    Gu Y, Li S, Lord EM, Yang Z. Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control Rho GTPase-dependent polar growth. Plant Cell. 2006;18(2):366–81.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Basu D, Le J, Zakharova T, Mallery EL, Szymanski DB. A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes. Proc Natl Acad Sci U S A. 2008;105(10):4044–9.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Wu G, Li H, Yang Z. Arabidopsis RopGAPs are a novel family of rho GTPase-activating proteins that require the Cdc42/Rac-interactive binding motif for Rop-specific GTPase stimulation. Plant Physiol. 2000;124(4):1625–36.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Hwang JU, Vernoud V, Szumlanski A, Nielsen E, Yang Z. A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr Biol. 2008;18(24):1907–16.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Mongrand S, Morel J, Laroche J, Claverol S, Carde JP, Hartmann MA, Bonneu M, Simon-Plas F, Lessire R, Bessoule JJ. Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane. J Biol Chem. 2004;279:36277–86.PubMedCrossRefGoogle Scholar
  27. 27.
    Zacharias DA, Violin JD, Newton AC, Tsien RY. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science. 2002;296:913–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Bloch D, Lavy M, Efrat Y, Efroni I, Bracha-Drori K, Abu-Abied M, et al. Ectopic expression of an activated RAC in Arabidopsis disrupts membrane cycling. Mol Biol Cell. 2005;16(4):1913–27.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Fodor-Dunai C, Fricke I, Potocky M, Dorjgotov D, Domoki M, Jurca ME, et al. The phosphomimetic mutation of an evolutionarily conserved serine residue affects the signaling properties of Rho of plants (ROPs). Plant J. 2011;66(4):669–79.PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Girdhar K. Pandey
    • 1
  • Manisha Sharma
    • 1
  • Amita Pandey
    • 1
  • Thiruvenkadam Shanmugam
    • 2
  1. 1.Department of Plant Molecular BiologyDelhi University South CampusNew DelhiIndia
  2. 2.Division of Biosciences and BioinformaticsMyongji UniversityKyunggi-doRepublic of South Korea

Personalised recommendations