Skip to main content
Book cover

GTPases pp 9–14Cite as

Overview of Small GTPase Signaling Proteins in Plants

  • Chapter
  • First Online:
  • 598 Accesses

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT))

Abstract

The Rho family of small GTPases is the monomeric GTP-binding protein that regulates several cellular processes, including vesicle trafficking, cell morphogenesis, mitotic spindle assembly, and gene expression in both metazoa and plants. Rho GTPase superfamily is conserved in all eukaryotic organisms. On the other hand, no clear homolog of the animal Rho GTPase protein has been identified in plants. During the course of time, plants have evolved a novel Rho subfamily, ROP (Rho in plants). The plant-specific ROP GTPases are highly similar to the animal RACs at the protein level due to which they are also referred to as RACs. ROP proteins appear to originate and undergo rapid diversification prior to the emergence of vascular plants. The ROP proteins are believed to be expanded by gene duplications and their large numbers suggest that they probably evolve to offset the deficit of Ras proteins. The ROP family of monomeric GTPases has emerged as a versatile key regulator in plant signal transduction processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Northup JK, Sternweis PC, Smigel MD, Schleifer LS, Ross EM, Gilman AG. Purification of the regulatory component of adenylate cyclase. Proc Natl Acad Sci U S A. 1980;77(11):6516–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Nagano F, Sasaki T, Takai Y. Purification and properties of Rab3 GTPase-activating protein. Methods Enzymol. 2001;329:67–75.

    Article  CAS  PubMed  Google Scholar 

  3. Assmann SM. Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell. 2002;14(Suppl):S355–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990;348(6297):125–32.

    Article  CAS  PubMed  Google Scholar 

  5. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991;349(6305):117–27.

    Article  CAS  PubMed  Google Scholar 

  6. Meier I. A novel link between ran signal transduction and nuclear envelope proteins in plants. Plant Physiol. 2000;124:1507–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Li H, Wu G, Ware D, Davis KR, Yang Z. Arabidopsis Rho-related GTPases: differential gene expression in pollen and polar localization in fission yeast. Plant Physiol. 1998;118(2):407–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Zhang Y, McCormick S. A distinct mechanism regulating a pollen-specific guanine nucleotide exchange factor for the small GTPase Rop in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2007;104(47):18830–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Duan Q, Kita D, Li C, Cheung AY, Wu HM. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci U S A. 2010;107(41):17821–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Chang F, Gu Y, Ma H, Yang Z. AtPRK2 promotes ROP1 activation via RopGEFs in the control of polarized pollen tube growth. Mol Plant. 2013;6(4):1187–201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lemichez E, Wu Y, Sanchez JP, Mettouchi A, Mathur J, Chua NH. Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes Dev. 2001;15(14):1808–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Li H, Shen JJ, Zheng ZL, Lin Y, Yang Z. The Rop GTPase switch controls multiple developmental processes in Arabidopsis. Plant Physiol. 2001;126(2):670–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J. RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science. 2002;296(5575):2026–8.

    Article  CAS  PubMed  Google Scholar 

  14. Tao LZ, Cheung AY, Wu HM. Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant Cell. 2002;14(11):2745–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Zheng ZL, Nafisi M, Tam A, Li H, Crowell DN, Chary SN, et al. Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis. Plant Cell. 2002;14(11):2787–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Vernoud V, Horton AC, Yang Z, Nielsen E. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol. 2003;131(3):1191–208.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Yamaoka S, Leaver CJ. EMB2473/MIRO1, an Arabidopsis Miro GTPase, is required for embryogenesis and influences mitochondrial morphology in pollen. Plant Cell. 2008;20(3):589–601.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. McElver J, Patton D, Rumbaugh M, Liu C, Yang LJ, Meinke D. The TITAN5 gene of Arabidopsis encodes a protein related to the ADP ribosylation factor family of GTP binding proteins. Plant Cell. 2000;12(8):1379–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Lu C, Zainal Z, Tucker GA, Lycett GW. Developmental abnormalities and reduced fruit softening in tomato plants expressing an antisense Rab11 GTPase gene. Plant Cell. 2001;13(8):1819–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Yang Z. Small GTPases: versatile signaling switches in plants. Plant Cell. 2002;14(Suppl):S375–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Randazzo PA, Nie Z, Miura K, Hsu VW. Molecular aspects of the cellular activities of ADP-ribosylation factors. Sci STKE. 2000;2000(59):1.

    Google Scholar 

  22. Donaldson JG, Jackson CL. Regulators and effectors of the ARF GTPases. Curr Opin Cell Biol. 2000;12(4):475–82.

    Article  CAS  PubMed  Google Scholar 

  23. Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature. 2001;413(6854):425–8.

    Article  CAS  PubMed  Google Scholar 

  24. Du C, Chong K. ARF-GTPase activating protein mediates auxin influx carrier AUX1 early endosome trafficking to regulate auxin dependent plant development. Plant Signal Behav. 2011;6(11):1644–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Pereira-Leal JB, Seabra MC. Evolution of the Rab family of small GTP-binding proteins. J Mol Biol. 2001;313(4):889–901.

    Article  CAS  PubMed  Google Scholar 

  26. Rutherford S, Moore I. The Arabidopsis Rab GTPase family: another enigma variation. Curr Opin Plant Biol. 2002;5(6):518–28.

    Article  CAS  PubMed  Google Scholar 

  27. Behnia R, Munro S. Organelle identity and the signposts for membrane traffic. Nature. 2005;438(7068):597–604.

    Article  CAS  PubMed  Google Scholar 

  28. Grosshans BL, Ortiz D, Novick P. Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A. 2006;103:11821–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Markgraf DF, Peplowska K, Ungermann C. Rab cascades and tethering factors in the endomembrane system. FEBS Lett. 2007;581(11):2125–30.

    Article  CAS  PubMed  Google Scholar 

  30. Bos JL. Ras. In: Hall A, editor. GTPases. Oxford: Oxford University Press; 2000. p. 67–88.

    Google Scholar 

  31. Ridley A. Rho. In: Hall A, editor. GTPases. Oxford: Oxford University Press; 2000. p. 89–136.

    Google Scholar 

  32. Settleman J. Rac’n Rho: the music that shapes a developing embryo. Dev Cell. 2001;1:321–31.

    Article  CAS  PubMed  Google Scholar 

  33. Winge P, Brembu T, Kristensen R, Bones AM. Genetic structure and evolution of RAC-GTPases in Arabidopsis thaliana. Genetics. 2000;156(4):1959–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Zheng ZL, Yang Z. The Rop GTPase: an emerging signaling switch in plants. Plant Mol Biol. 2000;44(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  35. Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol. 2005;6(2):167–80.

    Article  CAS  PubMed  Google Scholar 

  36. Qiu JL, Jilk R, Marks MD, Szymanski DB. The Arabidopsis SPIKE1 gene is required for normal cell shape control and tissue development. Plant Cell. 2002;14(1):101–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Berken A, Thomas C, Wittinghofer A. A new family of RhoGEFs activates the Rop molecular switch in plants. Nature. 2005;436(7054):1176–80.

    Article  CAS  PubMed  Google Scholar 

  38. Gu Y, Li S, Lord EM, Yang Z. Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control Rho GTPase-dependent polar growth. Plant Cell. 2006;18(2):366–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000;103(2):211–25.

    Article  CAS  PubMed  Google Scholar 

  40. Morris ER, Walker JC. Receptor-like protein kinases: the keys to response. Curr Opin Plant Biol. 2003;6(4):339–42.

    Article  CAS  PubMed  Google Scholar 

  41. Shiu SH, Bleecker AB. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A. 2001;98(19):10763–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, et al. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci U S A. 2006;103(1):230–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Pandey, G.K., Sharma, M., Pandey, A., Shanmugam, T. (2015). Overview of Small GTPase Signaling Proteins in Plants. In: GTPases. SpringerBriefs in Plant Science. Springer, Cham. https://doi.org/10.1007/978-3-319-11611-2_2

Download citation

Publish with us

Policies and ethics