• Vladimir S. Saakov
  • Alexander I. Krivchenko
  • Eugene V. Rozengart
  • Irina G. Danilova


Thus, we come to the end of this book. At this point, we can take the liberty of digressing from strict scientific treatment of phenomena and give a broad picture of the history and reasons for writing this book.


Frost Tolerance Party Committee Radioactivation Analysis Derivative Spectrophotometry Wounded Soldier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Hager A (1957) Über den Einfluß klimatischer Faktoren auf den Blattfarbstoffgehalt höherer Pflanzen. Planta 49:524–560CrossRefGoogle Scholar
  2. Hager A (1966) Die Zusammenhänge zwischen lichtinduzierten Xanthophyll-Umwandlungen und Hill-Reaktionen. Ber Dtsch Bot Ges 79:94–107Google Scholar
  3. Hager A (1967a) Untersuchungen über die lichtinduzierten Xanthophyllumwandlungen an Chlorella und Spinacia. Planta 74:148–173CrossRefPubMedGoogle Scholar
  4. Hager A (1967b) Untersuchungen über die Rückreaktionen in Xanthophyll Cyclus bei Chlorella, Spinacia und Taxus. Planta 76:138–148CrossRefPubMedGoogle Scholar
  5. Hager A (1969) Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin - Zeaxanthin Umwandlung: Beziehungen zur Photophosphorylierung. Planta 89:224–243CrossRefPubMedGoogle Scholar
  6. Hager A (1975) Die reversiblen, lichtabhängigen Xanthophyllumwandlungen in Chloroplasten. Ber Dtsch Bot Ges 88:27–44Google Scholar
  7. Hager A (1980) The reversible, light-induced conversions of xanthophylls in chloroplast. In: Czygan FC (ed) Pigments in plants. G. Fischer, Stuttgart, pp 57–79Google Scholar
  8. Hager A, Perz H (1970) Veränderung der Lichtabsorption eines Carotinoids im Enzym (De-epoxidation)-Substrat (Violaxanthin)-Komplex. Planta 93:314–322CrossRefPubMedGoogle Scholar
  9. Hager A, Stransky H (1970a) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. Arch Mikrobiol 71:68–83CrossRefGoogle Scholar
  10. Hager A, Stransky H (1970b) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. I. Arch Mikrobiol 71:132–163CrossRefPubMedGoogle Scholar
  11. Hager A, Stransky H (1970c) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. II. Arch Mikrobiol 73(N1):S77–S89CrossRefGoogle Scholar
  12. Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one machanism. Proc Natl Acad Sci U S A 96:8762–8767PubMedCentralCrossRefPubMedGoogle Scholar
  13. Krinsky NI (1962) Light-induced changes in carotenoid pigments in Euglena gracilis. Fed Proc 21:92–95Google Scholar
  14. Krinsky NI (1964) Carotenoid de-epoxidation in algae. Photochemical transformation of antheraxanthin to zeaxanthin. Biochim Biophys Acta 88:487–491PubMedGoogle Scholar
  15. Krinsky NI (1966) The role of carotenoid pigments as protective agents in chloroplasts. In: Goodwin TW (ed) Biochemistry of chloroplasts, vol 1. Academic, London, pp 423–430Google Scholar
  16. Krinsky NI (1968) The protective function of carotenoid pigments. In: Giese A (ed) Photophysiology, vol 3. Academic, New York, pp 123–195CrossRefGoogle Scholar
  17. Krinsky NI (1971) Function. In: Isler O (ed) Carotenoids. Birkhauser, Basel, pp 669–716CrossRefGoogle Scholar
  18. Krinsky NI, Goldsmith TH (1960) The carotinoids of flagellated alga, Euglena gracilis. Arch Biochem Biophys 91:271–279CrossRefPubMedGoogle Scholar
  19. Latowski D, Burda K, Strzalka K (2000) A mathematical model describing kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin by the xanthophylls cycle enzyme violaxanthin de-epoxidase. J Theor Biol 206:507–514CrossRefPubMedGoogle Scholar
  20. Latowski D, Kruk J, Burda K, Skrzynecka-Jaskier M et al (2002) Kinetics of violaxanthin de-epoxidation by de-epoxidase, a xanthophylls cycle enzyme is regulated by membrane fluidity in model lipid bilayers. FEBS J 209(18):4656–4665CrossRefGoogle Scholar
  21. Melua AI (1999) Siege of Leningrad. Encyclopaedia. “Humanistica” Science Biographic Encyclopaedic Publishing House, Moscow, 672 pGoogle Scholar
  22. Moster JB, Quackenbush FW (1952a) The carotenoids of corn seedlings from three corn hybrids. Arch Biochem Biophys 38:297–303CrossRefPubMedGoogle Scholar
  23. Moster JB, Quackenbush FW (1952b) The effects of temperature and light on corn seedlings. Arch Biochem Biophys 38:297–303CrossRefPubMedGoogle Scholar
  24. Niyogi KK, Bjorkman O, Grossman AR (1997a) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci U S A 94:14162–14167PubMedCentralCrossRefPubMedGoogle Scholar
  25. Niyogi KK, Bjorkman O, Grossman AR (1997b) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9:1369–1380PubMedCentralCrossRefPubMedGoogle Scholar
  26. Niyogi KK, Grossman AR, Bjorkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134PubMedCentralCrossRefPubMedGoogle Scholar
  27. Niyogi KK, Shih C, Pogson RJ, Dellapena D, Bjorkman O (2001) Photoprotection in zeaxanthin and lutein-deficient double mutant Arabidopsis. Photosynth Res 67:139–145CrossRefPubMedGoogle Scholar
  28. Saakov VS, Drapkin VZ, Krivchenko AI, Rozengart EV, Bogachev EV, Knyazev MN (2013) Derivative spectrophotometry and electron spin resonance (ESR) spectroscopy for ecological and biological questions. Springer, Heidelberg, 357 pCrossRefGoogle Scholar
  29. Talsky G (1994) Derivative spectrophotometry: low and higher order. VCH Verlaggesellschaft GmbH, Weinheim, 228pCrossRefGoogle Scholar
  30. Yamamoto HY, Chang JL, Aihara MS (1967) Light-induced interconversion of violaxanthin and zeaxanthin in New Zealand spinach-leaf segments. Biochim Biophys Acta 141:342–347CrossRefPubMedGoogle Scholar
  31. Yamamoto HY, Chichester CO, Nakayama TOM (1962a) Biosynthetic origin of origin in the leaf xanthophylls. Arch Biochem Biophys 96(3):645–649CrossRefPubMedGoogle Scholar
  32. Yamamoto HY, Chichester CO, Nakayama TOM (1962b) Xanthophylls and Hill reaction. Photochem Photobiol 1:53–57CrossRefGoogle Scholar
  33. Yamamoto HY, Nakayama TOM, Chichester CO (1962c) Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys 97:168–173CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Vladimir S. Saakov
    • 1
  • Alexander I. Krivchenko
    • 2
  • Eugene V. Rozengart
    • 2
  • Irina G. Danilova
    • 3
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of ScienceSaint PetersburgRussia
  2. 2.Inst. of Evolutionary Physiology and Biochem.Russian Academy of ScienceSaint PetersburgRussia
  3. 3.Morbid Anatomy LaboratoryResearch Institute of Medical PrimatologySochi (Adler)Russia

Personalised recommendations