Skip to main content

Implied Volatility of Basket Options at Extreme Strikes

  • Conference paper
  • First Online:
Large Deviations and Asymptotic Methods in Finance

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 110))

  • 1698 Accesses

Abstract

In the paper, we characterize the asymptotic behavior of the implied volatility of a basket call option at large and small strikes in a variety of settings with increasing generality. First, we obtain an asymptotic formula with an error bound for the left wing of the implied volatility, under the assumption that the dynamics of asset prices are described by the multidimensional Black-Scholes model. Next, we find the leading term of asymptotics of the implied volatility in the case where the asset prices follow the multidimensional Black-Scholes model with time change by an independent increasing stochastic process. Finally, we deal with a general situation in which the dependence between the assets is described by a given copula function. In this setting, we obtain a model-free tail-wing formula that links the implied volatility to a special characteristic of the copula called the weak lower tail dependence function.

We thank the anonymous reviewer for the careful reading of our manuscript and many constructive comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albin, J.M.P., Sundén, M.: On the asymptotic behaviour of Lévy processes, part I: subexponential and exponential processes. Stoch. Process. Appl. 119, 281–304 (2009)

    Article  MATH  Google Scholar 

  2. Andersen, L., Lipton, A.: Asymptotics for exponential Lévy processes and their volatility smile: survey and new results. Int. J. Theor. Appl. Financ. 16, 1350001-1–1350001-98 (2013)

    Article  MathSciNet  Google Scholar 

  3. Asmussen, S., Rojas-Nandayapa, L.: Asymptotics of sums of lognormal random variables with Gaussian copula. Stat. Probab. Lett. 78, 2709–2714 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. d’Aspremont, A.: Interest rate model calibration using semidefinite programming. Appl. Math. Financ. 10, 183–213 (2003)

    Article  MATH  Google Scholar 

  5. Avellaneda, M., Boyer-Olson, D., Busca, J., Friz, P.: Reconstruction of volatility: pricing index options using the steepest-descent approximation. Risk Mag. 15, 87–91 (2002)

    Google Scholar 

  6. Barndorff-Nielsen, O.: Processes of normal inverse Gaussian type. Financ. Stoch. 2, 41–68 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bayer, C., Laurence, P.: Asymptotics beats Monte Carlo: the case of correlated local vol baskets. Commun. Pure Appl. Math. 67, 1618–1657 (2014)

    Google Scholar 

  8. Benaim, S., Friz, P.: Smile asymptotics II: models with known MGF. J. Appl. Probab. 45, 16–32 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Benaim, S., Friz, P.: Regular variation and smile asymptotics. Math. Financ. 19, 1–12 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Benhamou, E., Gobet, E., Miri, M.: Smart expansion and fast calibration for jump diffusions. Financ. Stoch. 13, 563–589 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Berestycki, H., Busca, J., Florent, I.: Asymptotics and calibration of local volatility models. Quant. Financ. 2, 61–69 (2002)

    Article  MathSciNet  Google Scholar 

  12. Cherubini, U., Luciano, E., Vecchiato, W.: Copula Methods in Finance. Wiley, Chichester (2004)

    Book  MATH  Google Scholar 

  13. Cont, R., Deguest, R.: Equity correlations implied by index options: estimation and model uncertainty analysis. Math. Financ. 23, 496–530 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. De Marco, S., Hillairet, C., Jacquier, A.: Shapes of implied volatility with positive mass at zero (2013). arXiv:1310.1020

  15. Eberlein, E., Madan, D.B.: On correlating Lévy processes. J. Risk 13, 3–16 (2010)

    Google Scholar 

  16. Figueroa-López, J., Forde, M.: The small-maturity smile for exponential Lévy models. SIAM J. Financ. Math. 3, 33–65 (2012)

    Article  MATH  Google Scholar 

  17. Forde, M., Jacquier, A.: Small-time asymptotics for implied volatility under the Heston model. Int. J. Theor. Appl. Financ. 12, 861–876 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Forde, M., Jacquier, A.: The large-maturity smile for the Heston model. Financ. Stoch. 15, 755–780 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gao, K., Lee, R.: Asymptotics of implied volatility to arbitrary order. Financ. Stoch. 18, 349–392 (2014)

    Google Scholar 

  20. Gao, X., Xu, H., Ye, D.: Asymptotic behavior of tail density for sum of correlated lognormal variables. Int. J. Math. Math. Sci. 2009, p. 28 (2009)

    Google Scholar 

  21. Gobet, E., Miri, M.: Time dependent Heston model. SIAM J. Financ. Math. 1, 289 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gulisashvili, A.: Asymptotic formulas with error estimates for call pricing functions and the implied volatility at extreme strikes. SIAM J. Financ. Math. 1, 609–641 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gulisashvili, A.: Asymptotic equivalence in Lee’s moment formulas for the implied volatility, asset price models without moment explosions, and Piterbarg’s conjecture. Int. J. Theor. Appl. Financ. 15, 1250020 (2012)

    Article  MathSciNet  Google Scholar 

  24. Gulisashvili, A.: Analytically Tractable Stochastic Stock Price Models. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  25. Gulisashvili, A.: Left-wing asymptotics of the implied volatility in the presence of atoms. Int. J. Theor. Appl. Finan. 18(2) (2015)

    Google Scholar 

  26. Gulisashvili, A., Stein, E.M.: Asymptotic behavior of the stock price distribution density and implied volatility in stochastic volatility models. Appl. Math. Optim. 61, 287–315 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gulisashvili, A., Tankov, P.: Tail behavior of sums and differences of log-normal random variables. Bernoulli (to appear)

    Google Scholar 

  28. Hashorva, E., Hüsler, J.: On multivariate Gaussian tails. Ann. Inst. Stat. Math. 55, 507–522 (2003)

    Article  MATH  Google Scholar 

  29. Jourdain, B., Sbai, M.: Coupling index and stocks. Quant. Financ. 12, 805–818 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lee, R.: The moment formula for implied volatility at extreme strikes. Math. Financ. 14, 469–480 (2004)

    Article  MATH  Google Scholar 

  31. Lewis, A.: Option Valuation Under Stochastic Volatility. Finance Press, Newport Beach (2000)

    MATH  Google Scholar 

  32. Luciano, E., Schoutens, W.: A multivariate jump-driven financial asset model. Quant. Financ. 6, 385–402 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Medvedev, A., Scaillet, O.: Approximation and calibration of short-term implied volatilities under jump-diffusion stochastic volatility. Rev. Financ. Stud. 20, 427–459 (2007)

    Article  Google Scholar 

  34. Mijatović, A., Tankov, P.: A new look at short-term implied volatility in asset price models with jumps. Math. Financ., to appear

    Google Scholar 

  35. Nelsen, R.: An Introduction to Copulas. Springer, New York (1999)

    Book  MATH  Google Scholar 

  36. Prause, K.: The generalized hyperbolic model: estimation, financial derivatives, and risk measures, Ph.D. thesis, University of Freiburg (1999)

    Google Scholar 

  37. Schoenmakers, J.: Robust Libor Modelling and Pricing of Derivative Products. CRC Press, Boca Raton (2005)

    Book  MATH  Google Scholar 

  38. Tankov, P.: Pricing and Hedging in Exponential Lévy Models: Review of Recent Results. Paris-Princeton Lectures on Mathematical Finance. Springer, Berlin (2010)

    Google Scholar 

  39. Tankov, P.: Large deviation asymptotics for the left tail of the sum of dependent positive random variables (2014). arXiv:1402.4683

  40. Tehranchi, M.R.: Asymptotics of implied volatility far from maturity. J. Appl. Probab. 46, 629–650 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  41. Tehranchi, M.R.: Uniform bounds for Black-Scholes implied volatility, Pre-print (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Tankov .

Editor information

Editors and Affiliations

Proof of Lemma 1

Proof of Lemma 1

The function F satisfies

$$ F(t,w) = \max _{\lambda >0} \{\theta t + \lambda w^\perp (\mathbf 1+\mu t) - \frac{\lambda ^2 w^\perp \mathfrak {B}w t}{2}\}, $$

where \(\mathbf 1\) stands for the n-dimensional vector with all elements equal to 1. Therefore,

$$ \max _{w\in \Delta _n} F(t,w) = \max _{u \in \mathbb R_+^n } \widetilde{F}(t,u), $$

with

$$ \widetilde{F}(t,u) = \{\theta t + u^\perp (\mathbf 1+\mu t) - \frac{u^\perp \mathfrak {B}u t}{2}\}. $$

Since for every \(t>0\), \(\widetilde{F}(t,u)\) is strictly concave in u, there exists a unique \(\bar{u}(t)\in \mathbb R^n_+\) with \(\bar{u}(t)\ne 0\) such that \(\widetilde{F}(t,\bar{u}) = \max _{u \in \mathbb R_+^n } \widetilde{F}(t,u)\). This in turn implies that there exists a unique \(\bar{w}(t)\) such that \(F(t,\bar{w}) = \max _{w\in \Delta _n } F(t,w)\). It is also easy to see that \(\bar{u}(t)\) depends continuously on t.

Let \(\bar{f}(t) =\widetilde{F}(t,\bar{u}(t))\). We would like to show that \(\bar{f}\) is differentiable in t and compute its derivative. \(\bar{u}(t)\) may be characterized as follows: for \(i=1,\ldots ,n\)

$$\begin{aligned}&[\mathbf 1+ \mu t - t\mathfrak {B}\bar{u}(t) ]_i = 0\quad \text {if}\quad \bar{u}(t)_i >0\end{aligned}$$
(64)
$$\begin{aligned}&[\mathbf 1+ \mu t - t\mathfrak {B}\bar{u} (t)]_i \le 0\quad \text {if}\quad \bar{u}(t)_i =0. \end{aligned}$$
(65)

Let I(t) denote the set of indices \(i\in \{1,\ldots ,n\}\) such that \(\bar{u}(t)_i>0\), and, for a vector \(x\in \mathbb R^n\), let \(x_{I(t)}\) denote the subset of components of x with indices in I(t): \(x_{I(t)} = \{x_i: i\in I(t)\}\). Furthermore, let \(\mathfrak {B}_{I(t),I(t)}\) denote the submatrix of the covariance matrix, containing the elements \(b_{{ ij}}\) with \(i\in I(t)\) and \(j\in I(t)\). Then, the vector \(\bar{u}(t)\) satisfies

$$ \bar{u}(t)_{I(t)} = \frac{1}{t}\mathfrak {B}_{I(t),I(t)}^{-1} (\mathbf 1+\mu t)_{I(t)},\quad \bar{u}(t)_{\tilde{I}(t)} = 0, $$

where the set \(\tilde{I}(t)\) contains the indices \(i\in \{1,\ldots ,n\}\) which are not in I(t).

Now, fix \(t\in (0,\infty )\) and for \(t'\in (0,\infty )\), define

$$ v(t')_{I(t)} = \frac{1}{t'}\mathfrak {B}_{I(t),I(t)}^{-1} (\mathbf 1+\mu t')_{I(t)},\quad v(t)_{\tilde{I}(t)} = 0 $$

First, assume that for all i such that \(\bar{u}(t)_i =0\), either \([\mathbf 1+ \mu t - t\mathfrak {B}\bar{u} (t)]_i <0\) (with strict inequality) or

$$ [\mathbf 1+\mu t' - t' \mathfrak {B}v(t')]_i = 0 $$

for all \(t'\in (0,\infty )\). We shall call this Assumption 1. Then we can find \(\delta >0\), such that for every \(t' \in (0,\infty )\) with \(|t'-t|<\delta \), \(v(t')\) satisfies the characterization (64) and (65). Therefore, \(v(t') = \bar{u}(t')\). This means that

$$ \bar{f}(t') = \theta t' + \frac{1}{2t'} (\mathbf 1+\mu t')_{I(t)}^{\perp }\mathfrak {B}_{I(t),I(t)}^{-1} (\mathbf 1+\mu t')_{I(t)}. $$

Therefore, \(\bar{f}\) is differentiable at t with first derivative given by

$$\begin{aligned} \bar{f}'(t) = \theta - \frac{1}{2t^2} \mathbf 1_{I(t)}^{\perp }\mathfrak {B}_{I(t),I(t)}^{-1} \mathbf 1_{I(t)} + \frac{1}{2} \mu _{I(t)}^{\perp }\mathfrak {B}_{I(t),I(t)}^{-1} \mu _{I(t)} = \theta - \frac{1}{2t} \bar{u}(t)^\perp (\mathbf 1-\mu t) \end{aligned}$$
(66)

and second derivative

$$ \bar{f}^{\prime \prime }(t) = \frac{1}{t^3} \mathbf 1_{I(t)}^{\perp }\mathfrak {B}_{I(t),I(t)}^{-1} \mathbf 1_{I(t)} . $$

Now assume that there exists at least one i such that \(\bar{u}(t)_i = 0\) and \([\mathbf 1+ \mu t - t\mathfrak {B}\bar{u} (t)]_i =0\), or, equivalently,

$$ [\mathbf 1+ \mu t' - t'\mathfrak {B}v (t')]_i =0 $$

with \(t'=t\). The case when the above equality holds for all \(t'\) is covered by Assumption 1. Since the left-hand side is linear in \(t'\), this means that for a given index set I(t) and for a given i, there exists only one \(t'\in (0,\infty )\) which satisfies the above equality. Since the number of possible index sets is finite, we conclude that there is at most a finite number of elements \(t\in (0,\infty )\) which do not satisfy Assumption 1. But then, we can conclude by continuity that \(\bar{f}\) is strictly convex (which entails uniqueness of \(\bar{t}\)) and differentiable for all \(t\in (0,\infty )\), with the derivative given by (66) or alternatively by

$$ \bar{f}'(t) = \theta -\frac{1}{2 t^2 \bar{w}(t)^\perp \mathfrak {B}\bar{w}(t)} + \frac{(\bar{w}(t)^\perp \mu )^2}{2 \bar{w}(t)^\perp \mathfrak {B}\bar{w}(t)}. $$

Comparing this with the derivative of f, which is easily computed, we see that at the point \(\bar{t}\), these derivatives coincide. Since this point is characterized by the first order condition \(\bar{f}'(\bar{t})=0\), and the function f is strictly convex, f also attains its unique minumum at \(\bar{t}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gulisashvili, A., Tankov, P. (2015). Implied Volatility of Basket Options at Extreme Strikes. In: Friz, P., Gatheral, J., Gulisashvili, A., Jacquier, A., Teichmann, J. (eds) Large Deviations and Asymptotic Methods in Finance. Springer Proceedings in Mathematics & Statistics, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-319-11605-1_6

Download citation

Publish with us

Policies and ethics