Skip to main content

Abstract

Over a number of years our interests have been concerned with the study of transformations of carbon-labeled or hydrogen-labeled carotene and basic xanthophylls in plant cells. This interest was caused because the hypothesis that light induces the direct reduction of violaxanthin (5,6,5′,6′-diepoxy-5,5′,6,6′-tetrahydro-β-carotene-3,3′-diol) into lutein (3,3′-dihydroxy-α-carotene, β,ε-carotene-3,3″-diol) without intermediate products (Sapozhnikov et al. 1957, 1959; Bazhanova and Sapozhnikov 1963) was not methodologically based. It is paradoxical, but this supposition already had opponents before publication (Moster and Quackenbush 1952a, b; Cholnoky et al. 1956, 1957, 1958) and still more afterwards (Anderson et al. 1960; Blass et al. 1959) because the stated theoretical concepts of Sapozhnikov and coworkers were neither persuasive nor the only possible alternative. The opinions existing on this question are described in the review by Saakov and Konovalov (1966).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleinikov IM (1974) The role of carotenoids in the process of photosynthesis of plants. Dissertation PhD in Biology (in Russian), Kiev

    Google Scholar 

  • Anderson JM, Blass U, Calvin M (1960) Biosynthesis and possible relations among the carotenoids and between chlorophyll a and b. In: Allen MB (ed) Comparative biochemistry of photoreactive systems. Academic, New York, pp 215–226

    Google Scholar 

  • Arnon DI (1961) Role of vitamin K and other quinines in photosynthesis. Fed Proc 20:1012–1022

    CAS  PubMed  Google Scholar 

  • Arntzen CJ, Neumann J, Dilley RA (1971) Inhibition of electron transport in chloroplasts by a quinine analogue: evidence for two sites of DCPIP-H2 oxidation. Bioenergetics 2:72–83

    Article  Google Scholar 

  • Ashton FN (1965) Relationship between light and toxity symptoms caused by atrazine and monouron. Weeds 13:164–168

    Article  CAS  Google Scholar 

  • Ashton FN, Bisolputra T, Risley EB (1966) Effect of atrazine on Chlorella vulgaris. Am J Bot 53:217–219

    Article  CAS  Google Scholar 

  • Baranov AA, Dorokhov BL, Saakov VS (1974) Influence of unfavorable thermal conditions on the fine structure of pigment-lipoprotein complex of leaves (in Russian). Izv AN MoldSSR Ser Biol-Khim Nauk 5:29–36

    Google Scholar 

  • Baranov AA, Saakov VS, Boyarshinova GS et al (1976) Analysis of absorption spectra of plastids in research of the reaction of plants resistance to extreme influences (in Russian). Bull VIR im N I Vavilova 63:3–14

    Google Scholar 

  • Baranov AA, Saakov VS, Chunaev AA, Kvitko KV (1975) Reactions of chlorophyll formation and light protection in mutants of green algae studied by absorption spectrophotometry (in Russian). Sov Physiol Rastenii 22:702–711

    CAS  Google Scholar 

  • Bartlett L, Klyne W, Mose WP et al (1969) Optical rotatory dispersion of carotenoids. J Chem Soc 18:2527–2544

    CAS  Google Scholar 

  • Bassham IA, Calvin M (1957) The path of carbon in photosynthesis. Prentice-Hall, New York, 369p

    Google Scholar 

  • Bazhanova NV, Maslova TG, Popova IA, et al (1964) Pigments of green plants plastids and methods of their research (in Russian). Ed. DI Sapozhnikov. Moscow, Leningrad, Nauka, p 146

    Google Scholar 

  • Bazhanova NV, Sapozhnikov DI (1963) To characterization of the dark reaction of xanthophylls Nauk SSSR transformation. (in Russian). Dokl Akad Nauk 151:1219–1221

    CAS  Google Scholar 

  • Bershtein BI, Volkova NV, Yasnikov AA et al (1969) ATP formation in photophosphorylation and the mechanism of disconnection of photophosphorylation and of electron transport by amines. (in Russian). Physiol Biokhim Kult Rasten 1:21–26

    CAS  Google Scholar 

  • Bershtein BI, Volkova NV, Yasnikov AA et al (1971) About mechanism of “the proton pump” and functions of enolphosphates and of epoxycarotenoids during photophosphorylation in chloroplasts (in Russian). Biokhim Biophys Photosyntesa Irkutsk SIFIBR SO AN SSSR 21–27

    Google Scholar 

  • Blass U, Anderson JM, Calvin M (1959) Biosynthesis and possible functional relationships among the carotenoids and between chlorophyll a and chlorophyll b. Plant Physiol 34:329–333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Budzikiewicz H, Eckau H, Inhoffen HH (1969a) Versuche mit H2 O 18 und K2CO 3 18 und Chlorella pyrenoidosa Chick. Z Naturforsch 24:1147–1152

    Article  CAS  Google Scholar 

  • Budzikiewicz H, Inhoffen HH (1969) Experiments on the process of photosynthesis using O 18 labelled substances. In: Metzner H (ed) Progress in photosynthesis research, vol 2. International Biological Union, Tübingen, pp 1009–1012

    Google Scholar 

  • Bukhov NG, Heber U, Shuvalov VA (2001) Energy dissipation in photosynthesis: quenching of chlorophyll fluorescence in reaction centers and antenna complexes. Planta 212:749–758

    Article  CAS  PubMed  Google Scholar 

  • Bungard RA, Ruban AV, Hibberd JM et al (1999) Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proc Natl Acad Sci USA 97:1135–1139

    Article  Google Scholar 

  • Camara B, Moneger R (1981) Carotenoid biosynthesis. In vitro conversion of antheraxanthin to capsanthin by a chromoplast enriched fraction of capsicum fruits. Biochem Biophys Res Commun 99:1117–1122

    Article  CAS  PubMed  Google Scholar 

  • Cholnoky L, Györgyfy K, Nagy E, Panczel M (1956) Function of carotenoids in chlorophyll containing organs. Nature 178:410–411

    Article  CAS  Google Scholar 

  • Cholnoky L, Györgyfy K, Nagy E, Panczel M (1957) The physiological role of carotenoids in chlorophylous organs. Acta Biol Acad Sci Hung Suppl. 1:44

    Google Scholar 

  • Cholnoky L, Györgzfy K, Ronai A, Weedon BC (1969) Carotenoids and related compounds. XXI. Structure of neoxanthin (Foliaxanthin). J Chem Soc 9:1256–1263

    Google Scholar 

  • Cholnoky L, Szabolcs J, Nagy E (1958) Untersuchungen uber die Carotinoid-Farbstoffe. IV. Liebigs Ann Chem 616:207–218

    Article  CAS  Google Scholar 

  • Cholnoky L, Szabolcs J, Gy T (1967) Untersuchungen über carotinoid-farbstoffe. VIII. Reduction von carotinoidoxiden mit lithiummalanat. Ann Chem 708:218–223

    Article  CAS  Google Scholar 

  • Costes C (1963a) Metabolisme de la luteine et de la violaxanthine dans les chloroplasts. Compt Rend Ac Sci..gr.13. 256: 5656–5659

    Google Scholar 

  • Costes C (1963b) Incorporation de C14 O 2 d’acetate-2-C 14 et de mevalonate-2-C 14 dans les carotenoides de la feuille adulte de tomate. Ann Physiol Veg 5:115–140

    CAS  Google Scholar 

  • Costes C (1965) Metabolisme et role physiologique des carotenoides dans les feuilles vertes. Ann Physiol Veg 7:105–142

    CAS  Google Scholar 

  • Costes C (1968) Carotenoides et photosynthese: variations induites de la teneur on pigments dans des folioles excises de tomate. Ann Physiol Veg 10:171–197

    CAS  Google Scholar 

  • Cruz-Landeira L, Bal MJ, Lopez-Ravadulla M (2002) Determination of methemoglobin and total hemoglobin in toxicological studies by derivative spectrophotometry. J Annal Toxicol 26:67–72

    Article  CAS  Google Scholar 

  • Czygan FC (1966) Uber den Stoffwechsel von Keto-Carotinoiden in niederen Krebsen. Z Naturforsch 21(801–805):197–198

    CAS  Google Scholar 

  • Czygan FC (1968) Sekundär-Carotinoide in Grünalgen II. Untersuchungen zur Biogenese. Arch Microbiol 62:209–236

    CAS  Google Scholar 

  • Davies BH, Hsu HJ, Chichester CO (1970) The mechanism of the conversion of β-carotene into canthaxanthin by the brine shrimp, Artemia salina (Crustacea: Branchiopoda). Comp Biochem Physiol 33:601–615

    Article  CAS  PubMed  Google Scholar 

  • De Kiewiet DY, Yall DO, Jenner AL (1965) Effect of carbonylcyanide-m- chlorphenylhydrazone on the photochemical reactions of isolate chloroplasts. Biochim Biophys Acta 109:284–292

    Article  PubMed  Google Scholar 

  • Demming-Adams B (1990) Carotenoids and photoprotection of plants: a role for the xanthophylls zeaxanthin. Biochim Biophys Acta 1020:1–24

    Article  Google Scholar 

  • Depka B, Jahns P, Trebst A (1998) Beta-carotene to zeaxanthin conversion in the rapid turnover of the D1 protein of photosystem II. FEBBS Lett 424:267–270

    Article  CAS  Google Scholar 

  • Disch A, Schwender J, Müller C, Lichtenthaler HK, Rohmer M (1998) Distribution Of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and cyanobacterium Synechocystis PCC 6714. Biochem J 333:381–388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dolphin WD (1970) Photoinduced carotenogenesis in chlorotic Euglena gracilis. Plant Physiol 46:685–691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donohue NY, Nakayama TSM, Chichester CO (1967) Oxygen reactions of xanthophylls. Biochemistry of chloroplasts, vol 2. Akademic, New-York, pp 431–440

    Google Scholar 

  • Dorough C, Calvin M (1951) The path of oxygen in photosynthesis. J Am Chem Soc 73:2362–2365

    Article  CAS  Google Scholar 

  • Dyubko TS, Morozova TF, Lipina OV, Romodanova EA (2006) Influence of freezing on donor blood plasma. (in Russian). Vestnik Khar‘kov Nat. Univ. name V.N. Karazin. Ser Biol 4(748):129–133

    Google Scholar 

  • Egneus H (1971) Action spectra for two oxygen uptake reactions in isolated wheat chloroplasts irradiated without oxidant. In: Forti G, Avron M, Melandri A (eds) Proceedings of 2nd international congress on photosynthesis research, Stresa, vol 1. Junk, The Hague, pp 112–122

    Google Scholar 

  • Fell AF (1979) The analysis of aromatic amino acids be second and fourth derivative UV spectroscopy. J Pharm Pharmacol 31(Suppl):23

    Article  Google Scholar 

  • Fell AF (1980) Present and future perspectives in derivative spectroscopy. UV spectrum. Grouh Bull 8:5

    CAS  Google Scholar 

  • Ficheux H, Levillain P, Francoual J, Leluc R (1989a) Simultaneous determination of hemoglobin and coproporphyrin by 2nd derivative differential spectrophotometry– application to the diagnosis of meconium aspiration. Clin Chim Acta 182:53–61

    Article  CAS  PubMed  Google Scholar 

  • Ficheux H, Levillain P, Lemmonier A (1989b) Direct spectrometric determination of urinary uroporphyrin and coporphyrin using zero crossing 2-d derivative spectrophotometry. Ann Biol Chem (Paris) 47:196–201

    CAS  Google Scholar 

  • Flesch G, Rohmer M (1988) Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton: formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose. Eur J Biochem 175:405–411

    Article  CAS  PubMed  Google Scholar 

  • Fork D (1969) Evidence for the participation of carotenoids in the photosynthesis of algae and in a higher plants. Progr Photosynth Res 2:800–810, Ed. H. Metzner. Tübingen

    CAS  Google Scholar 

  • Fork D (1987) Evidence for the participation of carotenoids in the photosynthesis of algae and in a higher plant. Progr Photosynth Res II:800–810

    Google Scholar 

  • French CS (1962) Different forms of chlorophyll in plants. (in Russian). Structure and function of photosynthetic apparatus. M.: IL,. pp 82–90

    Google Scholar 

  • Fujita Y, Suzuki R (1973) Studies on the Hill reaction of membrane fragments of blue- green algae. IV. Carotenoid photobleaching induced by photosystem II action. Plant Cell Physiol 14:261–273

    CAS  Google Scholar 

  • Gaponenko VI (1976) Influence of external factors on chlorophyll metabolism. Nauka I tehnika, Minsk, p 240

    Google Scholar 

  • Gerster K, Dupuy J, Guerin de Montgareuil P (1971) Isotopic exchange, photosynthesis and oxygen O 18. In: Forti G, Avron M, Melandri A (eds) Proceedings of 2nd international congress on photosynthesis research, Stresa, vol 1. Junk, The Hague, pp 587–598

    Google Scholar 

  • Gilchrist BM, Lee WL (1976) The incorporation of [14 C] b-carotene into marine Isopod Idotea resecata (Stimpson,1857) and the biosynthesis of canthaxanthin. Comp Biochem Physiol 54B:343–346

    Google Scholar 

  • Goodwin TW (1958) Studies in carotenogenesis. 25. The incorporation of C 14 O 2 , 2-C 14- acetate and 2-C 14-mevalonate into b-carotene by illuminated etiolated maize seedlings. Biochem J 70:612–617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goodwin TW (ed) (1965) Chemistry and biochemistry of plant pigments. Academic, London, p 583

    Google Scholar 

  • Goodwin TW (1971) In: Gibbs M (ed) Structure and function of chloroplasts. Springer, New York, Heidelberg, Berlin, pp 215–276

    Google Scholar 

  • Goodwin TW, Williams RJ (1965a) A mechanism for the cyclization of an acyclic precursor to form beta-carotene. Biochem J 94:5–7

    Article  Google Scholar 

  • Goodwin TW, Williams RJ (1965b) A mechanism for the biosynthesis of α-carotene. Biochem J 97:28c–31c

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Phys 47:685–714

    Article  CAS  Google Scholar 

  • Gregory RPF (1989) Biochemistry of photosynthesis. Wiley, New York, p 257

    Google Scholar 

  • Gribanovski-Sassu O (1972) Effect of diphenylamine on carotenoid synthesis in Dictyococcuc cinnabariuus. Phytochemistry 11:3195–3198

    Article  CAS  Google Scholar 

  • Hagemann R (1964) Plasmatische vererbung. Fischer, Jena, p 263

    Google Scholar 

  • Hager A (1955) Chloroplasten Farbstoffe, ihre Papierchromatographische Trennung und ihre Veränderungen durch Ausfaktoren. Z Naturforsch 10:310–312

    Article  Google Scholar 

  • Hager A (1957) Zur Chromotagraphie der lipoidlöslichen Blattfarbstoffe mit Hilfe der Papierchromatographie. Planta 48:592–621

    Article  CAS  Google Scholar 

  • Hager A (1966) Die Zusammen-hänge zwischen livhtinduzierten Xanthophyll- Umwandlungen und Hill-Reactionen Bericht. Dtsch Bot Ges 79:94–107

    CAS  Google Scholar 

  • Hager A (1967a) Untersuchungen über die Ruckreaktionen in Xanthophyll Cyclus bei Chlorella, Spinacia und Taxus. Planta 76:138–148

    Article  CAS  PubMed  Google Scholar 

  • Hager A (1967b) Untersuchungen über die lichtinduzierten reversiblen Xanthophyll- Umwandlungen an Chlorella und Spinacia. Planta 74:148–173

    Article  CAS  PubMed  Google Scholar 

  • Hager A (1969) Lichtbedingte pH-Ernidrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin-Zeaxanthin Umwandlung: beziehungen zur Photophosphorylierung. Planta 89:224–243

    Article  CAS  PubMed  Google Scholar 

  • Hager A (1980) In: Czygan FC (ed) Pigments in plants. Fischer Verl, Stuttgart, pp 57–79

    Google Scholar 

  • Hager A, Bertenrath T (1962) Verteilungschromatographische Trennung von Chlorophyllen und Karotinoiden grüner Pflanzen an Dünnschichten. Planta 58:564–568

    Article  CAS  Google Scholar 

  • Hager A, Mayer-Bertenrath T (1967) Die Identifizierung der an Dünnschichten getrennten Carotinoide grüuner Blätter und Algen. Planta 76:149–168

    Article  CAS  PubMed  Google Scholar 

  • Halfen LN, Francis GN (1972) The influence of culture temperature on the carotenoid composition of the blue-green algae, Anacystis nidulans. Arch Microbiol 81:25–35

    CAS  Google Scholar 

  • Haspel-Horvatovicova E (1966) Further proof of direct oxygen transfer by carotenoids in respiration and photosynthesis. Nature 209:1135

    Article  Google Scholar 

  • Hata M, Hata M (1975) Carotenoid metabolism in fancy red carp, Cyprinus carpio. I. Administration of carotenoids. B Jpn Soc Sci Fish 41:653–655

    Article  CAS  Google Scholar 

  • Heber U, Bukhov NG, Shuvalov VA et al (2001) Protection of the photosynthetic apparatus against damage by excessive illumination in homoiohydric leaves and poikilohydric mosses and lichens. J Exp Bot 52(363):1999–2006

    Article  CAS  PubMed  Google Scholar 

  • Heytler PG, Prichard WW (1962) A new class of uncoupling agents—carbonyl cyanide phenylhydrazones. Biochem Biophys Res Commun 7(4):272–275

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann P (1987) Photosynthese. 158. Reihe Biologie. Ser WTB. Akad. Verl, Berlin, p 305

    Google Scholar 

  • Ichikawa T, Terada H (1981) Effect of dodecyl sulfate on the spectral properties of phenylalanyl residues in serum albumin detected by second derivative spectrophotometry. Biochim Biophys Acta 671:33–37

    Article  CAS  PubMed  Google Scholar 

  • Isler O (ed) (1971) Carotenoids. Birkhausler, Basel-Stuttgart, p 932

    Google Scholar 

  • Katayama T, Miyahara T, Tanaka Y, Chichester CO (1974) The biosynthesis of astaxanthin XV. The carotenoids in Chidai, red sea bream, Evynnis japonica Tanaka and [the incorporation of labelled astaxanthin from the diet of the red sea bream] to the body astaxanthin. BJpn Soc Sci Fish 40:97–103

    Article  CAS  Google Scholar 

  • Katayama T, Tsuchiya H, Chichester CO (1972) Mechanism of the interconversion of plant carotenoids into fish carotenoids. In: Proceedings of the 7th international seaweed symposium, Sapporo 1971. Tokyo, pp 598–601, 580–583

    Google Scholar 

  • Kleinig H, Czygan FC (1969) Lipids of Protosiphon (Chlorophyta). I. Carotenoids and carotenoid esters of five strains of Protosiphon botryoides (Kütz.) Klebs. Z Naturforsch 24:927–930

    Article  CAS  Google Scholar 

  • Koep R (1988) Untersuchungen zum Schwefeldioxid-Einfluss auf die Photosynthese in vivo. Colloquia Pflanzenphysiol HU zu Berlin 12:181–190

    Google Scholar 

  • Koepp R, Kramer M (1981) The article title is “Photosynthetic activity and distribution of photostimulated 14 C in seedlings of Zea mays grown from gamma irradiated seeds.”. Photosynthetica 15:484–485

    Google Scholar 

  • Krasnovskii AA, Kosobutskaya LM (1953) Different states of chlorophyll in plants. (in Russian). Dokl Akad Nauk SSSR 91:343–346

    CAS  PubMed  Google Scholar 

  • Krinsky NI (1968) The protective function of carotenoid pigments. In: Giese A (ed) Photophysiology, vol 3. Academic, New York, pp 123–195

    Chapter  Google Scholar 

  • Kutyurin VM (1965) About the mechanism of water decomposition and allocation of oxygen during photosynthesis. Success Mod Biol 59:205–225

    CAS  Google Scholar 

  • Kutyurin VM (1971) On the mechanism of water decomposition during photosynthesis. In: Forti G, Avron M, Melandri A (eds) Proceedings of 2nd international congress on photosynthesis research, Stresa, vol 1. Junk, The Hague, pp 93–105

    Google Scholar 

  • Kutyurin VM, Ulubekova MV, Nazarov NM (1969) About the ratio between intensity of oxygen liberation and reactions of xanthophylls transformations in Elodea canadensis at different spectral composition of light. (in Russian). Dokl Akad Nauk SSSR 187:470–472

    CAS  Google Scholar 

  • Kvitko KV, Boyadzhiev PKh, Chunaev AS et al. (1977) Research of absorption spectra of Chlamydomonas reinhardtii 137C mutants with changed reaction to light. (in Russian). Eksperiment. al’gologiya: Tr. Petergof. biolog. in-ta pri LGU. 25: 106–132

    Google Scholar 

  • Kvitko KV, Chunaev AS, Baranov AA, Saakov VS (1976) Fine structure of absorption spectra of Scenedesmus obliquus (Tuerp) Krueger mutants with changed pigment composition (in Russian). In: Proceedings of the scientific symposium 11th scientific-coordinator Meeting on Theme 1–184 SEV. L.: Izd-vo Leningrad un-ta, pp 49–73

    Google Scholar 

  • Lichtenthaler HK (1989) Applications of remote sensing in agriculture. Butterworths Scientific, London, pp 285–305

    Google Scholar 

  • Lichtenthaler HK (ed) (1996) Vegetation stress. Fischer Verlag, Stuttgart, p 656

    Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5 phosphate pathway of isoprenoid Biosynthesis in plants. Annu Rev Plant Phys 50:47–65

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (2000a) Discoveries in plant biology, vol 3. World Sci, Singapore, pp 141–161

    Book  Google Scholar 

  • Lichtenthaler HK (2000b) Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem Soc Trans 28:785–789

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (2007) Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone and isoprene in leaves under high photosynthetic irradiance. Photosynth Res 92:163–179

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Becker K (1971) Changes of plastoquinone and carotenoid metabolism associated with the formation of functioning chloroplasts in continuous far-red and white light. In: Forti G, Avron M, Malandri A (eds) Proceedings of the 2nd international congress on photosynthesis research, vol 3. Stresa, pp 2451–2459

    Google Scholar 

  • Lichtenthaler HK, Rohmer M, Schwender J (1997a) Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol Plantarum 101:643–652

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997b) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via mevalonate independent pathway. FEBBs Lett 400:271–274

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Schwender J, Seemann M, Rohmer M (1995) Carotenoid biosynthesis in green algae proceeds via novel biosynthetic pathway. In: Mathis (ed) Photosynthesis: from light to biosphere. Kluwer, Amsterdam, pp 115–118

    Google Scholar 

  • Litvin FF (1965) Modelling of system of aggregated forms of chlorophyll and coupled pigments in solutions, films and monomer layers (in Russian). Biokhimiya i biofizika fotosinteza. Nauka, Moskva, pp 96–125

    Google Scholar 

  • Lohr V, Wilhelm C (1999) Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Natl Acad Sci USA 96:8784–8789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Losada V, Whatly FR, Arnon DI (1961) Separation of two light reactions in noncyclic photophosphorylation of green plants. Nature 190:606–610

    Article  CAS  PubMed  Google Scholar 

  • Lozina-Lozinskii LK, Zaar EI (1961) Obtaining of colorless cells of Euglena gracilis by short-time influence of high and low temperatures (in Russian). Tsitologiya 3:103–105

    CAS  Google Scholar 

  • Lubimenko VN (1916) About transformations of pigments in live tissue of plants (in Russian). Zapiski AN po phys-math Otdeleniyu 33:12

    Google Scholar 

  • Lubimenko VN (1963) Selected works, vol 2. V.2. Works on photosynthesis and pigments of plants. (in Russian). AN USSR. Kiev

    Google Scholar 

  • Lutsenko GN, Saakov VS (1971) Renovation and kinetics of C 14 inclusion in carotenoids molecules. (in Russian). Biokhim Biopys Photosinteza Irkutsk SIFIBR SO AN SSSR 80–86

    Google Scholar 

  • Lutsenko GN, Saakov VS (1972) Change in specific activity of carotenoids under conditions of the object presence in labelled medium (in Russian). Fiziol Biokhim Kul’t Rastenii 4:608–613

    CAS  Google Scholar 

  • Lutsenko GN, Saakov VS (1973) The renovation of carotenoids in the green plants (in Russian). Sov Fiziol Rastenii 20:90–95

    CAS  Google Scholar 

  • Mandelli EF (1969) Carotenoid interconversion in light–dark culture of dinoflagellate Amphidinium klebsii. J Phycol 5:382–384

    Article  CAS  Google Scholar 

  • Maslova TG, Markovskaia EF (2012) Current views on the function of the violaxanthin cycle (development of ideas put forward by D.I. Sapozhnikov). Russ J Plant Physiol (Fiziologiya Rastenii) 59(3):434–441

    Article  CAS  Google Scholar 

  • Maslova TG, Meister A (1969) Einfluss einiger Factoren auf die lichtinduzierten Absorptosänderugen des Blattes im blauen Spektralbereich. Z Pflanzenphysiol 60:114–122

    Google Scholar 

  • McCabe J, Shelp B, Ursino DJ (1979) Photosynthesis and photophosphorylation in radiation stressed soybean plants and the relation of these processes to photoassimilate export. Environ Exp Bot 19:253–261

    Article  CAS  Google Scholar 

  • Meister A, Maslova TG (1968) Zur Bestimmung der Lichtinduzierten Absorptionsändurungen durch Messung der 2. Ableitung der Extintion. Photosynthetica 2:261–267

    CAS  Google Scholar 

  • Monin YG, Goncharevskaya OA, Saakov VS (1985) Changes in osmolality of the blood serum and re-arrangements of its protein complexes during the arousal from hibernation of the ground squirrel Citellus undulatus (in Russian). Evolyuts Biokhim Physiol 3:311–314

    Google Scholar 

  • Moskvin YA, Saakov VS (1970) Interrelation of chlorophyll metabolism and carotenoids biosynthesis (in Russian). Inform Bull SIFIBR SO AN SSSR Irkutsk 7:27–28

    Google Scholar 

  • Moster JB, Quackenbush FW (1952a) The carotenoids of corn seedlings. Arch Biochem Biophys 38:287–296

    Article  CAS  PubMed  Google Scholar 

  • Moster JB, Quackenbush FW (1952b) The effects of temperature and light on carotenoids of seedlings from three corn hybrids. Arch Biochem Biophys 38:297–303

    Article  CAS  PubMed  Google Scholar 

  • Natochin YV, Monin YG, Goncharevskaya OA, Saakov VS (1985) Role of the Ca2+- dependent and Co2+-dependent protein conformation of rat-blood serum in the regulation of its osmolality. (in Russian). Dokl Akad Nauk SSSR 282:236–239

    CAS  PubMed  Google Scholar 

  • Nazarova GD (1974) Reactions of the carotenoids cycle under conditions of auto- and heterotrophicity. Dissertation, PhD. in biol. Univer. Sverdlovsk sc.Sverdlovsk

    Google Scholar 

  • Nozaki Y (1990) Determination of tryptophan, tyrosine, and phenylalanine by 2nd derivative spectrophotometry. Arch Biochem Biophys 277:324–333

    Article  CAS  PubMed  Google Scholar 

  • Paromenskaya LN (1970) Influence of triazine herbicides on physiological-biochemical processes in green algae. Dissertation, Ph.D. in biol. sc. (in Russian). VIZR. Leningrad

    Google Scholar 

  • Peterman EJ, Gradinaru CC, Calkoen F, Borst JC (1997) Xanthophylls in light—harvesting complex II of higher plants: light harvesting and triplet quenching. Biochemistry 36:12208–12215

    Article  CAS  PubMed  Google Scholar 

  • Petrenko SG, Bershtein BI, Volovik OI, Yasnikov AA (1970) About mechanism of carotenoids participation in ATP formation in chloroplasts (in Russian). Physiol Biokhim Kul’tur Rasten 2:137–141

    CAS  Google Scholar 

  • Pogson B, McDonald KA, Truong M et al (1996) Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell 8:1627–1639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pogson BJ, Niyogi KK, Bjorkman O, Della Penna D (1998) Altered xanthophylls compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci USA 95:1324–1329

    Article  Google Scholar 

  • Polyanskii VI (1948) Experimental research of variability of Euglena gracilis Klebs in culture (in Russian). Uchen zapis Leningr ped in-ta im Gertsena 70:153–170

    Google Scholar 

  • Porter IW, Anderson DG (1967) Biosynthesis of carotenes. Annu Rev Plant Phys 18:197–213

    Article  CAS  Google Scholar 

  • Roberts DWA, Perkins HJ (1962) Biosynthesis of chlorophyll from acetate-1-14 C and glycine-1-14 C by wheat leaves. Can J Biochem Phys 40:973–974

    Article  CAS  Google Scholar 

  • Roberts DWA, Perkins HJ (1966) The incorporation of the two carbons of acetate and glycine into the phorbide and phytol moieties of chlorophyll a and b. Biochim Biophys Acta 127:42–46

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez DB, Sympson KL, Chichester CO (1974) The biosynthesis of astaxanthin.XVIII. Int J Biochem 5:157–166

    Article  CAS  Google Scholar 

  • Rogers LJ, Shah SPJ, Goodwin TW (1967) The intracellular localization of mevalonate activating enzyme: Its importance in the regulation of terpenoid biosynthesis. In: Goodwin TW (ed) Biochemistry of chloroplasts, vol 2. Academic, New-York, pp 283–292

    Google Scholar 

  • Rohmer M (1998) Isoprenoid biosynthesis via the mevalonate-independent route, a novel target for antibacterial drugs. Prog Drug Res 50:135–154

    Article  CAS  PubMed  Google Scholar 

  • Rohmer M (1999) The discovery of mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants—Reviewing the literature published to the end of 1998. Nat Prod Rep 16:565–574

    Article  CAS  PubMed  Google Scholar 

  • Rohmer M, Knani M, Simonin P et al (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rohmer M, Seemann M, Horbach S, Bringer-Meyer S et al (1996) Glyceraldehyde 3- phosphate and pyruvate as precursors of isoprenic units in an alternative non- mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118:2564–2566

    Article  CAS  Google Scholar 

  • Rohmer M, Sutter B, Sahm H (1989) Bacterial sterol surrogates—biosynthesis of the side-chain of bacteriohopanetetrol and of a carbocyclic pseudopentose from C 13-labeled glucose in Zymomonas mobilis. J Chem Soc Chem Comm 19:1471–1472

    Article  Google Scholar 

  • Rubin BA, Gavrilenko VF (1977) Biochemistry and physiology of photosynthesis (in Russian). Izd-vo Mosk. un-ta, Moscow, p 325

    Google Scholar 

  • Saakov VS (1963a) To procedure of pure xanthophylls extraction (in Russian). Bot Zhurn 48:554–557

    CAS  Google Scholar 

  • Saakov VS (1963b) To mechanism of the light reaction of xanthophylls in chloroplasts suspension. (in Russian). Bot Zhurn 48:888–891

    Google Scholar 

  • Saakov VS (1963c) Mechanism of violaxanthin variation during light reaction of chloroplasts (in Russian). Dokl Akad Nauk SSSR 148:1412–1414

    CAS  Google Scholar 

  • Saakov VS (1963d) Assessment of effectivenesses of chromatographical method of xanthophyll separation on paper with help of the C 14 isotope (in Russian). Biophysika 8:123

    CAS  Google Scholar 

  • Saakov VS (1964) Role of carotenoids in mechanism of oxygen transfer in photosynthesis (in Russian). Dokl Akad Nauk SSSR 155:1212–1215

    CAS  PubMed  Google Scholar 

  • Saakov VS (1965a) Metabolism of violaxanthine-C 14 in leaf and its role in photosynthetic reactions (in Russian). Dokl Akad Nauk SSSR 165:230–233

    CAS  PubMed  Google Scholar 

  • Saakov VS (1965b) On the possible role of xanthophylls in oxygen transfer during photosynthesis (in Russian). Sov Physiol Rasten 12:377–385

    CAS  Google Scholar 

  • Saakov VS (1966) Carbon Isotope C 14 applied to study of lutein exchange (in Russian). Dokl Akad Nauk SSSR 170:460–463

    CAS  PubMed  Google Scholar 

  • Saakov VS (1967) Mechanism of the interconversions of exogenous carotenoids-C 14 in Chlorella (in Russian). Dokl Akad Nauk SSSR 174:978–981

    CAS  PubMed  Google Scholar 

  • Saakov VS (1968a) Oxidation metabolism of carotene and physiological role it plays in leaf (in Russian). Dokl Akad Nauk SSSR 180:241–244

    CAS  Google Scholar 

  • Saakov VS (1968b) On possible connection existing between metabolic transformations of carotenoids and biosynthesis of chlorophyll (in Russian). Dokl Akad Nauk SSSR 181:1001–1004

    CAS  Google Scholar 

  • Saakov VS (1968c) Biosynthesis and metabolic transformations of carotenoids in cell. In: Proceedings of the 3rd conference on physiology and biochemistry of Siberian and Far Eastern Plants (in Russian). Irkutsk, pp 169–171

    Google Scholar 

  • Saakov VS (1969) Cyclical interconversions and updating (refresh) of carotenoid funds in leaf (in Russian). Abstr. of All Union Biochem. Congress. Section 19. Problems of Photosynth.: 21–22. PH FAN, Tashkent

    Google Scholar 

  • Saakov VS (1970a) Neoxanthin as an intermediate link of biochemical xanthophylls interconversions. (in Russian). Mineral’nye elementy i mekhanizm fotosinteza. Kishinev: RIO AN MSSR, pp 169–176

    Google Scholar 

  • Saakov VS (1970b) Kinetik der 14 C-Violaxanthinumwandlung in Chloroplastensuspension. Stud Biophys 23:125–131

    CAS  Google Scholar 

  • Saakov VS (1971a) Action of ATP, inhibitors and photophosphorylation entcouplers on xanthophyll transformation in leaf (in Russian). Dokl Akad Nauk SSSR 198:966–969

    CAS  Google Scholar 

  • Saakov VS (1971b) Correlation between light-induced xanthophyll conversions and electron transport chain of photosynthesis (in Russian). Sov Physiol Rastenii 18:1088–1097

    CAS  Google Scholar 

  • Saakov VS (1971c) Relation between xanthophylls deepoxidation reaction and electron transport chain of photosynthesis (in Russian). Dokl Akad Nauk SSSR 201:1257–1260

    CAS  Google Scholar 

  • Saakov VS (1973a) Die durch Hemmstoffe induzierten Umwandlungen der Karotinoidpigmente in Pflanzenzellen. Biochem Physiol Pflanzen 164:213–227

    CAS  Google Scholar 

  • Saakov VS (1973b) Der Einfluss einiger Inhibitoren auf den Chlorophyllgehalt in gruenen. Zellen Biochem Physiol Pflanzen 164:199–212

    CAS  Google Scholar 

  • Saakov VS (1976) Research of damaging influences localization centers in chloroplast membranes with methods of molecular spectroscopy (in Russian). Trudy Prikl Bot Genet Selektsii L VIR57:17–34

    Google Scholar 

  • Saakov VS (1987) Spectrophotometrical methods in study of reactions of plant plastid apparatus under extremal influences (in Russian). Spectrophotometrical research methods in physiology and biochemistry. Nauka, Leningrad, pp 115–126

    Google Scholar 

  • Saakov VS (1989a) Reversible, lichtabhaengige Umwandlungen von markierten Karotinoiden in Chloroplasten. Biolog Rundsch 27:89–93

    CAS  Google Scholar 

  • Saakov VS (1989b) The reversible conversions of labeled carotenoids in chloroplasts. Dokl Akad Nauk SSSR 306:764–767

    CAS  Google Scholar 

  • Saakov VS (1990a) Neue Ergebnisse ueber Umwandlungen markierter Karotinoide in Zellen von Pflanzen und Tieren. Biolog Rundsch 28:149–152

    CAS  Google Scholar 

  • Saakov VS (1990b) On the sequence of carotene oxidation in animal-Cells. Dokl Akad Nauk SSSR 315:1263–1266

    CAS  PubMed  Google Scholar 

  • Saakov VS (1990c) Die Anwendung der Lumineszenz, der Ableitungen der Spektrophotometrie und der photoakustischen Spektroskopie zur Charakterisierung von Schaeden in Chlorophyll- Protein Komplex der Chloroplasten. Colloquia Pflanzenphysiologie der Humboldt-Universitaet zu Berlin 14:163–170

    CAS  Google Scholar 

  • Saakov VS (1990d) Redox conversions of carotenoids in a green cell. Dissertation, Prof. in biol.sc. Institute of biophysics and physiology of plants. AN TadzhSSR. Dushanbe

    Google Scholar 

  • Saakov VS (1991) On the conjugation of interconversions of xanthophylls with energy activity of chloroplast (in Russian). Dokl Akad Nauk SSSR 316:764–767

    Google Scholar 

  • Saakov VS (1993a) The inhibition of kinetics of light deepoxidation of violaxanthin and the activity of xanthophyll cycle under the influence of gamma-radiation (in Russian). Dokl Akad Nauk 329:96–99

    CAS  Google Scholar 

  • Saakov VS (1993b) The effect of gamma-radiation on the stability of energetics and pigment system of the photosynthetic apparat (in Russian). Dokl Akad Nauk 328:520–523

    CAS  Google Scholar 

  • Saakov VS (1993c) The influence of gamma-radiation on the kinetic of changes in violaxanthin content and on the xanthophyll cycle. Photosynthetica 28:439–445

    CAS  Google Scholar 

  • Saakov VS (1994) Assessment ways of reparation abilities of photosynthesizing apparatus of plants in cenoses exposured to ionizing radiation influence. In: Proceedings of the international symposium “Theory and practice of complex ecological expertise”. SPb., 31 May–2 June, pp 83–84

    Google Scholar 

  • Saakov VS (1996a) Application of PAM-method for estimating the damage of photosynthetic apparatus of chloroplasts during gamma-irradiation: Abstr. Intern. Conf. on Spectroscopy and Optical Techn. In Animal and Plant Biology. Muenster, Uni. Germany, pp 96

    Google Scholar 

  • Saakov VS (1998a) Specific changes of modulated fluorescence F-o and F-m under dithiothreitol influence on zeaxanthin content. (in Russian). Dokl Akad Nauk 361:830–833

    CAS  Google Scholar 

  • Saakov VS (1998b) Some mechanisms of adaptation to stress in plant and animal cells. Doklady Biol Sci 361:371–375, translated from Doklady Akad Nauk 361:568–572

    Google Scholar 

  • Saakov VS (2000a) Characteristics of structural stability of the photosystem II light- harvesting complex exposed to gamma-radiation. Dokl Biochem Biophys 373:123–128, Translated from Doklady Akad. Nauk. 373:112–116

    CAS  Google Scholar 

  • Saakov VS (2000b) Energetics of green cell stress resistance: a concept. Dokl Biol Sci 375:613–620, Translated from Doklady Akademii Nauk 375:278–285

    Article  CAS  PubMed  Google Scholar 

  • Saakov VS (2002a) High-temperature stress-related changes in the harmonics F0, Fm, and Fv of pulse-amplitude modulated fluorescence signals: locating thermal damage in reaction centers of photosystem II. Dokl Biochem Biophys 382:4–9, Translated from Doklady. Akad. Nauk 382:118–123

    Article  CAS  PubMed  Google Scholar 

  • Saakov VS (2002b) Specific effects of gamma-radiation on the fine structure of the photosynthetic apparatus: evaluation of the character of disturbances in vivo using high-order derivative spectrophotometry. Dokl Biochem Biophys 387:313–319, Translated from Doklady Akad. Nauk. 387:265–271

    Article  CAS  PubMed  Google Scholar 

  • Saakov VS (2003a) Specific effects induced by gamma-radiation on the fine structure of the photosynthetic apparatus: evaluation of the pattern of changes in the high-order derivative spectra of a green leaf in vivo in the red spectral region. Doklady Biochem Biophys 388:22–28, Translated from Doklady. Akad. Nauk. 388:265–271

    Article  CAS  Google Scholar 

  • Saakov VS (2003b) Alternative pathways of carotenoid biosynthesis in Procaryothes and Eucaryothes. Dokl Biochem Biophys 392:294–300, Translated from Doklady Akad Nauk 392: 825–831

    Article  CAS  PubMed  Google Scholar 

  • Saakov VS (2003c) Association of the mechanisms of green cell resistance with changes in the parameters of modulated pulse fluorescence under the exposure to atmospheric drought: localization of damage in the link P680QA. Dokl Biochem Biophys 388:8–14, Translated from Doklady Akad. Nauk. 388:123–130

    Google Scholar 

  • Saakov VS (2004) The possibility of involvement of the pools of alpha-ketoglutaric acid in the biosynthesis of carotenoids in chloroplasts. Dokl Biochem 394:5–10, Kluwer Acad. Publ. Translated from Doklady Akad. Nauk. 394:S. 116–122

    Article  CAS  Google Scholar 

  • Saakov VS (2005a) Redox transformation of 14 C-neoxanthin in animal and plant tissues. Dokl Biochem Biophys Mol Biol 402:184–189, Translated from Doklady Biochem. Biophys. A. Molekul. Biol. 402:119–125

    Article  CAS  Google Scholar 

  • Saakov VS (2005b) Application of derivative spectrophotometry of high orders (DIV–DVIII–DXII) as one of criteria at radiochemical purification and concentration of pigments. In: Proceedings of 2nd international conference on “Separation and concentration in analytical chemistry and radiochemistry”, Krasnodar, 25–30 Sept. 2005

    Google Scholar 

  • Saakov VS (2011) Ways of functional and structural diagnostic of stability (immunity) phototrophical cells to extreme effects. Actual problems of a biology and ecology (in Russian). PH Foresty Engineering Academy, St.-Petersburg, pp 312–325, ISBN 978-5-9239-0371-3

    Google Scholar 

  • Saakov VS, Baranov AA (1987) Research of structure and reactions of photosynthetic apparatus and connection with development of autotrophic function (in Russian). Spectroscopic methods of research in physiology and biochemistry. Nauka, Leningrad, pp 97–114

    Google Scholar 

  • Saakov VS, Baranov AA, Hoffmann P (1978a) Pigmentphysiologischen Untersuchungen mit Hilfe der Derivativ-Spektrophotometrie. Stud Biophys 70:129–142

    CAS  Google Scholar 

  • Saakov VS, Baranov AA, Hoffman P (1978b) Derivativ-spektroskopische Charakteristik des Pigmentphysiologischen Zustandes des Phothosyntheseapparates unter besonderer Beruecksichtigung der Temperatur. Stud Biophys 70:163–173

    CAS  Google Scholar 

  • Saakov VS, Barashkova EA, Kozhushko NN et al (1975) The centres of localization of harmful influences of extreme factors in chloroplasts. In: Abstracts of the 12th International botanical congress. Leningrad. II: 478

    Google Scholar 

  • Saakov VS, Dorokhov BL, Shiryaeva GA (1973) Second derivative of difference absorption spectra on example of chlorophyll a and b and of blood pigment. (in Russian). Izv AN MoldSSR Ser Biol-Khim Nauk 2:73–82

    Google Scholar 

  • Saakov VS, Hoffmann P (1974) Zur Bedeutung der Karotinoide fuer die Photosynthese unter besonderer Beruecksichtigung der Photophosphorylierung. Wiss Zt d Humboldt-Univer zu Berlin Math-Nat Reihe Bd XXIII 6:577–580

    Google Scholar 

  • Saakov VS, Konovalov IN (1966) About carotenoid functions in photosynthesis (in Russian). Trudy Bot ssadov AN KazSSR, Alma-Ata 9:81–98

    Google Scholar 

  • Saakov VS, Konovalov IN, Saidov AS (1967) Seasonal dynamics of pigments content and their biosynthesis in blackcurrant leaves (in Russian) Trudy BIN AN USSR ser. 4. Exp Bot 19:81–92

    Google Scholar 

  • Saakov VS, Lang M, Schindler C, Lichtenthaler HK (1993) Changes in chlorophyll fluorescence and photosynthetic activity of French bean leaves induced by gamma radiation. Photosynthetica 27:369–383

    Google Scholar 

  • Saakov VS, Leontjev VG (1988) Untersuchungen ueber die molekularspektrophotometrische Reaktion des pflanzliche Photosynthese- apparates auf Stressbedingungen. Colloquia Pflanzenphysiologie der Humbildt Univerersity zu Berlin 12:143–156

    CAS  Google Scholar 

  • Saakov VS, Nasarova GD (1970) Markierungsexperimente zur Umwandlung des Antheraxanthins in vivo. Stud Biophys 20:65–72

    CAS  Google Scholar 

  • Saakov VS, Nazarova GD (1972) Reactions of the pigment system of Euglena under conditions of artificially created heterotrophism (in Russian). Dokl Akad Nauk SSSR 204:744–747

    CAS  PubMed  Google Scholar 

  • Saakov VS, Nazarova GD, Myl’nikova EV, Alekseeva NR (1970) Exchange between oxygen fond of xanthophylls and water oxygen under light influence on plant. (in Russian). Mineral’noe pitanie rastenii i fotosintez. Irkutsk, SIFIBR SO AN SSSR: 217–227

    Google Scholar 

  • Saakov VS, Nazarova GD, Myl’nikova EV, Alekseeva NR (1971a) Influence of inhibitors of PS of photosynthesis on a pigment system. (in Russian). Biohem Biophys Photosynthesa. Irkutsk, SIFIBR SO AN SSSR: 28–36

    Google Scholar 

  • Saakov VS, Nazarova GD, Myl’nikova EV, Alekseeva NR (1971b) Reactions of xanthophylls metabolism in plants. (in Russian). Biohem Biophys Photosintesa. Irkutsk, SIFIBR SO AN SSSR: 43–51

    Google Scholar 

  • Saakov VS, Sagromsky H, Adler K, Meister A (1970a) The electron-transport chain of photosynthesis and the system of xanthophylls light reactions (in Russian). Inform Bull SIFIBR SO AN SSSR Irkutsk 6:60–62

    Google Scholar 

  • Saakov VS, Sagromsky H, Meister A, Gerrmann F (1970b) Interrelation of photophosphorylation and of xanthophylls reaction in a leaf (in Russian). Inform Bull Sibirsk in-ta fiziolog biokhim rast SO AN SSSR Irkutsk 6:58–60

    Google Scholar 

  • Saakov VS, Shiryaev AV (2000) To evolution of hypothesis on location of damage influences of environmental factors in green leaf: the after-effect of gamma -irradiation on energetic of chloroplasts (in Russian). Doklady Akad Nauk 371:280–285

    CAS  Google Scholar 

  • Saakov VS, Shiryaeva GA (1967) To a question about methodology of paper chromatography of carotene carotenoids (in Russian). Trudy Komarov Botan Inst Akad Nauk SSSR L Ser 4 Eksperiment botan 18:151–165

    Google Scholar 

  • Saakov VS, Udovenko GV (1976) Resistenz der getreidepflanzen gegen unguenstige Bedingungen des Milieus: physiologische und genetische Aspekte. Wiss Zt der Humboldt Univer zu Berlin, Math Naturwiss Reihe 25:163–173

    Google Scholar 

  • Saakov VS, Udovenko GV, Barashkova EA et al (1975) The centres of localization of harmful influences of extreme factors in chloroplasts. Abstr of the XII Intern Bot Congress Leningrad, II: 478

    Google Scholar 

  • Sagromsky H (1973) Einfluß der Lichtintensität auf die Pigmentzusammensetzung in den Plastiden von Antirrhinum majus, Sipp 50, und zwei Mutanten davon. Kulturpflanze 21:111–118

    Article  Google Scholar 

  • Sagromsky H (1974) Chlorophyllumwandlungen im lebenden Blatt unter dem Einfluß von KCN. Kulturpflanze 22:87–94

    Article  CAS  Google Scholar 

  • Sagromsky H (1975) Chlorophyllbestimmungen mittels eines Aceton-Diäthyläther- Methanol- Petroläther-Gemisches. Kulturpflanze 23:217–221

    Article  CAS  Google Scholar 

  • Sagromsky H, Saakov VS (1970) Ein Vergleich verschiedener Extraktionsmittel fuer Plastidenpigmente. Kulturpflanze 18:241–251

    Article  CAS  Google Scholar 

  • Sapozhnikov DI (1937) Conversion of carotene into xanthophylls under photoreduction of carbonic(metacarbonic) acid (in Russian). Biokhimia 2:730–733

    CAS  Google Scholar 

  • Sapozhnikov DI (1973) Investigation of the violaxanthin cycle. Pure Appl Chem 35:47–62

    Article  CAS  PubMed  Google Scholar 

  • Sapozhnikov DI, Alkhazov DG, Eidel’man ZM et al (1961) Inclusion of O 18 from heavy-oxygen water into violaxanthin under light influence on plants (in Russian). Bot Zhurn 46:673–676

    CAS  Google Scholar 

  • Sapozhnikov DI, Alkhazov DG, Eidel’man ZM et al (1964) About xanthophylls participation in the photosynthetic oxygen transfer (in Russian). Dokl Akad Nauk SSSR 154:974–977

    CAS  Google Scholar 

  • Sapozhnikov DI, Bazhanova NV (1958) To characterization of xanthophylls light reaction in isolated chloroplasts (in Russian). Dokl Akad Nauk SSSR 120:1141–1144

    CAS  Google Scholar 

  • Sapozhnikov DI, Krasovskaya TA, Maevskaya AA (1957) Change of ratio of main carotenoids in plastids of green leaves under light influence (in Russian). Doklady Akad Nauk SSSR 113:465–467

    CAS  Google Scholar 

  • Sapozhnikov DI, Krasovskaya TA, Maevskaya AN (1959) Change of state of main carotenoids in green leaves under light influence (in Russian). Problems of photosynthesis. Acad Sci USSR, Moscow, 163–174

    Google Scholar 

  • Sapozhnikov DI, Kutyurin VM, Maslova TG et al (1967) About of xanthophylls oxygen exchange coupled with their function in photosynthesis (in Russian). Dokl Akad Nauk SSSR 175:1182–1185

    CAS  Google Scholar 

  • Sapozhnikov DI, Lopatkin YB (1950) To question about the role of carotenoids in photosynthesis (in Russian). Dokl Akad Nauk SSSR 72:413–417

    CAS  Google Scholar 

  • Sapozhnikov DI, Lopatkin YB, Chekhonina NS (1953) To question about the factor of ratio of light and dark reactions of photosynthesis (in Russian). Trudy Bot Inst Akad Nauk SSSR, ser 4 Exp Bot 9:118–122

    Google Scholar 

  • Sapozhnikov DI, Maslova TG, Bazhanova NV, Popova OF (1965a) To question of the kinetics of О 18 incorporation from heavy-oxygen water in the violaxanthin molecule. Biofizika 10:349–351

    CAS  PubMed  Google Scholar 

  • Sapozhnikov DI, Maslova TG, Bazhanova NV, Popova OF (1965b) To question of the kinetics of О 18 incorporation from heavy-oxygen water in the violaxanthin molecule. Rep Acad Sci TadzhSSR 8(12):40–43

    CAS  Google Scholar 

  • Sapozhnikov DI, Saakov VS (1962) Application of violaxanthin-14 C for the characteristic the light reaction of xanthophylls conversion. Dokl Acad Sci USSR 147:1487–1488

    CAS  Google Scholar 

  • Sauer K, Calvin M (1962) Absorption spectra of spinach quantasomes and bleaching of the pigments. Biochim Biophys Acta 64:324–339

    Article  CAS  PubMed  Google Scholar 

  • Schnepf E, Czygan FC (1966) Feinbau und Carotinoide von Chromoplasten in Spadix- Appendix von Typhonium und Arum. Z Pflanzenphysiol 54:345–355

    CAS  Google Scholar 

  • Schwender J (1999) The non mevalonate isoprenoid biosynthesis and its distribution in plants. Dissertation PhD Thesis Univer of Karlsruhe. In Contr Pl Physiol 36 p. 168

    Google Scholar 

  • Schwender J, Gemünden C, Lichtenthaler HK (2001) Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate / 2-C-methylerythritol 4-phosphate pathway for the biosynthesis of the isoprenoids. Planta 212:416–423

    Article  CAS  PubMed  Google Scholar 

  • Schwender J, Seemann M, Lichtenthaler HK, Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophyll and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non mevalonate pathway in green alga Scenedesmus obliquus. Biochem J 316:73–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwender J, Zeidler J, Müller C, Lichtenthaler FW, Lichtenthaler HK (1997) Incorporation of 1-deoxy-d-xylulose into isoprene and phytol by higher plants and algae. FEBSs Lett 414:129–134

    Article  CAS  Google Scholar 

  • Sharkly TD (1996) Isoprene synthesis by plants and animals. Endeavour 20:74–78

    Article  Google Scholar 

  • Sharma PK, Hall DO (1996) Effect of photoinhibition and temperature on carotenoids in sorghum leaves. Indian J Biochem Biophys 33:471–477

    CAS  PubMed  Google Scholar 

  • Shen YC, Davies AG, Linfeld EH, Elsey TS (2003) The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood. Phys Med Biol 148:223–232

    Google Scholar 

  • Shlyk AA (1971) Determination of chlorophylls and carotenoids in green leaves (in Russian). In: Biochemical methods in plant physiology. Nauka, Moscow, pp 154–170

    Google Scholar 

  • Shlyk AA, Sukhover LK (1968) Fractioning of metabolically heterogeneous pigment funds of Euglena. (in Russian). Dokl Akad Nauk SSSR 181(5):1274–1277

    CAS  Google Scholar 

  • Shneour EA (1961) A study of light-catalysed oxygen transport in photosynthesis. University of California Radiation Laboratory Report UCRL-9900. University of California, Berkeley

    Google Scholar 

  • Shneour EA (1962a) The source of oxygen in Rhodopseudomonas sphaeroides carotenoid pigment conversion. Biochim Biophys Acta 65:510–511

    Article  CAS  PubMed  Google Scholar 

  • Shneour EA (1962) Carotenoid pigment conversion in Rhodopseudomonas spheroids. Biochim Biophys Acta 62:534–540

    Article  CAS  PubMed  Google Scholar 

  • Shneour EA, Calvin M (1962) Isotopic oxygen incorporation in xanthophylls of Spinacia oleraceae quantasomes. Nature 196:439–441

    Article  CAS  Google Scholar 

  • Shukolyukov SA, Denisova NA (1992) Opsin biosynthesis and trans-cis isomerisation of aldehyde form chromophore in the blowfly Calliphora erythrocephala eye. Insect Biochem Mol Biol 22:925–935

    Article  CAS  Google Scholar 

  • Shukolyukov SA, Saakov VS (2001) American cockroach (Periplaneta americana) synthesizes carotenoids from the precursor [C 14]-mevalonic acid pyrophosphate. Biochemistry-Moscow 66:548–552, (535–540) Translated from Biokhimiya Moscow 66:663–669

    Article  Google Scholar 

  • Siefermann D, Yamamoto H (1974) Light-induced de-epoxidation of violaxanthin in lettuce chloroplasts. III. Reaction kinetics and effect of light intensity on de- epoxidase activity and substrate availability. Biochim Biophys Acta 357:144–150

    Article  CAS  PubMed  Google Scholar 

  • Siek TJ, Rieders F (1975) Determination of carboxyhemoglobin in the presence of other blood hemoglobin pigments by visible spectrophotometry. Biochim Biophys Acta 475:404–411

    Google Scholar 

  • Sisakyan NM (2010) Problems of biochemistry and space biology. PH Science, Moscow, 691p

    Google Scholar 

  • Smilie RM, Rigopoulus N (1962) Carotenoid production by streptomycin bleached Euglena. J Protozool 9:149–151

    Article  Google Scholar 

  • Sokolova MM, Panov AA, Saakov VS, Leont’ev VG (1992) The exchange of osmolality, concentration of monovalent cations and structure of plasma blood proteins in extremum environment. Dokl Akad Nauk 327:277–280, Translated from Doklady AN SSSR. 327(2): 277–280

    CAS  PubMed  Google Scholar 

  • Sokolova MM, Pushkarev YP, Maslennikova LS, Saakov VS et al (1991) The age- related characteristics of changes in osmotic and ionic homeostasis in spontaneously hypertensive rats. (in Russian). Physiol Zhurn SSSR im I M Sechenova 77:47–54

    CAS  Google Scholar 

  • Soloni FG, Cunningham MT, Amazon K (1986) Plasma hemoglobin determination by recording derivative spectrophotometry. Am J Clin Pathol 85:342–347

    CAS  PubMed  Google Scholar 

  • Stern AI, Epstein HT, Schiff JA (1964) Studies of chloroplast development in Euglena. VI. Light intensity as a controlling factoring development. Plant Physiol 39:226–231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stolbova AV (1971) Genetic analysis of pigment mutations in monadiform algae (in Russian). Dissertation, PhD. in Biol. Sci. LGU SPb

    Google Scholar 

  • Stroes JW, van Rijn HJ (1987) Quantitative measurement of blood pigments in cerebrospinal fluid by derivative spectrophotometry. Ann Clin Biochem 24(2):189–197

    Article  CAS  PubMed  Google Scholar 

  • Suvorov VB (2003) Political suicide. What for Hitler has attacked the Soviet Union? PH AST (www.ast.ru), Moscow, 364p

  • Sysoev LA, Saakov VS, Klyba VI (1971) Light-induced phosphorylation of thiamin by leaves and chloroplasts of pea (in Russian). Biokhimiya i biopysica photosinteza. Irkutsk, SIFIBR SO AN SSSR, pp 104–109

    Google Scholar 

  • Szczepaniak S, Dudka J (1993) Usefulness of spectrophotometric methods Messineo and Mussara for free tryptophan determination in blood plasma (in Polish). Rocz Panstw Zakl Hig 44:191–198

    CAS  PubMed  Google Scholar 

  • Takeguchi CF, Yamamoto HY (1968) Light-induced O 18 uptake by epoxy xanthophylls in New Zealand spinach leaves (Tetragonia expansa). Biochim Biophys Acta 153:459–465

    Article  CAS  PubMed  Google Scholar 

  • Tanaka YH, Matsuguchi T, Katayama T et al (1976) The biosynthesis of astaxanthin. XVIII: the metabolism of the carotenoids in the prawn, penaeus japonicus bate. Bull Jpn Soc Sci Fish 42:197–202

    Article  CAS  Google Scholar 

  • Taulier A, Levillain P, Lemonnier A (1986) Advantage of spectrophotometry in derivative for the dosage plasma and urinary hemoglobin—Comparison with the method using Allen’s correction. Comparison with the method using Allen’s correction. Ann Biol Clin (Paris) 44:242–248

    CAS  Google Scholar 

  • Taulier A, Levillain P, Lemonnier A (1987) Determining methemoglobin in blood by zerocrossing- point 1st-derivative spectrophotometry. Clin Chem 33:1767–1770

    CAS  PubMed  Google Scholar 

  • Temper EV, Kvitko KV (1971) Characteristic of pigment mutants of Scenedesmus obliquus (Turp-Kutz) (in Russian). Biol Nauki 4:106–111

    CAS  PubMed  Google Scholar 

  • Trebst A (1963) Zur Hemmung photosynthtischer Reaktionen in isolierten Chloroplasten durch Salicylaldoxim. Z Naturforsch 18:817–821

    Google Scholar 

  • Trebst A (1964) Über die photosynthetische NADP- Reduction mit Phenylendiaminen in isolierten Chloroplasten. Z Naturforsch 19:418–421

    Article  Google Scholar 

  • Trebst A (1966) Zum Mechanismus der Photosynthese. Arbeits-gemeinschaft f. Forschung Land NRh.-Westf. Köln-Opladen, Westdtsch Verl. 171, pp 27–53

    Google Scholar 

  • Trebst A, Pistorius E (1965) Zum Mechanismus der photosynthetischen Electronentransportes in isolierten Chloroplasten. II. Substituirte p-Phenyilendiamine als Electronendonatoren. Z Naturforsch 20:143–147

    Google Scholar 

  • Vernon LP, Zaug WS (1960) Photoreduction by fresh and aged chloroplasts. J Biol Chem 235:2728–2733

    CAS  PubMed  Google Scholar 

  • Vinogradov AP (1962) Isotopes of oxygen and photosynthesis. Timiryazev Reading, Academy of Science of USSR, Moscow, 145p

    Google Scholar 

  • Vinogradov AP, Teys RV (1941) Isotope composition of oxygen of a different origin (oxygen of photosynthesis, air, CO2 and H2О) (in Russian). Dokl Akad Nauk 33:497–501

    Google Scholar 

  • Vinogradov AP, Teys RV (1947) New detection of isotopic composition of photosynthesis (in Russian). Dokl Akad Nauk USSR 56:57–58

    Google Scholar 

  • Wessels JSC (1964) ATP formation accompanying photoreduction of NADP+ by ascorbate indophenol in chloroplast fragments. Biochim Biophys Acta 79:640–652

    CAS  PubMed  Google Scholar 

  • Westerhoff N (1974) Beziehungen zwischen den lichabhängigen Xanthophyll- Umwandlungen und dem photosynthetischen Elektronentransport bzw. der Photophosphorylierung. Ber Dtsch Bot Geselsch 87:545–551

    CAS  Google Scholar 

  • Wieckowski S, Goodwin TW (1967) Studies on the metabolism of the assimilatory pigments in cotyledons of four species of pine seedlings drown in darkness and in light. In: Goodwin TW (ed) Biochemistry of chloroplasts, vol 2. Academic, Leningrad and New-York, pp 283–292, 445–457

    Google Scholar 

  • Williams JH, Britton G, Goodwin TW (1967) The biosynthesis of cyclic carotenes. Biochem J 105:99–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Willstätter R, Stoll A (1913) Untersuchungen €uber das Chlorophyll. Methoden und Ergebnisse, vol VIII. Springer, Berlin, p 424S, XI Bl

    Google Scholar 

  • Willstätter R, Stoll A (1918) Untersuchungen über die Assimilation der Kohlensäure. Sieben Abhandlungen, vol VIII. Springer, Berlin, p 448S

    Book  Google Scholar 

  • Witt HT, Müller A, Rumberg B (1961) Experimental evidence for the mechanism of photosynthesis. Nature 191:194–195

    Article  CAS  PubMed  Google Scholar 

  • Woitsch S, Römer S (2005) Impact and interaction of lipophilic antioxidants in mutants and transgenic plants. J Plant Physiol 162:197–1209

    Article  CAS  Google Scholar 

  • Yamamoto HY, Chichester CO (1965) Dark incorporation of O 18 into antheraxanthin by bean leaf. Biochim Biophys Acta 109:303–305

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Chichester CO, Nakayama NOM (1962a) Biosynthetic origin of oxygen in the leaf xanthophylls. Arch Biochem Biophys 96:645–649

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Chichester CO, Nakayama NOM (1962b) On the metastable status of carotenoids in primary events of photosynthesis. Z Naturforsch 24:1031–1037

    Google Scholar 

  • Yamamoto H, Kamite L, Wang YY (1972) An ascorbate-induced absorbance changes in the 500 nm region. Plant Physiol 49(2):224–228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Nakayama TOM, Chichester CO (1962) Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys 97:168–173

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T, Butler WL (1968) Photoreduction and photophosphorylation with tris- washed chloroplasts. Plant Physiol 43:1978–1986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamashita K, Itoh M, Shibata K (1969b) Activation by manganese of photochemical oxygen evolution and NADP photoreduction in chloroplasts. Biochim Biophys Acta 189:133–135

    Article  CAS  PubMed  Google Scholar 

  • Yamashita K, Konishi K, Itoh M, Shibata K (1969a) Photobleaching of carotenoids related to the electron transport in chloroplasts. Biochim Biophys Acta 172(3):511–524

    Article  CAS  PubMed  Google Scholar 

  • Ziedler J, Lichtenthaler HK, May HU, Lichtenthaler FW (1997) Is isoprene emitted by plants synthesized via novel isopentenyl pyrophosphate pathway. Z Naturforsch 52c:15–23

    Google Scholar 

  • Zeidler J, Schwender J, Müller C, Lichtenthaler HK (1998) Inhibition of Non-mevalonate 1-Deoxy-d-xylose-5-phosphate pathway of plant isoprenoid biosynthesis by Fosmidomycin. Z Naturforsch 53c:980–986

    Google Scholar 

  • Zeidler J, Schwender J, Müller C, Lichtenthaler HK (2000) The non-mevalonate isoprenoid biosynthesis of plants as a test system for drugs against malaria and pathogenic bacteria. Biochem Soc Trans 28:796–798

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saakov, V.S., Krivchenko, A.I., Rozengart, E.V., Danilova, I.G. (2015). The Range of DSHO Application in Experiments with Pigments of Plants and Animals. In: Derivative Spectrophotometry and PAM-Fluorescence in Comparative Biochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-11596-2_5

Download citation

Publish with us

Policies and ethics