The Range of DSHO Application in Experiments with Pigments of Plants and Animals

  • Vladimir S. Saakov
  • Alexander I. Krivchenko
  • Eugene V. Rozengart
  • Irina G. Danilova


Over a number of years our interests have been concerned with the study of transformations of carbon-labeled or hydrogen-labeled carotene and basic xanthophylls in plant cells. This interest was caused because the hypothesis that light induces the direct reduction of violaxanthin (5,6,5′,6′-diepoxy-5,5′,6,6′-tetrahydro-β-carotene-3,3′-diol) into lutein (3,3′-dihydroxy-α-carotene, β,ε-carotene-3,3″-diol) without intermediate products (Sapozhnikov et al. 1957, 1959; Bazhanova and Sapozhnikov 1963) was not methodologically based. It is paradoxical, but this supposition already had opponents before publication (Moster and Quackenbush 1952a, b; Cholnoky et al. 1956, 1957, 1958) and still more afterwards (Anderson et al. 1960; Blass et al. 1959) because the stated theoretical concepts of Sapozhnikov and coworkers were neither persuasive nor the only possible alternative. The opinions existing on this question are described in the review by Saakov and Konovalov (1966).


Electron Transport Chain Epoxy Group Xanthophyll Cycle Carotenoid Biosynthesis Water Oxygen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aleinikov IM (1974) The role of carotenoids in the process of photosynthesis of plants. Dissertation PhD in Biology (in Russian), KievGoogle Scholar
  2. Anderson JM, Blass U, Calvin M (1960) Biosynthesis and possible relations among the carotenoids and between chlorophyll a and b. In: Allen MB (ed) Comparative biochemistry of photoreactive systems. Academic, New York, pp 215–226Google Scholar
  3. Arnon DI (1961) Role of vitamin K and other quinines in photosynthesis. Fed Proc 20:1012–1022PubMedGoogle Scholar
  4. Arntzen CJ, Neumann J, Dilley RA (1971) Inhibition of electron transport in chloroplasts by a quinine analogue: evidence for two sites of DCPIP-H2 oxidation. Bioenergetics 2:72–83CrossRefGoogle Scholar
  5. Ashton FN (1965) Relationship between light and toxity symptoms caused by atrazine and monouron. Weeds 13:164–168CrossRefGoogle Scholar
  6. Ashton FN, Bisolputra T, Risley EB (1966) Effect of atrazine on Chlorella vulgaris. Am J Bot 53:217–219CrossRefGoogle Scholar
  7. Baranov AA, Dorokhov BL, Saakov VS (1974) Influence of unfavorable thermal conditions on the fine structure of pigment-lipoprotein complex of leaves (in Russian). Izv AN MoldSSR Ser Biol-Khim Nauk 5:29–36Google Scholar
  8. Baranov AA, Saakov VS, Boyarshinova GS et al (1976) Analysis of absorption spectra of plastids in research of the reaction of plants resistance to extreme influences (in Russian). Bull VIR im N I Vavilova 63:3–14Google Scholar
  9. Baranov AA, Saakov VS, Chunaev AA, Kvitko KV (1975) Reactions of chlorophyll formation and light protection in mutants of green algae studied by absorption spectrophotometry (in Russian). Sov Physiol Rastenii 22:702–711Google Scholar
  10. Bartlett L, Klyne W, Mose WP et al (1969) Optical rotatory dispersion of carotenoids. J Chem Soc 18:2527–2544Google Scholar
  11. Bassham IA, Calvin M (1957) The path of carbon in photosynthesis. Prentice-Hall, New York, 369pGoogle Scholar
  12. Bazhanova NV, Maslova TG, Popova IA, et al (1964) Pigments of green plants plastids and methods of their research (in Russian). Ed. DI Sapozhnikov. Moscow, Leningrad, Nauka, p 146Google Scholar
  13. Bazhanova NV, Sapozhnikov DI (1963) To characterization of the dark reaction of xanthophylls Nauk SSSR transformation. (in Russian). Dokl Akad Nauk 151:1219–1221Google Scholar
  14. Bershtein BI, Volkova NV, Yasnikov AA et al (1969) ATP formation in photophosphorylation and the mechanism of disconnection of photophosphorylation and of electron transport by amines. (in Russian). Physiol Biokhim Kult Rasten 1:21–26Google Scholar
  15. Bershtein BI, Volkova NV, Yasnikov AA et al (1971) About mechanism of “the proton pump” and functions of enolphosphates and of epoxycarotenoids during photophosphorylation in chloroplasts (in Russian). Biokhim Biophys Photosyntesa Irkutsk SIFIBR SO AN SSSR 21–27Google Scholar
  16. Blass U, Anderson JM, Calvin M (1959) Biosynthesis and possible functional relationships among the carotenoids and between chlorophyll a and chlorophyll b. Plant Physiol 34:329–333PubMedCentralPubMedCrossRefGoogle Scholar
  17. Budzikiewicz H, Eckau H, Inhoffen HH (1969a) Versuche mit H2 O 18 und K2CO 3 18 und Chlorella pyrenoidosa Chick. Z Naturforsch 24:1147–1152CrossRefGoogle Scholar
  18. Budzikiewicz H, Inhoffen HH (1969) Experiments on the process of photosynthesis using O 18 labelled substances. In: Metzner H (ed) Progress in photosynthesis research, vol 2. International Biological Union, Tübingen, pp 1009–1012Google Scholar
  19. Bukhov NG, Heber U, Shuvalov VA (2001) Energy dissipation in photosynthesis: quenching of chlorophyll fluorescence in reaction centers and antenna complexes. Planta 212:749–758PubMedCrossRefGoogle Scholar
  20. Bungard RA, Ruban AV, Hibberd JM et al (1999) Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proc Natl Acad Sci USA 97:1135–1139CrossRefGoogle Scholar
  21. Camara B, Moneger R (1981) Carotenoid biosynthesis. In vitro conversion of antheraxanthin to capsanthin by a chromoplast enriched fraction of capsicum fruits. Biochem Biophys Res Commun 99:1117–1122PubMedCrossRefGoogle Scholar
  22. Cholnoky L, Györgyfy K, Nagy E, Panczel M (1956) Function of carotenoids in chlorophyll containing organs. Nature 178:410–411CrossRefGoogle Scholar
  23. Cholnoky L, Györgyfy K, Nagy E, Panczel M (1957) The physiological role of carotenoids in chlorophylous organs. Acta Biol Acad Sci Hung Suppl. 1:44Google Scholar
  24. Cholnoky L, Györgzfy K, Ronai A, Weedon BC (1969) Carotenoids and related compounds. XXI. Structure of neoxanthin (Foliaxanthin). J Chem Soc 9:1256–1263Google Scholar
  25. Cholnoky L, Szabolcs J, Nagy E (1958) Untersuchungen uber die Carotinoid-Farbstoffe. IV. Liebigs Ann Chem 616:207–218CrossRefGoogle Scholar
  26. Cholnoky L, Szabolcs J, Gy T (1967) Untersuchungen über carotinoid-farbstoffe. VIII. Reduction von carotinoidoxiden mit lithiummalanat. Ann Chem 708:218–223CrossRefGoogle Scholar
  27. Costes C (1963a) Metabolisme de la luteine et de la violaxanthine dans les chloroplasts. Compt Rend Ac 256: 5656–5659Google Scholar
  28. Costes C (1963b) Incorporation de C14 O 2 d’acetate-2-C 14 et de mevalonate-2-C 14 dans les carotenoides de la feuille adulte de tomate. Ann Physiol Veg 5:115–140Google Scholar
  29. Costes C (1965) Metabolisme et role physiologique des carotenoides dans les feuilles vertes. Ann Physiol Veg 7:105–142Google Scholar
  30. Costes C (1968) Carotenoides et photosynthese: variations induites de la teneur on pigments dans des folioles excises de tomate. Ann Physiol Veg 10:171–197Google Scholar
  31. Cruz-Landeira L, Bal MJ, Lopez-Ravadulla M (2002) Determination of methemoglobin and total hemoglobin in toxicological studies by derivative spectrophotometry. J Annal Toxicol 26:67–72CrossRefGoogle Scholar
  32. Czygan FC (1966) Uber den Stoffwechsel von Keto-Carotinoiden in niederen Krebsen. Z Naturforsch 21(801–805):197–198Google Scholar
  33. Czygan FC (1968) Sekundär-Carotinoide in Grünalgen II. Untersuchungen zur Biogenese. Arch Microbiol 62:209–236Google Scholar
  34. Davies BH, Hsu HJ, Chichester CO (1970) The mechanism of the conversion of β-carotene into canthaxanthin by the brine shrimp, Artemia salina (Crustacea: Branchiopoda). Comp Biochem Physiol 33:601–615PubMedCrossRefGoogle Scholar
  35. De Kiewiet DY, Yall DO, Jenner AL (1965) Effect of carbonylcyanide-m- chlorphenylhydrazone on the photochemical reactions of isolate chloroplasts. Biochim Biophys Acta 109:284–292PubMedCrossRefGoogle Scholar
  36. Demming-Adams B (1990) Carotenoids and photoprotection of plants: a role for the xanthophylls zeaxanthin. Biochim Biophys Acta 1020:1–24CrossRefGoogle Scholar
  37. Depka B, Jahns P, Trebst A (1998) Beta-carotene to zeaxanthin conversion in the rapid turnover of the D1 protein of photosystem II. FEBBS Lett 424:267–270CrossRefGoogle Scholar
  38. Disch A, Schwender J, Müller C, Lichtenthaler HK, Rohmer M (1998) Distribution Of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and cyanobacterium Synechocystis PCC 6714. Biochem J 333:381–388PubMedCentralPubMedCrossRefGoogle Scholar
  39. Dolphin WD (1970) Photoinduced carotenogenesis in chlorotic Euglena gracilis. Plant Physiol 46:685–691PubMedCentralPubMedCrossRefGoogle Scholar
  40. Donohue NY, Nakayama TSM, Chichester CO (1967) Oxygen reactions of xanthophylls. Biochemistry of chloroplasts, vol 2. Akademic, New-York, pp 431–440Google Scholar
  41. Dorough C, Calvin M (1951) The path of oxygen in photosynthesis. J Am Chem Soc 73:2362–2365CrossRefGoogle Scholar
  42. Dyubko TS, Morozova TF, Lipina OV, Romodanova EA (2006) Influence of freezing on donor blood plasma. (in Russian). Vestnik Khar‘kov Nat. Univ. name V.N. Karazin. Ser Biol 4(748):129–133Google Scholar
  43. Egneus H (1971) Action spectra for two oxygen uptake reactions in isolated wheat chloroplasts irradiated without oxidant. In: Forti G, Avron M, Melandri A (eds) Proceedings of 2nd international congress on photosynthesis research, Stresa, vol 1. Junk, The Hague, pp 112–122Google Scholar
  44. Fell AF (1979) The analysis of aromatic amino acids be second and fourth derivative UV spectroscopy. J Pharm Pharmacol 31(Suppl):23CrossRefGoogle Scholar
  45. Fell AF (1980) Present and future perspectives in derivative spectroscopy. UV spectrum. Grouh Bull 8:5Google Scholar
  46. Ficheux H, Levillain P, Francoual J, Leluc R (1989a) Simultaneous determination of hemoglobin and coproporphyrin by 2nd derivative differential spectrophotometry– application to the diagnosis of meconium aspiration. Clin Chim Acta 182:53–61PubMedCrossRefGoogle Scholar
  47. Ficheux H, Levillain P, Lemmonier A (1989b) Direct spectrometric determination of urinary uroporphyrin and coporphyrin using zero crossing 2-d derivative spectrophotometry. Ann Biol Chem (Paris) 47:196–201Google Scholar
  48. Flesch G, Rohmer M (1988) Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton: formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose. Eur J Biochem 175:405–411PubMedCrossRefGoogle Scholar
  49. Fork D (1969) Evidence for the participation of carotenoids in the photosynthesis of algae and in a higher plants. Progr Photosynth Res 2:800–810, Ed. H. Metzner. TübingenGoogle Scholar
  50. Fork D (1987) Evidence for the participation of carotenoids in the photosynthesis of algae and in a higher plant. Progr Photosynth Res II:800–810Google Scholar
  51. French CS (1962) Different forms of chlorophyll in plants. (in Russian). Structure and function of photosynthetic apparatus. M.: IL,. pp 82–90Google Scholar
  52. Fujita Y, Suzuki R (1973) Studies on the Hill reaction of membrane fragments of blue- green algae. IV. Carotenoid photobleaching induced by photosystem II action. Plant Cell Physiol 14:261–273Google Scholar
  53. Gaponenko VI (1976) Influence of external factors on chlorophyll metabolism. Nauka I tehnika, Minsk, p 240Google Scholar
  54. Gerster K, Dupuy J, Guerin de Montgareuil P (1971) Isotopic exchange, photosynthesis and oxygen O 18. In: Forti G, Avron M, Melandri A (eds) Proceedings of 2nd international congress on photosynthesis research, Stresa, vol 1. Junk, The Hague, pp 587–598Google Scholar
  55. Gilchrist BM, Lee WL (1976) The incorporation of [14 C] b-carotene into marine Isopod Idotea resecata (Stimpson,1857) and the biosynthesis of canthaxanthin. Comp Biochem Physiol 54B:343–346Google Scholar
  56. Goodwin TW (1958) Studies in carotenogenesis. 25. The incorporation of C 14 O 2, 2-C 14- acetate and 2-C 14-mevalonate into b-carotene by illuminated etiolated maize seedlings. Biochem J 70:612–617PubMedCentralPubMedCrossRefGoogle Scholar
  57. Goodwin TW (ed) (1965) Chemistry and biochemistry of plant pigments. Academic, London, p 583Google Scholar
  58. Goodwin TW (1971) In: Gibbs M (ed) Structure and function of chloroplasts. Springer, New York, Heidelberg, Berlin, pp 215–276Google Scholar
  59. Goodwin TW, Williams RJ (1965a) A mechanism for the cyclization of an acyclic precursor to form beta-carotene. Biochem J 94:5–7CrossRefGoogle Scholar
  60. Goodwin TW, Williams RJ (1965b) A mechanism for the biosynthesis of α-carotene. Biochem J 97:28c–31cPubMedCentralPubMedCrossRefGoogle Scholar
  61. Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Phys 47:685–714CrossRefGoogle Scholar
  62. Gregory RPF (1989) Biochemistry of photosynthesis. Wiley, New York, p 257Google Scholar
  63. Gribanovski-Sassu O (1972) Effect of diphenylamine on carotenoid synthesis in Dictyococcuc cinnabariuus. Phytochemistry 11:3195–3198CrossRefGoogle Scholar
  64. Hagemann R (1964) Plasmatische vererbung. Fischer, Jena, p 263Google Scholar
  65. Hager A (1955) Chloroplasten Farbstoffe, ihre Papierchromatographische Trennung und ihre Veränderungen durch Ausfaktoren. Z Naturforsch 10:310–312CrossRefGoogle Scholar
  66. Hager A (1957) Zur Chromotagraphie der lipoidlöslichen Blattfarbstoffe mit Hilfe der Papierchromatographie. Planta 48:592–621CrossRefGoogle Scholar
  67. Hager A (1966) Die Zusammen-hänge zwischen livhtinduzierten Xanthophyll- Umwandlungen und Hill-Reactionen Bericht. Dtsch Bot Ges 79:94–107Google Scholar
  68. Hager A (1967a) Untersuchungen über die Ruckreaktionen in Xanthophyll Cyclus bei Chlorella, Spinacia und Taxus. Planta 76:138–148PubMedCrossRefGoogle Scholar
  69. Hager A (1967b) Untersuchungen über die lichtinduzierten reversiblen Xanthophyll- Umwandlungen an Chlorella und Spinacia. Planta 74:148–173PubMedCrossRefGoogle Scholar
  70. Hager A (1969) Lichtbedingte pH-Ernidrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin-Zeaxanthin Umwandlung: beziehungen zur Photophosphorylierung. Planta 89:224–243PubMedCrossRefGoogle Scholar
  71. Hager A (1980) In: Czygan FC (ed) Pigments in plants. Fischer Verl, Stuttgart, pp 57–79Google Scholar
  72. Hager A, Bertenrath T (1962) Verteilungschromatographische Trennung von Chlorophyllen und Karotinoiden grüner Pflanzen an Dünnschichten. Planta 58:564–568CrossRefGoogle Scholar
  73. Hager A, Mayer-Bertenrath T (1967) Die Identifizierung der an Dünnschichten getrennten Carotinoide grüuner Blätter und Algen. Planta 76:149–168PubMedCrossRefGoogle Scholar
  74. Halfen LN, Francis GN (1972) The influence of culture temperature on the carotenoid composition of the blue-green algae, Anacystis nidulans. Arch Microbiol 81:25–35Google Scholar
  75. Haspel-Horvatovicova E (1966) Further proof of direct oxygen transfer by carotenoids in respiration and photosynthesis. Nature 209:1135CrossRefGoogle Scholar
  76. Hata M, Hata M (1975) Carotenoid metabolism in fancy red carp, Cyprinus carpio. I. Administration of carotenoids. B Jpn Soc Sci Fish 41:653–655CrossRefGoogle Scholar
  77. Heber U, Bukhov NG, Shuvalov VA et al (2001) Protection of the photosynthetic apparatus against damage by excessive illumination in homoiohydric leaves and poikilohydric mosses and lichens. J Exp Bot 52(363):1999–2006PubMedCrossRefGoogle Scholar
  78. Heytler PG, Prichard WW (1962) A new class of uncoupling agents—carbonyl cyanide phenylhydrazones. Biochem Biophys Res Commun 7(4):272–275PubMedCrossRefGoogle Scholar
  79. Hoffmann P (1987) Photosynthese. 158. Reihe Biologie. Ser WTB. Akad. Verl, Berlin, p 305Google Scholar
  80. Ichikawa T, Terada H (1981) Effect of dodecyl sulfate on the spectral properties of phenylalanyl residues in serum albumin detected by second derivative spectrophotometry. Biochim Biophys Acta 671:33–37PubMedCrossRefGoogle Scholar
  81. Isler O (ed) (1971) Carotenoids. Birkhausler, Basel-Stuttgart, p 932Google Scholar
  82. Katayama T, Miyahara T, Tanaka Y, Chichester CO (1974) The biosynthesis of astaxanthin XV. The carotenoids in Chidai, red sea bream, Evynnis japonica Tanaka and [the incorporation of labelled astaxanthin from the diet of the red sea bream] to the body astaxanthin. BJpn Soc Sci Fish 40:97–103CrossRefGoogle Scholar
  83. Katayama T, Tsuchiya H, Chichester CO (1972) Mechanism of the interconversion of plant carotenoids into fish carotenoids. In: Proceedings of the 7th international seaweed symposium, Sapporo 1971. Tokyo, pp 598–601, 580–583Google Scholar
  84. Kleinig H, Czygan FC (1969) Lipids of Protosiphon (Chlorophyta). I. Carotenoids and carotenoid esters of five strains of Protosiphon botryoides (Kütz.) Klebs. Z Naturforsch 24:927–930CrossRefGoogle Scholar
  85. Koep R (1988) Untersuchungen zum Schwefeldioxid-Einfluss auf die Photosynthese in vivo. Colloquia Pflanzenphysiol HU zu Berlin 12:181–190Google Scholar
  86. Koepp R, Kramer M (1981) The article title is “Photosynthetic activity and distribution of photostimulated 14 C in seedlings of Zea mays grown from gamma irradiated seeds.”. Photosynthetica 15:484–485Google Scholar
  87. Krasnovskii AA, Kosobutskaya LM (1953) Different states of chlorophyll in plants. (in Russian). Dokl Akad Nauk SSSR 91:343–346PubMedGoogle Scholar
  88. Krinsky NI (1968) The protective function of carotenoid pigments. In: Giese A (ed) Photophysiology, vol 3. Academic, New York, pp 123–195CrossRefGoogle Scholar
  89. Kutyurin VM (1965) About the mechanism of water decomposition and allocation of oxygen during photosynthesis. Success Mod Biol 59:205–225Google Scholar
  90. Kutyurin VM (1971) On the mechanism of water decomposition during photosynthesis. In: Forti G, Avron M, Melandri A (eds) Proceedings of 2nd international congress on photosynthesis research, Stresa, vol 1. Junk, The Hague, pp 93–105Google Scholar
  91. Kutyurin VM, Ulubekova MV, Nazarov NM (1969) About the ratio between intensity of oxygen liberation and reactions of xanthophylls transformations in Elodea canadensis at different spectral composition of light. (in Russian). Dokl Akad Nauk SSSR 187:470–472Google Scholar
  92. Kvitko KV, Boyadzhiev PKh, Chunaev AS et al. (1977) Research of absorption spectra of Chlamydomonas reinhardtii 137C mutants with changed reaction to light. (in Russian). Eksperiment. al’gologiya: Tr. Petergof. biolog. in-ta pri LGU. 25: 106–132Google Scholar
  93. Kvitko KV, Chunaev AS, Baranov AA, Saakov VS (1976) Fine structure of absorption spectra of Scenedesmus obliquus (Tuerp) Krueger mutants with changed pigment composition (in Russian). In: Proceedings of the scientific symposium 11th scientific-coordinator Meeting on Theme 1–184 SEV. L.: Izd-vo Leningrad un-ta, pp 49–73Google Scholar
  94. Lichtenthaler HK (1989) Applications of remote sensing in agriculture. Butterworths Scientific, London, pp 285–305Google Scholar
  95. Lichtenthaler HK (ed) (1996) Vegetation stress. Fischer Verlag, Stuttgart, p 656Google Scholar
  96. Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5 phosphate pathway of isoprenoid Biosynthesis in plants. Annu Rev Plant Phys 50:47–65CrossRefGoogle Scholar
  97. Lichtenthaler HK (2000a) Discoveries in plant biology, vol 3. World Sci, Singapore, pp 141–161CrossRefGoogle Scholar
  98. Lichtenthaler HK (2000b) Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem Soc Trans 28:785–789PubMedCrossRefGoogle Scholar
  99. Lichtenthaler HK (2007) Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone and isoprene in leaves under high photosynthetic irradiance. Photosynth Res 92:163–179PubMedCrossRefGoogle Scholar
  100. Lichtenthaler HK, Becker K (1971) Changes of plastoquinone and carotenoid metabolism associated with the formation of functioning chloroplasts in continuous far-red and white light. In: Forti G, Avron M, Malandri A (eds) Proceedings of the 2nd international congress on photosynthesis research, vol 3. Stresa, pp 2451–2459Google Scholar
  101. Lichtenthaler HK, Rohmer M, Schwender J (1997a) Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol Plantarum 101:643–652CrossRefGoogle Scholar
  102. Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997b) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via mevalonate independent pathway. FEBBs Lett 400:271–274CrossRefGoogle Scholar
  103. Lichtenthaler HK, Schwender J, Seemann M, Rohmer M (1995) Carotenoid biosynthesis in green algae proceeds via novel biosynthetic pathway. In: Mathis (ed) Photosynthesis: from light to biosphere. Kluwer, Amsterdam, pp 115–118Google Scholar
  104. Litvin FF (1965) Modelling of system of aggregated forms of chlorophyll and coupled pigments in solutions, films and monomer layers (in Russian). Biokhimiya i biofizika fotosinteza. Nauka, Moskva, pp 96–125Google Scholar
  105. Lohr V, Wilhelm C (1999) Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Natl Acad Sci USA 96:8784–8789PubMedCentralPubMedCrossRefGoogle Scholar
  106. Losada V, Whatly FR, Arnon DI (1961) Separation of two light reactions in noncyclic photophosphorylation of green plants. Nature 190:606–610PubMedCrossRefGoogle Scholar
  107. Lozina-Lozinskii LK, Zaar EI (1961) Obtaining of colorless cells of Euglena gracilis by short-time influence of high and low temperatures (in Russian). Tsitologiya 3:103–105Google Scholar
  108. Lubimenko VN (1916) About transformations of pigments in live tissue of plants (in Russian). Zapiski AN po phys-math Otdeleniyu 33:12Google Scholar
  109. Lubimenko VN (1963) Selected works, vol 2. V.2. Works on photosynthesis and pigments of plants. (in Russian). AN USSR. KievGoogle Scholar
  110. Lutsenko GN, Saakov VS (1971) Renovation and kinetics of C 14 inclusion in carotenoids molecules. (in Russian). Biokhim Biopys Photosinteza Irkutsk SIFIBR SO AN SSSR 80–86Google Scholar
  111. Lutsenko GN, Saakov VS (1972) Change in specific activity of carotenoids under conditions of the object presence in labelled medium (in Russian). Fiziol Biokhim Kul’t Rastenii 4:608–613Google Scholar
  112. Lutsenko GN, Saakov VS (1973) The renovation of carotenoids in the green plants (in Russian). Sov Fiziol Rastenii 20:90–95Google Scholar
  113. Mandelli EF (1969) Carotenoid interconversion in light–dark culture of dinoflagellate Amphidinium klebsii. J Phycol 5:382–384CrossRefGoogle Scholar
  114. Maslova TG, Markovskaia EF (2012) Current views on the function of the violaxanthin cycle (development of ideas put forward by D.I. Sapozhnikov). Russ J Plant Physiol (Fiziologiya Rastenii) 59(3):434–441CrossRefGoogle Scholar
  115. Maslova TG, Meister A (1969) Einfluss einiger Factoren auf die lichtinduzierten Absorptosänderugen des Blattes im blauen Spektralbereich. Z Pflanzenphysiol 60:114–122Google Scholar
  116. McCabe J, Shelp B, Ursino DJ (1979) Photosynthesis and photophosphorylation in radiation stressed soybean plants and the relation of these processes to photoassimilate export. Environ Exp Bot 19:253–261CrossRefGoogle Scholar
  117. Meister A, Maslova TG (1968) Zur Bestimmung der Lichtinduzierten Absorptionsändurungen durch Messung der 2. Ableitung der Extintion. Photosynthetica 2:261–267Google Scholar
  118. Monin YG, Goncharevskaya OA, Saakov VS (1985) Changes in osmolality of the blood serum and re-arrangements of its protein complexes during the arousal from hibernation of the ground squirrel Citellus undulatus (in Russian). Evolyuts Biokhim Physiol 3:311–314Google Scholar
  119. Moskvin YA, Saakov VS (1970) Interrelation of chlorophyll metabolism and carotenoids biosynthesis (in Russian). Inform Bull SIFIBR SO AN SSSR Irkutsk 7:27–28Google Scholar
  120. Moster JB, Quackenbush FW (1952a) The carotenoids of corn seedlings. Arch Biochem Biophys 38:287–296PubMedCrossRefGoogle Scholar
  121. Moster JB, Quackenbush FW (1952b) The effects of temperature and light on carotenoids of seedlings from three corn hybrids. Arch Biochem Biophys 38:297–303PubMedCrossRefGoogle Scholar
  122. Natochin YV, Monin YG, Goncharevskaya OA, Saakov VS (1985) Role of the Ca2+- dependent and Co2+-dependent protein conformation of rat-blood serum in the regulation of its osmolality. (in Russian). Dokl Akad Nauk SSSR 282:236–239PubMedGoogle Scholar
  123. Nazarova GD (1974) Reactions of the carotenoids cycle under conditions of auto- and heterotrophicity. Dissertation, PhD. in biol. Univer. Sverdlovsk sc.SverdlovskGoogle Scholar
  124. Nozaki Y (1990) Determination of tryptophan, tyrosine, and phenylalanine by 2nd derivative spectrophotometry. Arch Biochem Biophys 277:324–333PubMedCrossRefGoogle Scholar
  125. Paromenskaya LN (1970) Influence of triazine herbicides on physiological-biochemical processes in green algae. Dissertation, Ph.D. in biol. sc. (in Russian). VIZR. LeningradGoogle Scholar
  126. Peterman EJ, Gradinaru CC, Calkoen F, Borst JC (1997) Xanthophylls in light—harvesting complex II of higher plants: light harvesting and triplet quenching. Biochemistry 36:12208–12215PubMedCrossRefGoogle Scholar
  127. Petrenko SG, Bershtein BI, Volovik OI, Yasnikov AA (1970) About mechanism of carotenoids participation in ATP formation in chloroplasts (in Russian). Physiol Biokhim Kul’tur Rasten 2:137–141Google Scholar
  128. Pogson B, McDonald KA, Truong M et al (1996) Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell 8:1627–1639PubMedCentralPubMedCrossRefGoogle Scholar
  129. Pogson BJ, Niyogi KK, Bjorkman O, Della Penna D (1998) Altered xanthophylls compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci USA 95:1324–1329CrossRefGoogle Scholar
  130. Polyanskii VI (1948) Experimental research of variability of Euglena gracilis Klebs in culture (in Russian). Uchen zapis Leningr ped in-ta im Gertsena 70:153–170Google Scholar
  131. Porter IW, Anderson DG (1967) Biosynthesis of carotenes. Annu Rev Plant Phys 18:197–213CrossRefGoogle Scholar
  132. Roberts DWA, Perkins HJ (1962) Biosynthesis of chlorophyll from acetate-1-14 C and glycine-1-14 C by wheat leaves. Can J Biochem Phys 40:973–974CrossRefGoogle Scholar
  133. Roberts DWA, Perkins HJ (1966) The incorporation of the two carbons of acetate and glycine into the phorbide and phytol moieties of chlorophyll a and b. Biochim Biophys Acta 127:42–46PubMedCrossRefGoogle Scholar
  134. Rodriguez DB, Sympson KL, Chichester CO (1974) The biosynthesis of astaxanthin.XVIII. Int J Biochem 5:157–166CrossRefGoogle Scholar
  135. Rogers LJ, Shah SPJ, Goodwin TW (1967) The intracellular localization of mevalonate activating enzyme: Its importance in the regulation of terpenoid biosynthesis. In: Goodwin TW (ed) Biochemistry of chloroplasts, vol 2. Academic, New-York, pp 283–292Google Scholar
  136. Rohmer M (1998) Isoprenoid biosynthesis via the mevalonate-independent route, a novel target for antibacterial drugs. Prog Drug Res 50:135–154PubMedCrossRefGoogle Scholar
  137. Rohmer M (1999) The discovery of mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants—Reviewing the literature published to the end of 1998. Nat Prod Rep 16:565–574PubMedCrossRefGoogle Scholar
  138. Rohmer M, Knani M, Simonin P et al (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524PubMedCentralPubMedCrossRefGoogle Scholar
  139. Rohmer M, Seemann M, Horbach S, Bringer-Meyer S et al (1996) Glyceraldehyde 3- phosphate and pyruvate as precursors of isoprenic units in an alternative non- mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118:2564–2566CrossRefGoogle Scholar
  140. Rohmer M, Sutter B, Sahm H (1989) Bacterial sterol surrogates—biosynthesis of the side-chain of bacteriohopanetetrol and of a carbocyclic pseudopentose from C 13-labeled glucose in Zymomonas mobilis. J Chem Soc Chem Comm 19:1471–1472CrossRefGoogle Scholar
  141. Rubin BA, Gavrilenko VF (1977) Biochemistry and physiology of photosynthesis (in Russian). Izd-vo Mosk. un-ta, Moscow, p 325Google Scholar
  142. Saakov VS (1963a) To procedure of pure xanthophylls extraction (in Russian). Bot Zhurn 48:554–557Google Scholar
  143. Saakov VS (1963b) To mechanism of the light reaction of xanthophylls in chloroplasts suspension. (in Russian). Bot Zhurn 48:888–891Google Scholar
  144. Saakov VS (1963c) Mechanism of violaxanthin variation during light reaction of chloroplasts (in Russian). Dokl Akad Nauk SSSR 148:1412–1414Google Scholar
  145. Saakov VS (1963d) Assessment of effectivenesses of chromatographical method of xanthophyll separation on paper with help of the C 14 isotope (in Russian). Biophysika 8:123Google Scholar
  146. Saakov VS (1964) Role of carotenoids in mechanism of oxygen transfer in photosynthesis (in Russian). Dokl Akad Nauk SSSR 155:1212–1215PubMedGoogle Scholar
  147. Saakov VS (1965a) Metabolism of violaxanthine-C 14 in leaf and its role in photosynthetic reactions (in Russian). Dokl Akad Nauk SSSR 165:230–233PubMedGoogle Scholar
  148. Saakov VS (1965b) On the possible role of xanthophylls in oxygen transfer during photosynthesis (in Russian). Sov Physiol Rasten 12:377–385Google Scholar
  149. Saakov VS (1966) Carbon Isotope C 14 applied to study of lutein exchange (in Russian). Dokl Akad Nauk SSSR 170:460–463PubMedGoogle Scholar
  150. Saakov VS (1967) Mechanism of the interconversions of exogenous carotenoids-C 14 in Chlorella (in Russian). Dokl Akad Nauk SSSR 174:978–981PubMedGoogle Scholar
  151. Saakov VS (1968a) Oxidation metabolism of carotene and physiological role it plays in leaf (in Russian). Dokl Akad Nauk SSSR 180:241–244Google Scholar
  152. Saakov VS (1968b) On possible connection existing between metabolic transformations of carotenoids and biosynthesis of chlorophyll (in Russian). Dokl Akad Nauk SSSR 181:1001–1004Google Scholar
  153. Saakov VS (1968c) Biosynthesis and metabolic transformations of carotenoids in cell. In: Proceedings of the 3rd conference on physiology and biochemistry of Siberian and Far Eastern Plants (in Russian). Irkutsk, pp 169–171Google Scholar
  154. Saakov VS (1969) Cyclical interconversions and updating (refresh) of carotenoid funds in leaf (in Russian). Abstr. of All Union Biochem. Congress. Section 19. Problems of Photosynth.: 21–22. PH FAN, TashkentGoogle Scholar
  155. Saakov VS (1970a) Neoxanthin as an intermediate link of biochemical xanthophylls interconversions. (in Russian). Mineral’nye elementy i mekhanizm fotosinteza. Kishinev: RIO AN MSSR, pp 169–176Google Scholar
  156. Saakov VS (1970b) Kinetik der 14 C-Violaxanthinumwandlung in Chloroplastensuspension. Stud Biophys 23:125–131Google Scholar
  157. Saakov VS (1971a) Action of ATP, inhibitors and photophosphorylation entcouplers on xanthophyll transformation in leaf (in Russian). Dokl Akad Nauk SSSR 198:966–969Google Scholar
  158. Saakov VS (1971b) Correlation between light-induced xanthophyll conversions and electron transport chain of photosynthesis (in Russian). Sov Physiol Rastenii 18:1088–1097Google Scholar
  159. Saakov VS (1971c) Relation between xanthophylls deepoxidation reaction and electron transport chain of photosynthesis (in Russian). Dokl Akad Nauk SSSR 201:1257–1260Google Scholar
  160. Saakov VS (1973a) Die durch Hemmstoffe induzierten Umwandlungen der Karotinoidpigmente in Pflanzenzellen. Biochem Physiol Pflanzen 164:213–227Google Scholar
  161. Saakov VS (1973b) Der Einfluss einiger Inhibitoren auf den Chlorophyllgehalt in gruenen. Zellen Biochem Physiol Pflanzen 164:199–212Google Scholar
  162. Saakov VS (1976) Research of damaging influences localization centers in chloroplast membranes with methods of molecular spectroscopy (in Russian). Trudy Prikl Bot Genet Selektsii L VIR57:17–34Google Scholar
  163. Saakov VS (1987) Spectrophotometrical methods in study of reactions of plant plastid apparatus under extremal influences (in Russian). Spectrophotometrical research methods in physiology and biochemistry. Nauka, Leningrad, pp 115–126Google Scholar
  164. Saakov VS (1989a) Reversible, lichtabhaengige Umwandlungen von markierten Karotinoiden in Chloroplasten. Biolog Rundsch 27:89–93Google Scholar
  165. Saakov VS (1989b) The reversible conversions of labeled carotenoids in chloroplasts. Dokl Akad Nauk SSSR 306:764–767Google Scholar
  166. Saakov VS (1990a) Neue Ergebnisse ueber Umwandlungen markierter Karotinoide in Zellen von Pflanzen und Tieren. Biolog Rundsch 28:149–152Google Scholar
  167. Saakov VS (1990b) On the sequence of carotene oxidation in animal-Cells. Dokl Akad Nauk SSSR 315:1263–1266PubMedGoogle Scholar
  168. Saakov VS (1990c) Die Anwendung der Lumineszenz, der Ableitungen der Spektrophotometrie und der photoakustischen Spektroskopie zur Charakterisierung von Schaeden in Chlorophyll- Protein Komplex der Chloroplasten. Colloquia Pflanzenphysiologie der Humboldt-Universitaet zu Berlin 14:163–170Google Scholar
  169. Saakov VS (1990d) Redox conversions of carotenoids in a green cell. Dissertation, Prof. in Institute of biophysics and physiology of plants. AN TadzhSSR. DushanbeGoogle Scholar
  170. Saakov VS (1991) On the conjugation of interconversions of xanthophylls with energy activity of chloroplast (in Russian). Dokl Akad Nauk SSSR 316:764–767Google Scholar
  171. Saakov VS (1993a) The inhibition of kinetics of light deepoxidation of violaxanthin and the activity of xanthophyll cycle under the influence of gamma-radiation (in Russian). Dokl Akad Nauk 329:96–99Google Scholar
  172. Saakov VS (1993b) The effect of gamma-radiation on the stability of energetics and pigment system of the photosynthetic apparat (in Russian). Dokl Akad Nauk 328:520–523Google Scholar
  173. Saakov VS (1993c) The influence of gamma-radiation on the kinetic of changes in violaxanthin content and on the xanthophyll cycle. Photosynthetica 28:439–445Google Scholar
  174. Saakov VS (1994) Assessment ways of reparation abilities of photosynthesizing apparatus of plants in cenoses exposured to ionizing radiation influence. In: Proceedings of the international symposium “Theory and practice of complex ecological expertise”. SPb., 31 May–2 June, pp 83–84Google Scholar
  175. Saakov VS (1996a) Application of PAM-method for estimating the damage of photosynthetic apparatus of chloroplasts during gamma-irradiation: Abstr. Intern. Conf. on Spectroscopy and Optical Techn. In Animal and Plant Biology. Muenster, Uni. Germany, pp 96Google Scholar
  176. Saakov VS (1998a) Specific changes of modulated fluorescence F-o and F-m under dithiothreitol influence on zeaxanthin content. (in Russian). Dokl Akad Nauk 361:830–833Google Scholar
  177. Saakov VS (1998b) Some mechanisms of adaptation to stress in plant and animal cells. Doklady Biol Sci 361:371–375, translated from Doklady Akad Nauk 361:568–572Google Scholar
  178. Saakov VS (2000a) Characteristics of structural stability of the photosystem II light- harvesting complex exposed to gamma-radiation. Dokl Biochem Biophys 373:123–128, Translated from Doklady Akad. Nauk. 373:112–116Google Scholar
  179. Saakov VS (2000b) Energetics of green cell stress resistance: a concept. Dokl Biol Sci 375:613–620, Translated from Doklady Akademii Nauk 375:278–285PubMedCrossRefGoogle Scholar
  180. Saakov VS (2002a) High-temperature stress-related changes in the harmonics F0, Fm, and Fv of pulse-amplitude modulated fluorescence signals: locating thermal damage in reaction centers of photosystem II. Dokl Biochem Biophys 382:4–9, Translated from Doklady. Akad. Nauk 382:118–123PubMedCrossRefGoogle Scholar
  181. Saakov VS (2002b) Specific effects of gamma-radiation on the fine structure of the photosynthetic apparatus: evaluation of the character of disturbances in vivo using high-order derivative spectrophotometry. Dokl Biochem Biophys 387:313–319, Translated from Doklady Akad. Nauk. 387:265–271PubMedCrossRefGoogle Scholar
  182. Saakov VS (2003a) Specific effects induced by gamma-radiation on the fine structure of the photosynthetic apparatus: evaluation of the pattern of changes in the high-order derivative spectra of a green leaf in vivo in the red spectral region. Doklady Biochem Biophys 388:22–28, Translated from Doklady. Akad. Nauk. 388:265–271CrossRefGoogle Scholar
  183. Saakov VS (2003b) Alternative pathways of carotenoid biosynthesis in Procaryothes and Eucaryothes. Dokl Biochem Biophys 392:294–300, Translated from Doklady Akad Nauk 392: 825–831PubMedCrossRefGoogle Scholar
  184. Saakov VS (2003c) Association of the mechanisms of green cell resistance with changes in the parameters of modulated pulse fluorescence under the exposure to atmospheric drought: localization of damage in the link P680QA. Dokl Biochem Biophys 388:8–14, Translated from Doklady Akad. Nauk. 388:123–130Google Scholar
  185. Saakov VS (2004) The possibility of involvement of the pools of alpha-ketoglutaric acid in the biosynthesis of carotenoids in chloroplasts. Dokl Biochem 394:5–10, Kluwer Acad. Publ. Translated from Doklady Akad. Nauk. 394:S. 116–122CrossRefGoogle Scholar
  186. Saakov VS (2005a) Redox transformation of 14 C-neoxanthin in animal and plant tissues. Dokl Biochem Biophys Mol Biol 402:184–189, Translated from Doklady Biochem. Biophys. A. Molekul. Biol. 402:119–125CrossRefGoogle Scholar
  187. Saakov VS (2005b) Application of derivative spectrophotometry of high orders (DIV–DVIII–DXII) as one of criteria at radiochemical purification and concentration of pigments. In: Proceedings of 2nd international conference on “Separation and concentration in analytical chemistry and radiochemistry”, Krasnodar, 25–30 Sept. 2005Google Scholar
  188. Saakov VS (2011) Ways of functional and structural diagnostic of stability (immunity) phototrophical cells to extreme effects. Actual problems of a biology and ecology (in Russian). PH Foresty Engineering Academy, St.-Petersburg, pp 312–325, ISBN 978-5-9239-0371-3Google Scholar
  189. Saakov VS, Baranov AA (1987) Research of structure and reactions of photosynthetic apparatus and connection with development of autotrophic function (in Russian). Spectroscopic methods of research in physiology and biochemistry. Nauka, Leningrad, pp 97–114Google Scholar
  190. Saakov VS, Baranov AA, Hoffmann P (1978a) Pigmentphysiologischen Untersuchungen mit Hilfe der Derivativ-Spektrophotometrie. Stud Biophys 70:129–142Google Scholar
  191. Saakov VS, Baranov AA, Hoffman P (1978b) Derivativ-spektroskopische Charakteristik des Pigmentphysiologischen Zustandes des Phothosyntheseapparates unter besonderer Beruecksichtigung der Temperatur. Stud Biophys 70:163–173Google Scholar
  192. Saakov VS, Barashkova EA, Kozhushko NN et al (1975) The centres of localization of harmful influences of extreme factors in chloroplasts. In: Abstracts of the 12th International botanical congress. Leningrad. II: 478Google Scholar
  193. Saakov VS, Dorokhov BL, Shiryaeva GA (1973) Second derivative of difference absorption spectra on example of chlorophyll a and b and of blood pigment. (in Russian). Izv AN MoldSSR Ser Biol-Khim Nauk 2:73–82Google Scholar
  194. Saakov VS, Hoffmann P (1974) Zur Bedeutung der Karotinoide fuer die Photosynthese unter besonderer Beruecksichtigung der Photophosphorylierung. Wiss Zt d Humboldt-Univer zu Berlin Math-Nat Reihe Bd XXIII 6:577–580Google Scholar
  195. Saakov VS, Konovalov IN (1966) About carotenoid functions in photosynthesis (in Russian). Trudy Bot ssadov AN KazSSR, Alma-Ata 9:81–98Google Scholar
  196. Saakov VS, Konovalov IN, Saidov AS (1967) Seasonal dynamics of pigments content and their biosynthesis in blackcurrant leaves (in Russian) Trudy BIN AN USSR ser. 4. Exp Bot 19:81–92Google Scholar
  197. Saakov VS, Lang M, Schindler C, Lichtenthaler HK (1993) Changes in chlorophyll fluorescence and photosynthetic activity of French bean leaves induced by gamma radiation. Photosynthetica 27:369–383Google Scholar
  198. Saakov VS, Leontjev VG (1988) Untersuchungen ueber die molekularspektrophotometrische Reaktion des pflanzliche Photosynthese- apparates auf Stressbedingungen. Colloquia Pflanzenphysiologie der Humbildt Univerersity zu Berlin 12:143–156Google Scholar
  199. Saakov VS, Nasarova GD (1970) Markierungsexperimente zur Umwandlung des Antheraxanthins in vivo. Stud Biophys 20:65–72Google Scholar
  200. Saakov VS, Nazarova GD (1972) Reactions of the pigment system of Euglena under conditions of artificially created heterotrophism (in Russian). Dokl Akad Nauk SSSR 204:744–747PubMedGoogle Scholar
  201. Saakov VS, Nazarova GD, Myl’nikova EV, Alekseeva NR (1970) Exchange between oxygen fond of xanthophylls and water oxygen under light influence on plant. (in Russian). Mineral’noe pitanie rastenii i fotosintez. Irkutsk, SIFIBR SO AN SSSR: 217–227Google Scholar
  202. Saakov VS, Nazarova GD, Myl’nikova EV, Alekseeva NR (1971a) Influence of inhibitors of PS of photosynthesis on a pigment system. (in Russian). Biohem Biophys Photosynthesa. Irkutsk, SIFIBR SO AN SSSR: 28–36Google Scholar
  203. Saakov VS, Nazarova GD, Myl’nikova EV, Alekseeva NR (1971b) Reactions of xanthophylls metabolism in plants. (in Russian). Biohem Biophys Photosintesa. Irkutsk, SIFIBR SO AN SSSR: 43–51Google Scholar
  204. Saakov VS, Sagromsky H, Adler K, Meister A (1970a) The electron-transport chain of photosynthesis and the system of xanthophylls light reactions (in Russian). Inform Bull SIFIBR SO AN SSSR Irkutsk 6:60–62Google Scholar
  205. Saakov VS, Sagromsky H, Meister A, Gerrmann F (1970b) Interrelation of photophosphorylation and of xanthophylls reaction in a leaf (in Russian). Inform Bull Sibirsk in-ta fiziolog biokhim rast SO AN SSSR Irkutsk 6:58–60Google Scholar
  206. Saakov VS, Shiryaev AV (2000) To evolution of hypothesis on location of damage influences of environmental factors in green leaf: the after-effect of gamma -irradiation on energetic of chloroplasts (in Russian). Doklady Akad Nauk 371:280–285Google Scholar
  207. Saakov VS, Shiryaeva GA (1967) To a question about methodology of paper chromatography of carotene carotenoids (in Russian). Trudy Komarov Botan Inst Akad Nauk SSSR L Ser 4 Eksperiment botan 18:151–165Google Scholar
  208. Saakov VS, Udovenko GV (1976) Resistenz der getreidepflanzen gegen unguenstige Bedingungen des Milieus: physiologische und genetische Aspekte. Wiss Zt der Humboldt Univer zu Berlin, Math Naturwiss Reihe 25:163–173Google Scholar
  209. Saakov VS, Udovenko GV, Barashkova EA et al (1975) The centres of localization of harmful influences of extreme factors in chloroplasts. Abstr of the XII Intern Bot Congress Leningrad, II: 478Google Scholar
  210. Sagromsky H (1973) Einfluß der Lichtintensität auf die Pigmentzusammensetzung in den Plastiden von Antirrhinum majus, Sipp 50, und zwei Mutanten davon. Kulturpflanze 21:111–118CrossRefGoogle Scholar
  211. Sagromsky H (1974) Chlorophyllumwandlungen im lebenden Blatt unter dem Einfluß von KCN. Kulturpflanze 22:87–94CrossRefGoogle Scholar
  212. Sagromsky H (1975) Chlorophyllbestimmungen mittels eines Aceton-Diäthyläther- Methanol- Petroläther-Gemisches. Kulturpflanze 23:217–221CrossRefGoogle Scholar
  213. Sagromsky H, Saakov VS (1970) Ein Vergleich verschiedener Extraktionsmittel fuer Plastidenpigmente. Kulturpflanze 18:241–251CrossRefGoogle Scholar
  214. Sapozhnikov DI (1937) Conversion of carotene into xanthophylls under photoreduction of carbonic(metacarbonic) acid (in Russian). Biokhimia 2:730–733Google Scholar
  215. Sapozhnikov DI (1973) Investigation of the violaxanthin cycle. Pure Appl Chem 35:47–62PubMedCrossRefGoogle Scholar
  216. Sapozhnikov DI, Alkhazov DG, Eidel’man ZM et al (1961) Inclusion of O 18 from heavy-oxygen water into violaxanthin under light influence on plants (in Russian). Bot Zhurn 46:673–676Google Scholar
  217. Sapozhnikov DI, Alkhazov DG, Eidel’man ZM et al (1964) About xanthophylls participation in the photosynthetic oxygen transfer (in Russian). Dokl Akad Nauk SSSR 154:974–977Google Scholar
  218. Sapozhnikov DI, Bazhanova NV (1958) To characterization of xanthophylls light reaction in isolated chloroplasts (in Russian). Dokl Akad Nauk SSSR 120:1141–1144Google Scholar
  219. Sapozhnikov DI, Krasovskaya TA, Maevskaya AA (1957) Change of ratio of main carotenoids in plastids of green leaves under light influence (in Russian). Doklady Akad Nauk SSSR 113:465–467Google Scholar
  220. Sapozhnikov DI, Krasovskaya TA, Maevskaya AN (1959) Change of state of main carotenoids in green leaves under light influence (in Russian). Problems of photosynthesis. Acad Sci USSR, Moscow, 163–174Google Scholar
  221. Sapozhnikov DI, Kutyurin VM, Maslova TG et al (1967) About of xanthophylls oxygen exchange coupled with their function in photosynthesis (in Russian). Dokl Akad Nauk SSSR 175:1182–1185Google Scholar
  222. Sapozhnikov DI, Lopatkin YB (1950) To question about the role of carotenoids in photosynthesis (in Russian). Dokl Akad Nauk SSSR 72:413–417Google Scholar
  223. Sapozhnikov DI, Lopatkin YB, Chekhonina NS (1953) To question about the factor of ratio of light and dark reactions of photosynthesis (in Russian). Trudy Bot Inst Akad Nauk SSSR, ser 4 Exp Bot 9:118–122Google Scholar
  224. Sapozhnikov DI, Maslova TG, Bazhanova NV, Popova OF (1965a) To question of the kinetics of О 18 incorporation from heavy-oxygen water in the violaxanthin molecule. Biofizika 10:349–351PubMedGoogle Scholar
  225. Sapozhnikov DI, Maslova TG, Bazhanova NV, Popova OF (1965b) To question of the kinetics of О 18 incorporation from heavy-oxygen water in the violaxanthin molecule. Rep Acad Sci TadzhSSR 8(12):40–43Google Scholar
  226. Sapozhnikov DI, Saakov VS (1962) Application of violaxanthin-14 C for the characteristic the light reaction of xanthophylls conversion. Dokl Acad Sci USSR 147:1487–1488Google Scholar
  227. Sauer K, Calvin M (1962) Absorption spectra of spinach quantasomes and bleaching of the pigments. Biochim Biophys Acta 64:324–339PubMedCrossRefGoogle Scholar
  228. Schnepf E, Czygan FC (1966) Feinbau und Carotinoide von Chromoplasten in Spadix- Appendix von Typhonium und Arum. Z Pflanzenphysiol 54:345–355Google Scholar
  229. Schwender J (1999) The non mevalonate isoprenoid biosynthesis and its distribution in plants. Dissertation PhD Thesis Univer of Karlsruhe. In Contr Pl Physiol 36 p. 168Google Scholar
  230. Schwender J, Gemünden C, Lichtenthaler HK (2001) Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate / 2-C-methylerythritol 4-phosphate pathway for the biosynthesis of the isoprenoids. Planta 212:416–423PubMedCrossRefGoogle Scholar
  231. Schwender J, Seemann M, Lichtenthaler HK, Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophyll and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non mevalonate pathway in green alga Scenedesmus obliquus. Biochem J 316:73–80PubMedCentralPubMedCrossRefGoogle Scholar
  232. Schwender J, Zeidler J, Müller C, Lichtenthaler FW, Lichtenthaler HK (1997) Incorporation of 1-deoxy-d-xylulose into isoprene and phytol by higher plants and algae. FEBSs Lett 414:129–134CrossRefGoogle Scholar
  233. Sharkly TD (1996) Isoprene synthesis by plants and animals. Endeavour 20:74–78CrossRefGoogle Scholar
  234. Sharma PK, Hall DO (1996) Effect of photoinhibition and temperature on carotenoids in sorghum leaves. Indian J Biochem Biophys 33:471–477PubMedGoogle Scholar
  235. Shen YC, Davies AG, Linfeld EH, Elsey TS (2003) The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood. Phys Med Biol 148:223–232Google Scholar
  236. Shlyk AA (1971) Determination of chlorophylls and carotenoids in green leaves (in Russian). In: Biochemical methods in plant physiology. Nauka, Moscow, pp 154–170Google Scholar
  237. Shlyk AA, Sukhover LK (1968) Fractioning of metabolically heterogeneous pigment funds of Euglena. (in Russian). Dokl Akad Nauk SSSR 181(5):1274–1277Google Scholar
  238. Shneour EA (1961) A study of light-catalysed oxygen transport in photosynthesis. University of California Radiation Laboratory Report UCRL-9900. University of California, BerkeleyGoogle Scholar
  239. Shneour EA (1962a) The source of oxygen in Rhodopseudomonas sphaeroides carotenoid pigment conversion. Biochim Biophys Acta 65:510–511PubMedCrossRefGoogle Scholar
  240. Shneour EA (1962) Carotenoid pigment conversion in Rhodopseudomonas spheroids. Biochim Biophys Acta 62:534–540PubMedCrossRefGoogle Scholar
  241. Shneour EA, Calvin M (1962) Isotopic oxygen incorporation in xanthophylls of Spinacia oleraceae quantasomes. Nature 196:439–441CrossRefGoogle Scholar
  242. Shukolyukov SA, Denisova NA (1992) Opsin biosynthesis and trans-cis isomerisation of aldehyde form chromophore in the blowfly Calliphora erythrocephala eye. Insect Biochem Mol Biol 22:925–935CrossRefGoogle Scholar
  243. Shukolyukov SA, Saakov VS (2001) American cockroach (Periplaneta americana) synthesizes carotenoids from the precursor [C 14]-mevalonic acid pyrophosphate. Biochemistry-Moscow 66:548–552, (535–540) Translated from Biokhimiya Moscow 66:663–669CrossRefGoogle Scholar
  244. Siefermann D, Yamamoto H (1974) Light-induced de-epoxidation of violaxanthin in lettuce chloroplasts. III. Reaction kinetics and effect of light intensity on de- epoxidase activity and substrate availability. Biochim Biophys Acta 357:144–150PubMedCrossRefGoogle Scholar
  245. Siek TJ, Rieders F (1975) Determination of carboxyhemoglobin in the presence of other blood hemoglobin pigments by visible spectrophotometry. Biochim Biophys Acta 475:404–411Google Scholar
  246. Sisakyan NM (2010) Problems of biochemistry and space biology. PH Science, Moscow, 691pGoogle Scholar
  247. Smilie RM, Rigopoulus N (1962) Carotenoid production by streptomycin bleached Euglena. J Protozool 9:149–151CrossRefGoogle Scholar
  248. Sokolova MM, Panov AA, Saakov VS, Leont’ev VG (1992) The exchange of osmolality, concentration of monovalent cations and structure of plasma blood proteins in extremum environment. Dokl Akad Nauk 327:277–280, Translated from Doklady AN SSSR. 327(2): 277–280PubMedGoogle Scholar
  249. Sokolova MM, Pushkarev YP, Maslennikova LS, Saakov VS et al (1991) The age- related characteristics of changes in osmotic and ionic homeostasis in spontaneously hypertensive rats. (in Russian). Physiol Zhurn SSSR im I M Sechenova 77:47–54Google Scholar
  250. Soloni FG, Cunningham MT, Amazon K (1986) Plasma hemoglobin determination by recording derivative spectrophotometry. Am J Clin Pathol 85:342–347PubMedGoogle Scholar
  251. Stern AI, Epstein HT, Schiff JA (1964) Studies of chloroplast development in Euglena. VI. Light intensity as a controlling factoring development. Plant Physiol 39:226–231PubMedCentralPubMedCrossRefGoogle Scholar
  252. Stolbova AV (1971) Genetic analysis of pigment mutations in monadiform algae (in Russian). Dissertation, PhD. in Biol. Sci. LGU SPbGoogle Scholar
  253. Stroes JW, van Rijn HJ (1987) Quantitative measurement of blood pigments in cerebrospinal fluid by derivative spectrophotometry. Ann Clin Biochem 24(2):189–197PubMedCrossRefGoogle Scholar
  254. Suvorov VB (2003) Political suicide. What for Hitler has attacked the Soviet Union? PH AST (, Moscow, 364p
  255. Sysoev LA, Saakov VS, Klyba VI (1971) Light-induced phosphorylation of thiamin by leaves and chloroplasts of pea (in Russian). Biokhimiya i biopysica photosinteza. Irkutsk, SIFIBR SO AN SSSR, pp 104–109Google Scholar
  256. Szczepaniak S, Dudka J (1993) Usefulness of spectrophotometric methods Messineo and Mussara for free tryptophan determination in blood plasma (in Polish). Rocz Panstw Zakl Hig 44:191–198PubMedGoogle Scholar
  257. Takeguchi CF, Yamamoto HY (1968) Light-induced O 18 uptake by epoxy xanthophylls in New Zealand spinach leaves (Tetragonia expansa). Biochim Biophys Acta 153:459–465PubMedCrossRefGoogle Scholar
  258. Tanaka YH, Matsuguchi T, Katayama T et al (1976) The biosynthesis of astaxanthin. XVIII: the metabolism of the carotenoids in the prawn, penaeus japonicus bate. Bull Jpn Soc Sci Fish 42:197–202CrossRefGoogle Scholar
  259. Taulier A, Levillain P, Lemonnier A (1986) Advantage of spectrophotometry in derivative for the dosage plasma and urinary hemoglobin—Comparison with the method using Allen’s correction. Comparison with the method using Allen’s correction. Ann Biol Clin (Paris) 44:242–248Google Scholar
  260. Taulier A, Levillain P, Lemonnier A (1987) Determining methemoglobin in blood by zerocrossing- point 1st-derivative spectrophotometry. Clin Chem 33:1767–1770PubMedGoogle Scholar
  261. Temper EV, Kvitko KV (1971) Characteristic of pigment mutants of Scenedesmus obliquus (Turp-Kutz) (in Russian). Biol Nauki 4:106–111PubMedGoogle Scholar
  262. Trebst A (1963) Zur Hemmung photosynthtischer Reaktionen in isolierten Chloroplasten durch Salicylaldoxim. Z Naturforsch 18:817–821Google Scholar
  263. Trebst A (1964) Über die photosynthetische NADP- Reduction mit Phenylendiaminen in isolierten Chloroplasten. Z Naturforsch 19:418–421CrossRefGoogle Scholar
  264. Trebst A (1966) Zum Mechanismus der Photosynthese. Arbeits-gemeinschaft f. Forschung Land NRh.-Westf. Köln-Opladen, Westdtsch Verl. 171, pp 27–53Google Scholar
  265. Trebst A, Pistorius E (1965) Zum Mechanismus der photosynthetischen Electronentransportes in isolierten Chloroplasten. II. Substituirte p-Phenyilendiamine als Electronendonatoren. Z Naturforsch 20:143–147Google Scholar
  266. Vernon LP, Zaug WS (1960) Photoreduction by fresh and aged chloroplasts. J Biol Chem 235:2728–2733PubMedGoogle Scholar
  267. Vinogradov AP (1962) Isotopes of oxygen and photosynthesis. Timiryazev Reading, Academy of Science of USSR, Moscow, 145pGoogle Scholar
  268. Vinogradov AP, Teys RV (1941) Isotope composition of oxygen of a different origin (oxygen of photosynthesis, air, CO2 and H2О) (in Russian). Dokl Akad Nauk 33:497–501Google Scholar
  269. Vinogradov AP, Teys RV (1947) New detection of isotopic composition of photosynthesis (in Russian). Dokl Akad Nauk USSR 56:57–58Google Scholar
  270. Wessels JSC (1964) ATP formation accompanying photoreduction of NADP+ by ascorbate indophenol in chloroplast fragments. Biochim Biophys Acta 79:640–652PubMedGoogle Scholar
  271. Westerhoff N (1974) Beziehungen zwischen den lichabhängigen Xanthophyll- Umwandlungen und dem photosynthetischen Elektronentransport bzw. der Photophosphorylierung. Ber Dtsch Bot Geselsch 87:545–551Google Scholar
  272. Wieckowski S, Goodwin TW (1967) Studies on the metabolism of the assimilatory pigments in cotyledons of four species of pine seedlings drown in darkness and in light. In: Goodwin TW (ed) Biochemistry of chloroplasts, vol 2. Academic, Leningrad and New-York, pp 283–292, 445–457Google Scholar
  273. Williams JH, Britton G, Goodwin TW (1967) The biosynthesis of cyclic carotenes. Biochem J 105:99–105PubMedCentralPubMedCrossRefGoogle Scholar
  274. Willstätter R, Stoll A (1913) Untersuchungen €uber das Chlorophyll. Methoden und Ergebnisse, vol VIII. Springer, Berlin, p 424S, XI BlGoogle Scholar
  275. Willstätter R, Stoll A (1918) Untersuchungen über die Assimilation der Kohlensäure. Sieben Abhandlungen, vol VIII. Springer, Berlin, p 448SCrossRefGoogle Scholar
  276. Witt HT, Müller A, Rumberg B (1961) Experimental evidence for the mechanism of photosynthesis. Nature 191:194–195PubMedCrossRefGoogle Scholar
  277. Woitsch S, Römer S (2005) Impact and interaction of lipophilic antioxidants in mutants and transgenic plants. J Plant Physiol 162:197–1209CrossRefGoogle Scholar
  278. Yamamoto HY, Chichester CO (1965) Dark incorporation of O 18 into antheraxanthin by bean leaf. Biochim Biophys Acta 109:303–305PubMedCrossRefGoogle Scholar
  279. Yamamoto HY, Chichester CO, Nakayama NOM (1962a) Biosynthetic origin of oxygen in the leaf xanthophylls. Arch Biochem Biophys 96:645–649PubMedCrossRefGoogle Scholar
  280. Yamamoto HY, Chichester CO, Nakayama NOM (1962b) On the metastable status of carotenoids in primary events of photosynthesis. Z Naturforsch 24:1031–1037Google Scholar
  281. Yamamoto H, Kamite L, Wang YY (1972) An ascorbate-induced absorbance changes in the 500 nm region. Plant Physiol 49(2):224–228PubMedCentralPubMedCrossRefGoogle Scholar
  282. Yamamoto HY, Nakayama TOM, Chichester CO (1962) Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys 97:168–173PubMedCrossRefGoogle Scholar
  283. Yamashita T, Butler WL (1968) Photoreduction and photophosphorylation with tris- washed chloroplasts. Plant Physiol 43:1978–1986PubMedCentralPubMedCrossRefGoogle Scholar
  284. Yamashita K, Itoh M, Shibata K (1969b) Activation by manganese of photochemical oxygen evolution and NADP photoreduction in chloroplasts. Biochim Biophys Acta 189:133–135PubMedCrossRefGoogle Scholar
  285. Yamashita K, Konishi K, Itoh M, Shibata K (1969a) Photobleaching of carotenoids related to the electron transport in chloroplasts. Biochim Biophys Acta 172(3):511–524PubMedCrossRefGoogle Scholar
  286. Ziedler J, Lichtenthaler HK, May HU, Lichtenthaler FW (1997) Is isoprene emitted by plants synthesized via novel isopentenyl pyrophosphate pathway. Z Naturforsch 52c:15–23Google Scholar
  287. Zeidler J, Schwender J, Müller C, Lichtenthaler HK (1998) Inhibition of Non-mevalonate 1-Deoxy-d-xylose-5-phosphate pathway of plant isoprenoid biosynthesis by Fosmidomycin. Z Naturforsch 53c:980–986Google Scholar
  288. Zeidler J, Schwender J, Müller C, Lichtenthaler HK (2000) The non-mevalonate isoprenoid biosynthesis of plants as a test system for drugs against malaria and pathogenic bacteria. Biochem Soc Trans 28:796–798PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Vladimir S. Saakov
    • 1
  • Alexander I. Krivchenko
    • 2
  • Eugene V. Rozengart
    • 2
  • Irina G. Danilova
    • 3
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of ScienceSaint PetersburgRussia
  2. 2.Inst. of Evolutionary Physiology and Biochem.Russian Academy of ScienceSaint PetersburgRussia
  3. 3.Morbid Anatomy LaboratoryResearch Institute of Medical PrimatologySochi (Adler)Russia

Personalised recommendations