Skip to main content

General Asymptotics of Wiener Functionals and Application to Implied Volatilities

  • Conference paper
  • First Online:
Large Deviations and Asymptotic Methods in Finance

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 110))

Abstract

In the present paper, we give an asymptotic expansion of probability density for a component of general diffusion models. Our approach is based on infinite dimensional analysis on the Malliavin calculus and Kusuoka-Stroock’s asymptotic expansion theory for general Wiener functionals (Kusuoka and Stroock, J. Funct. Anal. 99:1–74, 1991 [12]). The initial term of the expansion is given by the geodesic distance and we calculate it by solving Hamilton’s equation. We apply our approach to obtain asymptotic expansion formulae for implied volatilities in general diffusion models, e.g. CEV and SABR model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We define \(Dy( \cdot ; h)[k] = \frac{d}{d\varepsilon } y( \cdot ; h + \varepsilon k)\).

References

  1. Berestycki, H., Busca, J., Florent, I.: Computing the implied volatility in stochastic volatility models. Commun. Pure Appl. Math. 57(10), 1352–1373 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bismut, J.M.: Large Deviations and the Malliavin Calculus. Birkhauser, Boston (1984)

    MATH  Google Scholar 

  3. Deuschel, J.D., Friz, P.K., Jacquier, A., Violante, S.: Marginal density expansions for diffusions and stochastic volatility, part I: theoretical foundations. commun. Pure Appl. Math. 67(1) (2014)

    Google Scholar 

  4. Deuschel, J.D., Friz, P.K., Jacquier, A., Violante, S.: Marginal density expansions for diffusions and stochastic volatility, part II: applications. Commun. Pure Appl. Math. 67(2), 321–350 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dunford, N., Schwartz, J.T.: Linear Operators, Part II. Wiley, New York (1988)

    MATH  Google Scholar 

  6. Hagan, P.S., Woodward, D.E.: Equivalent black volatilities. Appl. Math. Financ. 6, 147–157 (1999)

    Article  MATH  Google Scholar 

  7. Hagan, P.S., Kumar, D., Lesniewski, S., Woodward, D.E.: Managing smile risk. Wilmott Mag. 18(11), 84–108 (2002)

    Google Scholar 

  8. Hagan, P.S., Lesniewski, S., Woodward, D.E.: Probability distribution in the SABR model of stochastic volatility. In: Friz, P., Gatheral, J., Gulisashvili, A., Jacquier, A., Teichmann, J. (eds.) Large Deviations and Asymptotic Methods in Finance. Springer Proceedings in Mathematics and Statistics, vol. 110 (2015)

    Google Scholar 

  9. Henry-Labordère, P.: A General Asymptotic Implied Volatility for Stochastic Volatility Models, preprint, http://arxiv.org/abs/cond-mat/0504317 (2005)

  10. Kunitomo, N., Takahashi, A.: The asymptotic expansion approach to the valuation of interest rate contingent claims. Math. Financ. 11, 117–151 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kusuoka, S., Stroock, D.W.: Applications of Malliavin Calculus, Part I. In: Ito, K. (ed.) Proceedings of the Taniguchi International Symposium on Stochastic Analysis, Kyoto and Katata, 1982, pp. 271–360. Kinokuniya, Tokyo (1984)

    Google Scholar 

  12. Kusuoka, S., Stroock, D.W.: Precise asymptotics of certain Wiener functionals. J. Funct. Anal. 99, 1–74 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kusuoka, S., Osajima, Y.: A remark on the asymptotic expansion of density function of Wiener functionals. J. Funct. Anal. 255, 2545–2562 (2007)

    Article  MathSciNet  Google Scholar 

  14. Osajima, Y.: The Asymptotic Expansion Formula of Implied Volatility for Dynamic SABR model and FX hybrid model, BNP Paribas, Date posted: 26 Feb 2007 SSRN working paper series

    Google Scholar 

  15. Shigekawa, I.: Stochastic analysis. Am. Math. Soc. (2004)

    Google Scholar 

  16. Siopacha, M., Teichmann, J.: Weak and strong Taylor methods for numerical solutions of stochastic differential equations. Quant. Financ. 11(4), 517–528 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Watanabe, S.: Analysis of wiener functionals (Malliavin calculus) and its application to heat kernels. Ann. Probab. 15, 1–39 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yoshida, N.: Asymptotic expansions of maximum likelihood estimators for small diffusions via the theory of Malliavin-Watanabe. Probab. Theory Relat. Fields 92, 275–311 (1992)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank Professor Shigeo Kusuoka for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasufumi Osajima .

Editor information

Editors and Affiliations

Appendices

Appendix 1

In this section, we investigate some properties of functions defined in Sect. 1. First we consider \(\varphi _n, ~n \ge 0\) defined by (18).

Lemma 7

The functions \(\varphi _n\) have the following properties.

(1) \(\varphi _n(x) > 0, ~x \ge 0.\)

(2) \(\lim _{x \rightarrow \infty } x^{n+1} \varphi _n(x) = n!.\)

(3) \(\displaystyle \sup _x \frac{\varphi _n(x)}{\varphi _1(x)} < \infty , \qquad n \ge 1.\)

Proof

(1) is easy to check. We prove (2). Putting \(y = xz\)

$$ \varphi _n(x) = \int _0^{\infty } \exp ( - \frac{y^2}{2x^2}-y ) (\frac{y}{x})^n \frac{dy}{x} = \frac{1}{x^{n+1}} \int _0^{\infty } y^n \exp (-y - \frac{y^2}{2x^2}) dy $$

Then we have

$$ \lim _{x \rightarrow \infty } x^{n+1} \varphi _n(x) = \int _0^{\infty } y^n e^{-y} dy = n!. $$

(3) is an easy consequence of (1) and (2).\(\square \)

The following is easy to check.

Lemma 8

The functions \(\{ \varphi _n \}\) satisfy the following recurrence relations.

$$\begin{aligned}&\varphi _{n+1}(x) = - x \varphi _n(x) + n \varphi _{n-1}(x), \\&\varphi '_n(x) = - \varphi _{n+1}(x). \end{aligned}$$

Example 3

\(\varphi _i ~( 0 \le i \le 3)\) are given as follows:

$$\begin{aligned} \varphi _0(x)= & {} \exp (\frac{x^2}{2}) \int _x^{\infty } \exp (-\frac{z^2}{2})\textit{dz}, \\ \varphi _1(x)= & {} - x \varphi _0(x) + 1, \\ \varphi _2(x)= & {} (x^2+1) \varphi _0(x) - x, \\ \varphi _3(x)= & {} -(x^3 + 3x) \varphi _0(x) + x^2 + 2. \end{aligned}$$

Next we consider the function \(h\in C^{\infty }([0,1] \times \mathbf {R}_+)\) defined by (53).

Lemma 9

The n-times differentiation of \(\log h(t,y)\) with respect to t is given as follows. We define \(\theta \) in (52).

$$\begin{aligned} \bigl ( \frac{\partial }{\partial t}\bigr )^n \log h(t, y) = \frac{1}{t^n} \theta _n( h(t, y) ), \quad t \in [0, 1], ~y > 0, \end{aligned}$$

where \(\theta _n \in C_b[0, \infty ], ~n \ge 1 \) are given inductively as follows:

$$\begin{aligned} \theta _1(x)= & {} \varphi _1(x), \\ \theta _{n+1}(x)= & {} n \theta _n(x) + \theta _n'(x) \theta _1(x)x. \end{aligned}$$

Proof

In the case \(n=1\), since \(f(h(t, y)) = t f(y),\) we have

$$ \frac{\partial h}{\partial t }(t, y) = \frac{f(h(t,y))}{t f'(h(t,y))}. $$

Since

$$ f'(x) = - (\frac{1}{x} + x + \frac{\varphi _2(x)}{\varphi _1(x)}) f(x) < 0, ~x > 0, $$

we have

$$ \theta _1(x) = \frac{f(x)}{xf'(x)} = \Bigl ( 1 + x^2 + x \frac{\varphi _2(x)}{\varphi _1(x)} \Bigr )^{-1} = \varphi _1(x). $$

It is easy to check that \(\theta _1 \in C_b([0, \infty ])\) and \(x \theta _1(x) \in C_b([0, \infty ])\). We have

$$ \frac{\partial }{\partial t } \log h(t,y) = \frac{1}{t} \theta _1(h(t,y)). $$

Since

$$\begin{aligned} \frac{\partial }{\partial t} \bigl ( \frac{1}{t^n} \theta _n(h(t,y)) \bigr ) = \frac{1}{t^{n+1}} \bigl ( -n \theta _n(h(t,y)) + \theta _n'(h(t,y)) \theta _1(h(t,y)) h(t,y) \bigr ), \end{aligned}$$

it is easy to prove our lemma.\(\square \)

Appendix 2

In this section, we summarize the main theorem in Kusuoka and Osajima [13]. See [13] for the definitions.

Let fg \(\in \fancyscript{G}^{\infty }(\fancyscript{A}; {\mathbf R})\) and F \(\in \fancyscript{G}^{\infty }(\fancyscript{A}; {\mathbf R}^N)\) be completely P-regular functions and Y be a compact subset in \(\mathbf {R}^N.\) We assume the following.

(A1) There is an \(\alpha >0\) such that

$$ \sup _{s \in (0,1]} s \log (\int _{\varTheta } \exp (\frac{(1+\alpha )f(s,\theta )}{s} )\mu _s(d\theta )) < \infty . $$

We define \(e : \mathbf {R}^N \rightarrow [-\infty ,\infty ]\) by

$$ e(x) \equiv \inf \{\frac{\Vert h\Vert ^2}{2} - f(0,h) : F(0,h) = x \} , \qquad x \in {\mathbf R}^N . $$

We also assume the following.

(A2) For each \(y \in Y\),

$$ M(y) \equiv \{h \in H; F(0, h) = y\} \not = \emptyset $$

and that

$$ e(y) = \frac{\Vert h(y) \Vert ^2}{2} - f(0, h(y)) $$

for precisely one \(h(y) \in M(y).\)

We assume moreover the following.

(A3) \(T(y) \equiv DF(0, h(y))\) has rank N for every \(y \in Y.\)

Let \(\pi (y)= T(y)^*(T(y)T(y)^*)^{-1}T(y),\) \(y \in Y.\) \(\pi (y)\) is an orthogonal projection in H. Let \(\pi (y)^{\perp } = I_H - \pi (y).\) Then \(\pi (y)^{\perp }\) is also an orthogonal projection in H onto \(ker \; T(y).\) Let \(V(y):H\times H \rightarrow \mathbf R\) be a bilinear form given by

$$\begin{aligned} \begin{array}{c} V(y)(h,h') \\ = D^2f(0,h(y))(\pi (y)^{\perp }h,\pi (y)^{\perp }h') \\ +\,(h(y) - Df(0,h(y)),T(y)^*(T(y)T(y)^*)^{-1}D^2F(0,h(y)) (\pi (y)^{\perp }h,\pi (y)^{\perp }h'))_H. \end{array} \end{aligned}$$

We assume the following furthermore.

(A4) For all \(y \in Y\) and \(h \in H \setminus \{ 0\}\)

$$ V(y)(h,h) < \Vert h \Vert ^2 . $$

Finally we define

$$\begin{aligned} A(s,\theta )&= DF(s, \theta )DF(s, \theta )^* \\&= ((DF_i(s,\theta ), DF_j(s, \theta ))_{H})_{1 \leqq i,j \leqq N} \end{aligned}$$

and assume the following.

(A5) For any \(p\in [1,\infty )\)

$$ \varlimsup _{s\downarrow 0} s \log (\int _{\varTheta } |\det A(s,\theta ) |^{-p} \mu _s(d\theta )) \leqq 0. $$

Then Kusuoka-Stroock [12] proved the following.

Theorem 6

For each \(s \in (0,1]\), a signed measure \(P_s(\cdot )\) on \(\mathbf {R}^N\) given by

$$\begin{aligned} P_s(\varGamma ) = \int _{F(s,\theta ) \in \varGamma } g(s,\theta )\exp \left( \frac{f(s,\theta )}{s}\right) \mu _s(d\theta ), ~\varGamma \in \fancyscript{B}({\mathbf {R}^N}), \end{aligned}$$

admits a smooth density \(p_s(\cdot )\) with respect to Lebesgue’s measure. Moreover, there exist sequence \(\{a_n\}_{n=0}^{\infty } \subseteq C(Y;\mathbf {R})\) and \(\{K_n\}_{n=0}^{\infty } \subseteq (0,\infty )\) with the property that, for every \(n \in \mathbf {N}\),

$$\begin{aligned} \Bigl |(2 \pi s)^{N/2} e^{e(y) / s}p_s(y;0) - \sum _{m=0}^n s^{m/2}a_m(y)\Bigr | \leqq K_n s^{(n+1)/2}, ~(s,y) \in (0,1] \times Y. \end{aligned}$$

The main theorem in Kusuoka-Osajima [13] is the following.

Theorem 7

e is smooth in the neighborhood of Y and

$$\begin{aligned} a_0(y) = (\det \nabla ^2 e (y) )^{1/2} {\det }_2 (I_H - B(y)) ^{-1/2}&\exp \Bigl ( \sum _{i=1}^N \frac{\partial e}{\partial y_i} (y) \fancyscript{A}F^i(0,h(y))\\&\qquad \quad + \fancyscript{A}f(0,h(y)) \Bigr ) \nonumber \end{aligned}$$

for \(y\in Y,\) where

$$\begin{aligned}&B(y) \equiv \sum _{i=1}^N \frac{\partial e}{\partial y_i} (y) D^2 F^i(0,h(y)) + D^2 f(0,h(y)), \qquad y \in Y. \\ \end{aligned}$$

Here we identify a continuous symmetric bilinear form \(B:H\times H \rightarrow {\mathbf R}\) with a bounded symmetric linear operator \({\tilde{B}}:H\rightarrow H\) given by

$$ ({\tilde{B}}h,k)_H = B(h,k), \qquad h,k \in H, $$

and \(det_2\) is a Carleman-Fredholm determinant (c.f. Dunford and Schwartz [5] pp.1106).

Appendix 3

In this section, we discuss about the implied volatilities for the case \(K < x_0^1\). We define the forward value of a put option of strike rate K and maturity T by

$$ P_{\varepsilon }(T, K) = E[(K - X^1_{\varepsilon }(T))^{+}] $$

Since we have put-call parity, the implied volatility of the put option is the same as the implied volatility of a call option with strike rate K and maturity T. Since

$$ P_{\varepsilon }(T, K) = E[(-X^1_{\varepsilon }(T) - (-K))_{+}] = E[(-(X^1_{\varepsilon }(T) - x_0^1) - (-(K - x_0^1) ))_{+}] $$

It is enough to discuss in the case \(x_0^1 = 0.\)

Let \(x = (x^1, \ldots , x^n) \in \mathbf {R}^n\). We denote \(\bar{x} = (-x^1, x^2, \ldots , x^n).\) We define \(\bar{X}_{\varepsilon }(t) = {{\bar{X}}_{\varepsilon }(t)}\). Then we have

$$ d \bar{X}^i_{\varepsilon }(t) = \sum _{k=1}^d \varepsilon \bar{V}_k^i(t, \tilde{X}_{\varepsilon }(t)) \textit{dW}^k(t) + \bar{V}_0^i(t, \tilde{X}_{\varepsilon }(t))\textit{dt}, \quad 1 \le i \le N, $$

where

$$ \bar{V}_k^j (t, x) = {\left\{ \begin{array}{ll} -V_k^1(t, \bar{x}) &{} {(1 \le k \le d)}\\ V_k^j(t, \bar{x}) &{} {(1 \le k \le d, ~j \ne 1)}. \end{array}\right. } $$

Since the associated Riemaniann metric \(\bar{g}^{\textit{ij}}(t,x) = \sum _{k=1}^d \bar{V}_k^i(t,x) \bar{V}_k^j(t,x)\) is given by

$$ \bar{g}^{11}(t,x) = g^{11}(t,x), \quad \bar{g}^{1i}(t,x) = -g^{1i}(t,x)~(i \ne 1), \quad \bar{g}^{\textit{ij}}(t,x) = g^{\textit{ij}}(t,x) ~(i,j \ne 1), $$

we have

$$ \bar{b}_1 = b_1, \quad \bar{b}_2 = -b_2, \quad \bar{b}_3 = b_3, \quad \bar{L} = L. $$

Therefore Theorems 1 and 3 still hold for \(K < x_0^1.\)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Osajima, Y. (2015). General Asymptotics of Wiener Functionals and Application to Implied Volatilities. In: Friz, P., Gatheral, J., Gulisashvili, A., Jacquier, A., Teichmann, J. (eds) Large Deviations and Asymptotic Methods in Finance. Springer Proceedings in Mathematics & Statistics, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-319-11605-1_5

Download citation

Publish with us

Policies and ethics