Methodological Approaches in Experimental Work

  • Vladimir S. Saakov
  • Alexander I. Krivchenko
  • Eugene V. Rozengart
  • Irina G. Danilova


Photobiological processes occur under the influence of light and can be registered in ultraviolet (UV), visible, and near-infrared spectral regions. Generally, values of light flux intensity, I, and wavelength, λ, are used in optical measurements. The frequency index \( \overline{\nu} \) is also considered to characterize an absorbed light. Frequency is expressed in reciprocal seconds and represents the ratio of a radiation velocity c to a wavelength λ (in centimeters or nanometers):
$$ \overline{\upnu}=c/\uplambda =3\times {10}^{17}/{\uplambda}_{\mathrm{nm}}, $$
where с = 3 × 1010 сm s−1 or 3 × 1017 nm s−1, the velocity of light. A frequently used index is the wavenumber \( \overline{\nu} \), which is equal to the number of waves in 1 cm. The wavenumber is a reciprocal wavelength expressed in reciprocal centimeters:
$$ \left[{\mathrm{cm}}^{-1}\right]:\overline{\upnu}=1/{\uplambda}_{\mathrm{cm}}={10}^7/{\uplambda}_{\mathrm{nm}} $$
Thus, \( \overline{\nu} \) = 40,000 cm−1, when λ = 250 nm. A number of spectrophotometers have wavenumbers on scale dials. For example, the wavelength of the cadmium red line, as accepted by international agreement, is equal to 6438.4696 Å (angstroms). So 1 Å is 1/6438.4696 of cadmium red line.


Saakov Marenko Panel Menu Derivative Spectra Belikov 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdel-Hamid ME, Abdel-Khatek MM, Mahrous MS (1984) Application of difference and derivative ultraviolet spectrometry for the assay of some benzodiazepines. Anal Lett 17(B12):1353–1371CrossRefGoogle Scholar
  2. Ajzenberg-Selove F, Lauritsen T (1952) Energy levels of light nuclei. IV. Rev mod Phys 24:321–402CrossRefGoogle Scholar
  3. Ajzenberg-Selove F, Lauritsen T (1955) Energy levels of light nuclei. V. Rev Mod Phys 27:77–106CrossRefGoogle Scholar
  4. Ajzenberg-Selove F, Lauritsen T (1959) Energy levels of light nuclei. VI. Nucl Phys 11:1–340CrossRefGoogle Scholar
  5. Akhramovich NI (1972) Investigation of localization of centers of biosynthesis of chlorophyll and carotenoids in fragments of barley chloroplasts. PhD thesis in biology, Minsk, p. 123Google Scholar
  6. Aleksandrova NN, Mishchenko VT, Poluektov NS, Kucher AA (1982) The derivative spectrophotometry in studying of complex formation of ions of f-elements. Complex formation of Pr3+ with ethylene diamine tetra acetic acid (in Russian). Dokl AN USSR Ser B 9:23–26Google Scholar
  7. Aliev DA, Gusejnova IM, Sulejmanov SJ et al (2001) Light-induced biogenesis of chlorophyll–protein complexes in developing wheat thylakoids (in Russian). Biophysica (Biofizika) 66:610–615Google Scholar
  8. Almela L, Garcia AL, Navarro S (1983) Application of derivative spectroscopy to the quantitative determination of chlorophyll and related pigments. 2. Simultaneous determination of pheophytins-a and pheophytins-b. Photosynthetica 17:216–222Google Scholar
  9. Anderson JM, Blass U, Calvin M (1960) Biosynthesis and possible relations among the carotenoids and between chlorophyll a and b. In: Allen MB (ed) Comparative biochemistry of photoreactive systems. Academic, New York, NY, pp 215–226Google Scholar
  10. Andreev AV, Barot IY, Pronman IM (1967) Determination of oxygen in niobium and titanium by the method of activation of fast neutrons. Zavodskaya Lab 33:1195–1107Google Scholar
  11. Aramu F, Rucci A (1966) Self modulated derivative densitometer. Rev Sci Instrum 37:1696–1698CrossRefGoogle Scholar
  12. Aumann DC, Born HJ (1964) Besimmung der O 18-Konzentration in Wasser durch Bestrahlung mit Neutronen. Naturwiss 51:159CrossRefGoogle Scholar
  13. Babushkin AA, Bazhulin PA, Korolev FA, Levshin LV (1962) Methods of the spectral analysis (in Russian). PH Mosk un-ta, Moscow, p 510Google Scholar
  14. Baranov AA, Dorokhov BL, Saakov VS (1974) Influence of unfavorable thermal conditions on the fine structure of pigment-lipoprotein complex of leaves (in Russian). Izv AN MoldSSR Ser Biol-Khim Nauk 5:29–36Google Scholar
  15. Baranov AA, Saakov VS, Boyarshinova GS et al (1976) Analysis of absorption spectra of plastids in research of the reaction of plants resistance to extreme influences (in Russian). Bull VIR im N I Vavilova 63:3–14Google Scholar
  16. Baranov AA, Saakov VS, Chunaev AA, Kvitko KV (1975) Reactions of chlorophyll formation and light protection in mutants of green algae studied by absorption spectrophotometry (in Russian). Sov Physiol Rastenii 22:702–711Google Scholar
  17. Bardes R, Owen GE (1960) Angular distributions of the Be9(d, n)B10. Phys Rev 120:1369–1374CrossRefGoogle Scholar
  18. Barkovskii VF, Ganopol’skii VI (1969) Difference spectrophotometrical analysis (in Russian). Khimiya, Moscow, p 166Google Scholar
  19. Barnes SW, DuBridge LA, Wiig EC et al (1937a) Proton-induced radioactivity of heavy nuclei. Phys Rev 51:777–778CrossRefGoogle Scholar
  20. Barnes SW, DuBridge LA, Wiig EC et al (1937b) Proton-induced radioactivity of elements of atomic number greater than eleven. Phys Rev 51:1012CrossRefGoogle Scholar
  21. Baslev I (1966) Influence of in axial stress on the indirect absorption in silicon and germanium. Phys Rev 143:636–647CrossRefGoogle Scholar
  22. Bauen G, Gibons D (1968) Radioactivation analysis. Atomizdat, MoscowGoogle Scholar
  23. Bazhanova NV, Masljva TG, Popova IA et al (1964) Pigments of green plants plastids and methods of their research (in Russian). Nauka, Moscow, LeningradGoogle Scholar
  24. Belikov VG (2002) Analysis of medicinal agents with help of photometrical methods. Work experience of domestic specialists (in Russian). Zh Ros Khim Ob-va im D I Mendeleeva 46:52–56Google Scholar
  25. Bershtein IY, Kaminskii YL (1975) Spectrophotometrical analysis in organic chemistry (in Russian). Khimiya, Leningrad, p 230Google Scholar
  26. Blanchard CH (1955) Report WAPD—AlW(P)-51 Dec. Westinghouse Atomic Power Division, p 97Google Scholar
  27. Blank AB (1973) About errors of differential spectroscopy (in Russian). Zhurn Analit Khim 28:1435–1436Google Scholar
  28. Blaser IP, Boehm F, Marmier P et al (1949) Fonction d’excitation dela reaction O 18 (p, n)F 18. Helvet Phys Acta 22:598–599Google Scholar
  29. Blaser IP, Boehm F, Marmier P et al (1951) Fonctions d’excitation (p, n) (III) elements layers. Helvet Phys Acta 24:465–482Google Scholar
  30. Blaser IP, Marmier P, Sempert M (1952) Anregungsfunktion der Kernreaktion N 14 (p, α)C 11. Helvet Phys Acta 25:442–444Google Scholar
  31. Blass U, Anderson JM, Calvin M (1959) Biosynthesis and possible functional relationship among the carotenoids and between chlorophyll a and chlorophyll b. Plant Physiol 34:329–333PubMedCentralPubMedCrossRefGoogle Scholar
  32. Blyum IA, Barkovskii VF, Ganopol’skii VI (1972) About conditions of effectivity of differential spectrophotometry application (in Russian). Zhurn Analit Khim 27:831–833Google Scholar
  33. Boger DL, Patel M (1988) Total synthesis of prodigiosin, prodigiosene, and desmethoxyprodigios in Diels-Alder reactions of heterocyclic azadienes and development of an effective palladium(II)-promoted 2,20-bipyrrole coupling procedure. J Org Chem 53:1405–1415CrossRefGoogle Scholar
  34. Bolhar-Nordenkampf HR, Long SP, Öquist C et al (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field. A review of current instrumentation. Funct Ecol 3:497–514CrossRefGoogle Scholar
  35. Bollinger HR (1962) Carotinoide (Provitamin A). In: Stahl E (ed) Dünnschicht-Chromatographie. Springer, Berlin, pp 222–227Google Scholar
  36. Bonfiglioli G, Brovetto P (1964a) Improved optical spectroscopy technique. Phys Lett (Amst) 5(4):248–251CrossRefGoogle Scholar
  37. Bonfiglioli G, Brovetto P (1964b) Principles of self-modulated derivative optical spectroscopy. Appl Opt 12:1417–1427CrossRefGoogle Scholar
  38. Bonfiglioli G, Brovetto P, Busca O et al (1967) Self modulating optical spectroscopy. P II: Experiment. Appl Opt 6:44CrossRefGoogle Scholar
  39. Bonner TW, Kraus AA, Marion JB, Schiffer JP (1956) Neutrons and gamma rays from alpha-particles bombardment of Be9, B10, B11, C13 and O18. Phys Rev 102:1348–1354CrossRefGoogle Scholar
  40. Borisov AY, Larionov VN, Mokhova EN (1970) Difference spectrophotometers, application in biology (in Russian). NDVSH Biol Nauk 8:118–128Google Scholar
  41. Borisov AY, Mokhova EN (1964) Spectrophotometer for registration of small difference in absorptions (in Russian). Prib Tekh Eksp 2:145–147Google Scholar
  42. Boyd GE (1949) Method of activation analysis. Analyt Chem 21:335–347CrossRefGoogle Scholar
  43. Brandt DJ, Eglinton G (1979) Application of spectroscopy in organic chemistry (translated in Russian). Mir, Moscow, p 279Google Scholar
  44. Brandts JE, Kaplan LJ (1973) Derivative spectroscopy applied to tyrosyl chromophores. Studies on ribonuclease, lima bean inhibitors, insulin and pancreatic trypsin inhibitor. Biochemistry 12:2011–2024PubMedCrossRefGoogle Scholar
  45. Braude EA, Fawcett JS, Timmons CJ (1950) Fluorescence and the Beer-Lambert-Law: a note on the technique of absorption spectrophotometry. J Chem Soc 3:1019–1021Google Scholar
  46. Brice BA, Swain ML (1945) Ultraviolet absorption method for the determination of polyunsaturated constituents in fatty materials. J Opt Soc Am 35:532–544CrossRefGoogle Scholar
  47. Brode WR, Gould JH, Whitney JE, Wyman GM (1953) A comparative survey of spectrophotometers in the 210–760 mm region. J Opt Soc Am 43:862–865CrossRefGoogle Scholar
  48. Brooks AL (1937) Ind Med 6:239Google Scholar
  49. Bückert H, Raffaele J (1963) Die photometrische Meßgenauigkeit der Spektralphotometer. Chem Rundsch 16:323–325Google Scholar
  50. Budzikiewicz H, Inhoffen HH (1969) Experiments on the process of photosynthesis using O18 labelled substances. In: Metzner H (Ed) Progr Photosynth Res 2: pp 1009–1012, TübingenGoogle Scholar
  51. Budzikiewicz H, Eckau H, Inhoffen HH (1969) Versuche mit H2 O 18 und K2CO 3 18 Chlorella pyrenoidosa Chick. Z Naturforsch 24:1147–1152CrossRefGoogle Scholar
  52. Bungard RA, Ruban AV, Hibberd JM et al (1999) Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proc Natl Acad Sci USA 97:1135–1139CrossRefGoogle Scholar
  53. Burcham WE (1958) Nuclear reactions, levels and spectra of light nuclei. In: Flugge H (ed) Encyclopedia of physics, vol 40. Springer, Berlin, pp 1–180Google Scholar
  54. Burke RW, Deardorff ER, Menis O (1972) Liquid absorbance standards. J Res Nat Bur Stand Sec A 76:469–482CrossRefGoogle Scholar
  55. Burnett RW (1973) Errors in ultraviolet and visible spectrophotometric measurements caused by multiple reflections in the cell. Anal Chem 45:383–385CrossRefGoogle Scholar
  56. Butler WL, Hopkins DW (1970) Higher derivative analysis of simplex absorption spectra. Photochem Photobiol 12:439–456CrossRefGoogle Scholar
  57. Calder AB (1969) Photometric methods of analysis. Hilger, London, p 312Google Scholar
  58. Cannon CG, Butterworth JSC (1953) Beer’s Law and spectrophotometer linearity. Anal Chem 25(1):168–170CrossRefGoogle Scholar
  59. Chadburn BP (1982) Derivative spectroscopy in the laboratory: advantages and trading rules. Anal Proc (Lond) 19:42–43Google Scholar
  60. Challise JS, Williams AH (1964) Resolution of complex ultra-violet spectra by an incremental derivative method. Spectrochim Acta 20:765–770CrossRefGoogle Scholar
  61. Chance B (1951) Rapid and sensitive spectrophotometry. III. A double beam apparatus. Rev Sci Instrum 22:634–663CrossRefGoogle Scholar
  62. Chibirova LG (1971) Activation method of determination of small quantities of O 18. Master thesis. Phys Dep Tbilisi State UnivGoogle Scholar
  63. Clayton AW, Thiers RE (1966) Direct spectrophotometric determination of salicylic acid, acetylsalicylic acid, salicylamide, caffeine, and phenacetin in tablets or powders. J Pharm Sci 55:404–407PubMedCrossRefGoogle Scholar
  64. Collier GL, Panting AC (1959) The use of derivative spectroscopy for determining methyl groups in polythene. Spectrochim Acta 14:104–118CrossRefGoogle Scholar
  65. Costes C (1965a) Metabolisme et role physiologique des carotenoides dans les feuilles vertes. Ann Physiol Veg 7:105–142Google Scholar
  66. Costes C (1965b) Biosynthese des carotenoides a pertir d’acetate-2-14 C par differents organs non chlorophylliens. Ann Physyol Veg 7:25–40Google Scholar
  67. Costes C (1965c) Recheres sur la biosynthese et la metabolisme des carotinoides dans feuilles. These doctorat, Faculte des Sciences de l’Universite de Paris-Orsay, I.N.R.A., pp 1–157Google Scholar
  68. Costes C, Monties B (1977) Spectroscopic effects of reactions between electrophilic reagents and epoxycarotenoids violaxanthin and neoxanthin. Physiol Veg 15:667–678Google Scholar
  69. Cottrell GF (1982) Extending the application of derivative spectrophotometry. Anal Proc (Lond) 19:43–45Google Scholar
  70. Cuellar RE, Ford G, Briggs WR, Thompson WF (1978) Application of higher derivative techniques to analysis of high-resolution thermal denaturation profiles of reassociated repetitive DNA. Proc Natl Acad Sci USA 75:6026–6030PubMedCentralPubMedCrossRefGoogle Scholar
  71. Davidson AG, Elsheikh H (1982) Assay of ephedrine or pseudoephedrine in pharmaceutical preparations by second and fourth derivative ultraviolet spectrophotometry. Analyst 107:879–884PubMedCrossRefGoogle Scholar
  72. Demchenko AP, Sandrovskii AK, Korobkov ME (1978) Derivative spectrophotometry of aromatic aminoacids and proteins (in Russian). Molek Biol 20:3–12, Kiev, Naukova dumkaGoogle Scholar
  73. Diaz-Riuz C, Montaner B, Perez-Tomas R (2001) Prodigiosin induces cell death and morphological changes indicative of apoptosis in gastric cancer cell line HGT-1. Histol Histopathol 16:415–421Google Scholar
  74. Dodd CX, West TW (1961) Spectral transmittance properties of rare-earth glasses. J Opt Soc Am 51:915–916CrossRefGoogle Scholar
  75. Dorough GD, Calvin M (1951) The path of oxygen in photosynthesis. J Am Chem Soc 73:2362–2365CrossRefGoogle Scholar
  76. Drews RE (1967) Wavelength-modulated differential reflectivity. Bull Am Phys Soc 12:384Google Scholar
  77. Drinker P, Cook WA (1949) Ind Hyg Toxicol 31:51Google Scholar
  78. DuBridge LA, Barnes SW, Buck JH (1937) Proton-induced radioactivity in oxygen. Phys Rev 51:995–1011CrossRefGoogle Scholar
  79. DuBridge LA, Barnes SW, Buck JH, Strain CV (1938) Proton-induced radioactivities. Phys Rev 53:447–453CrossRefGoogle Scholar
  80. Dubrovkin IM (1983) On the theory of quantitative multicomponent analysis with difference spectra (in Russian). Zhurn Prikl Spektrosk 38:947–951Google Scholar
  81. Dubrovkin IM (1989) Spectrometry with application of the method of derivative registration (in Russian). Zhurn Prikl Spektrosk 39:885–889Google Scholar
  82. Dubrovkin IM, Belikov VG (1981) Analiticheskii kontrol’ v khimicheskoi promyshlennosti i nauchnomeksperimente s pomoshch’yu proizvodnoi spectrophotometrii. Khim Res 12(194):1–139 (Min Khim Industry, PH NIITEKH, Moscow)Google Scholar
  83. Dubrovkin IM, Belikov VG (1988) Derivative spectrophotometry, theory, technique, application (in Russian). Rostov University, Rostov Oblast, p 144Google Scholar
  84. Dubrovkin IM, Sagdeev RS, Sobolev AS (1978) Quantitative analysis using the first derivative of UV-spectrum obtained with help of RC-device (in Russian). Zavodskaya Lab 44:685–686Google Scholar
  85. Dubrovkin IM, Sobolev AS (1976) Differentiating attachment to the infra-red spectrometer (in Russian). Zavodskaya Lab 42:945–947Google Scholar
  86. Duysens LNM (1954) Reversible changes in the absorption spectrum of Chlorella upon irradiation. Science 120:353–354PubMedCrossRefGoogle Scholar
  87. Duysens LNM (1956) Energy transformations in photosynthesis. Ann Rev Plant Physiol 7:25–50CrossRefGoogle Scholar
  88. Dymond EG (1924) On the measurement of the critical potentials of gases. Proc Camb Philos Soc 22:405–408CrossRefGoogle Scholar
  89. Dyson NA, Hygh-Jones P, Newberg PR, West JB (1958) The preparation and use of oxygen-15 with particular reference to its value in the study of pulmonary malfunction. Proc 2nd Inter Conf Peaceful Uses Atomic Energy 26: 103, GenevaGoogle Scholar
  90. Dzhawrshyan DM (1967) Influence of some extremal factors on optical properties of the photosynthetic apparatus. PhD thesis, University KazanGoogle Scholar
  91. Egger K (1962) Dünnschichtchromatographie der Chloroplastenpigmente. Planta 58:664–667CrossRefGoogle Scholar
  92. Egger K, Voigt H (1965) Carotinoidtrennung an Polyamid-Dünnschichten. Z Pflanzenphysiol 53:64–71Google Scholar
  93. Einor LO (1970) Cytochromes in photosynthesizing tissues of Petroselinum sativum (in Russian). Mineral’noe pitanie rastenii i fotosintez SIFIBR SO AN SSSR, Irkutsk, pp 242–253Google Scholar
  94. Einor LO (1973) Reconstruction of energetic mechanisms of photosynthesis (in Russian). Naukova dumka, Kiev, p 236Google Scholar
  95. Eliseev AA, Morozova YL, Kozinskaya VA et al (2000) Application of computer and Innovative technologies in medicine. Computer spectrophotometry in medical diagnostics (in Russian). Vest Tomskogo gos un-ta 269:113–117Google Scholar
  96. Engelhardt VA (1955) Resumes and prospects of application of radioactive isotopes in Biochemistry (in Russian). In: Proceedings of the session AN SSSR on peaceful application of atomic energy, 1–5 July 1955. Plenary meeting. Moscow, Izd-vo AN SSSRGoogle Scholar
  97. Epel BL, Butler WL (1972) A spectroscopic analysis of a light fluorescent mutant of Chlamydomonas reinhardtii. Biophys J 12:922–929PubMedCentralPubMedCrossRefGoogle Scholar
  98. Erokhina KM, Lemberg IK, Mekasheva IE et al (1960) Determination of trace contaminants in silicon in γ-spectra of their radioactive isotopes. Zavodskaya Lab 26:821–827Google Scholar
  99. Evans NTS, Ebert M (1961) The effect of metabolism on the transport of O 15—labeled oxygen through Vicia faba roots. J Rad Biol 3:627–633Google Scholar
  100. Fell AF (1980) Present and future perspectives in derivative spectroscopy. UV Spectrum Group Bull 8:5Google Scholar
  101. Fell AF, Smith G (1982) Higher derivative methods in ultraviolet–visible and infrared spectrophotometry. Anal Proc (Lond) 19:28–33Google Scholar
  102. Fischer FG, Märke G, Hönel H, Rüdiger W (1962) Einbau von Essigsäureß und Mevalonsäure (2-14C) in Ghlorophylle, Sterine und Carotinoide von Gerstenkeimlungen Bildung und Vorkommen von Phytol III. Liebigs Ann Chem 657:199–212CrossRefGoogle Scholar
  103. Fleckenstein A (1960) Aktuelle Probleme der Muskelphysiologie und ihre Analyse mit Isotopen. In: Handbuch künstliche radioactive Isotopen. Springer, Berlin, р 466Google Scholar
  104. Fleckenstein A, Janke I (1964) L’application biologique de l’analyse d’activation de l’oxygene-18. In: L’analyse par radioactivation et ses applications aux sciences biologiques. 3e Colloq. Inter. De Biol de Saclay. Centre d’Etudes Nucl de Saclay (CENS), University Press, de France, pp 267–286Google Scholar
  105. Fleckenstein A, Gerlach E, Janke I, Marmier P (1959) Die Bestimmung des Turnovers von ATP Kreatinphosphat und ortophosphat in lebenden Muskeln mittels H2 O 18. Z Naturwissensch 46:365CrossRefGoogle Scholar
  106. Fleckenstein A, Gerlach E, Janke I, Marmier P (1960) Die Inkorporation von markiertem Sauerstoff und Wasser in die ATP Kreatinphosphat und Ortophosphat intakter muskelnbei Ruhe, Tetanischer Reizung und Erholung. Pflügers Arch f gesamt Physiol Mensch Tiere 271:75–104CrossRefGoogle Scholar
  107. Fogelstrom-Fineman I, Holm-Hansen O, Tolbert BM, Calvin M (1957) A tracer study with O 18 in photosynthesis by activation analysis. Int J Appl Rad Isotopes 2:280–286Google Scholar
  108. Fog J, Osnes E (1962) Calibration of the wavelength scale on spectrophotometers by samarium and neodymium chlorides. Analyst 87:760–761CrossRefGoogle Scholar
  109. Fourcy A, Fer A, Barbe R, Neuberger M (1967) Quelques applications de l’analyse par activation neutroique en biologie vegetale et en agronomie. Isotopes Plant Nutr Physiol 57–67. ViennaGoogle Scholar
  110. Fowler WK, Knapp DO, Winefordner JD (1974) Double modulation atomic fluorescence flame spectrometry. Anal Chem 46:601–602CrossRefGoogle Scholar
  111. Freifelder D (1980) In: Shabarova ZA (ed) Physical biochemistry (translated in Russian). Mir, Moscow, p 582Google Scholar
  112. Frei YF (1960) The derivative absorption spectra of chlorophyll in algae and leaves at low temperature. Annual report of the director of the department of plant biology, vol 59. YBK, Stanford, pp 333–335Google Scholar
  113. French CS (1957a) Preprint of a paper for the “Symposium on instrumentation and control” sponsored by North Calif. Section of Instrum Soc Am, Berkeley, pp 1–29Google Scholar
  114. French CS (1957b) Derivative spectrophotometry. In: Proceedings of instrumental society of America, instrumentation and control symposium, vol 1. Berkely, CA, pp 83–94Google Scholar
  115. French CS, Church AB (1955) Derivative spectrophotometry: apparatus. Carnegie Inst Wash 54:162–165Google Scholar
  116. French CS, Church AB, Eppley RWA (1954) A derivative spectrophotometer. Carnegie Inst Wash YBK 53:182–184Google Scholar
  117. Gans P (1982) Numerical methods for generating derivative spectra. Anal Proc (Lond) 19:33–35Google Scholar
  118. Gaponenko VI (1976) Influence of external factors on chlorophyll metabolism. Nauka I tehnika, Minsk, p 240Google Scholar
  119. Gaudillere JP (1974) Improvement of the spectrophotometric determination of chlorophyll a and b and total carotenoids in leaf extracts. Physiol Veg 12:585–599Google Scholar
  120. Giese AT, French CS (1955) The analysis of overlapping spectral absorption bands by Derivative spectrophotometry. Appl Spectrosc 9:78–96CrossRefGoogle Scholar
  121. Gillam AE, Stern ES, Timmons CJ (1970) Gillam and Stern’s introduction to electronic absorption spectroscopy in organic chemistry. Edward Arnold, London, 277 pGoogle Scholar
  122. Gilgore A, Stoller PJ, Fowler A (1967) Optical wavelength wobbler. Rev Sci Instrum 38:1535–1536CrossRefGoogle Scholar
  123. Godnev TN, Lipskaya GA (1965) To methodology of determination of pigments in plant chloroplasts. Sov Physiol Rast 12:554–557Google Scholar
  124. Godnev TN, Rotfarb RM (1962a) About the possibility of interconversions of carotene and carotenols. Dokl Acad Sci Belarus SSR 147:735–737Google Scholar
  125. Godnev TN, Rotfarb RM (1962b) About lycopene as a real precursor of other carotenoids. Dokl Acad Sci USSR 147:962–963Google Scholar
  126. Goldstein JM (1970) Study of biological pigments by single specimen derivative spectrophotometry. Biophys J 10:445–461PubMedCentralPubMedCrossRefGoogle Scholar
  127. Golovachev AF (1976) Change of the difference spectrometer SP-10 for registration of Absorption spectra of pigments in biological objects (in Russian). S/kh Biologiya 11:917–919Google Scholar
  128. Gonopol’skii VI (1969) About calibrating graphs Dјf(c) when measuring using the method of complete difference spectrophotometry (in Russian). Zhurn Analit Khim 24:654–660Google Scholar
  129. Goodwin TW (1958) Studies in carotenogenesis. 25. The incorporation of C 14 O 2, 2-14 C- acetate and 2-14 C-mevalonate into β-carotene by illuminated etiolated maize seedlings. Biochem J 70:612–617Google Scholar
  130. Goodwin TW (1969) Carotenoid biosynthesis in chloroplasts. In: Metzner H (ed) Progress in photosynthesis research, vol II. H. Laupp Jr, Tübingen, pp 669–674Google Scholar
  131. Goodwin TW (1971) Biosynthesis. In: Isler O (ed) Carotenoids. Birkha üsler, Basel, pp 577–636CrossRefGoogle Scholar
  132. Goodwin TW, Williams RJ (1965a) A mechanism for the cyclization of an acyclic precursor to form β-carotene. Biochem J 94:5c–7cPubMedCrossRefGoogle Scholar
  133. Goodwin TW, Williams RJ (1965b) A mechanism for the biosynthesis of α-саrotene. Biochem J 97:28c–32cPubMedCentralPubMedCrossRefGoogle Scholar
  134. Green GL (1974) Derivative luminescence spectrometry. Anal Chem 46(14):2191–2196CrossRefGoogle Scholar
  135. Grum F, Paine D, Zoeller L (1972) Derivative absorption and emission spectrophotometry. Appl Opt 11:93–98PubMedCrossRefGoogle Scholar
  136. Gulyaev BA, Litvin FF (1970) First and second derivatives of absorption spectrum of chlorophyll and of accompanying pigments in cells of higher plants and algae at 200 C (in Russian). Biophysica (Biofizika) 15:670–680Google Scholar
  137. Gulyaev BA, Litvin FF, Vedeneev VA (1971) Expansion of complex spectral curves of biological objects in components with help of derived spectra (in Russian). NDVSH Biol Nauk 4:49–57Google Scholar
  138. Gunders E, Kaplan B-Z (1965) Comparative analysis of derivative spectrophotometric methods. J Opt Soc Am 55:1094–1097CrossRefGoogle Scholar
  139. Gun-Aazhav T, Chultem D (1972) Possibility of application of activation analysis for investigation of cell permeability. Mat symp “Modern problems of biophysics”, 26.11.1969, pp 113–124Google Scholar
  140. Gurinovich GP, Sevchenko AN, Solov’ev KN (1968) Spectroscopy of chlorophyll and relative compounds (in Russian). Nauka i tekhnika, Minsk, p 520Google Scholar
  141. Habermann HM (1960a) Allagochrome: a new pigment from leaves. Annual report of the director of the department of plant biology, vol 59. YBK, Stanford, pp 345–347Google Scholar
  142. Habermann HM (1960b) A new leaf pigment. In: Allen M (ed) Comparative biochemistry of photoreactive systems. Academic, New York, pp 73–82Google Scholar
  143. Hager A (1955) Chloroplasten Farbstoffe, ihre Papierchromatographische Trennung und ihre Veränderungen durch Ausenfactoren. Y Narurforsch 10b; 310–312Google Scholar
  144. Hager A (1957) Zur Chromatographie der lipoidlöslichen Blattfarbstoffe mit Hilfe der Papierchromatographie. Planta 48:592–621CrossRefGoogle Scholar
  145. Hager A (1959) Die Chloroplastenfarbstoffe. In: Linsknens HF (ed) Papierchromatographie in der Botanik. Springer, BerlinGoogle Scholar
  146. Hager RN Jr (1971) Application of derivative spectrometry to the analysis of trace gases. American Institute of Aeronautics and Astronautics, Paper No 71–1045, Joint Conference on sending environmental pollutants. Paolo Alto, pp 1–6Google Scholar
  147. Hager RN Jr (1973) Derivative spectroscopy with emphasis on trace gas analysis. Anal Chem 45:1131A–1137ACrossRefGoogle Scholar
  148. Hager RN Jr, Anderson RC (1970) Theory of the derivative spectrometer. J Opt Soc Am 60:1444–1448CrossRefGoogle Scholar
  149. Hager A, Bertenrath T (1962) Verteilungschromatographische Trennung von Chlorophyllen und Karotinoiden grüner Pflanzen an Dünnschichten. Planta 58:564–568CrossRefGoogle Scholar
  150. Hager A, Meyer-Bertenrath T (1966) Die Isolierung und quantitative Bestimmung der Carotinoide und Chlorophylle von Blättern_ Algen und isolierten Chloroplasten mit hilfe Dünnschichtchromatograaphischer Methoden. Planta 69:198–217PubMedCrossRefGoogle Scholar
  151. Hager A, Meyer-Bertenrath T (1967) Die Identifizierung der an Dünnschichten getrennten Carotinoide grüner Blätter und Algen. Planta 76:149–168PubMedCrossRefGoogle Scholar
  152. Hagris LG, Howell JA, Sutton RE (1996) Ultraviolet and light absorption spectrometry. Anal Chem 68:169R–183RCrossRefGoogle Scholar
  153. Hammond VI, Price WC (1953) A new system for the elimination of scattered light effects in spectrophotometers. J Opt Soc Am 43:924CrossRefGoogle Scholar
  154. Hassan SM, Davidson AG (1984) The assay of tropane derivatives in formulations by 2nd derivative ultraviolet spectrophotometry. J Pharm Pharmacol 36(1):7–10PubMedCrossRefGoogle Scholar
  155. Hearn WR, Medina-Castro J, Elson MK et al (1968) Colour change of prodigiosin. Nature 220:170–171PubMedCrossRefGoogle Scholar
  156. Heat OVS (1969–1972) The physiological aspects of photosynthesis. Stanford University Press, Stanford, 315pGoogle Scholar
  157. Hellmann H (1994) Nutzen des UV VIS Derivative Spectroscopie in der Wasseranalytik. Vom Wasser A 82:49–65Google Scholar
  158. Hevesy G, Levi H (1936) The action of neutrons on the rare earth elements. Det, Kgl. Danske Videnskab. Selskab. Det Kgl Danske Videnskab Selskab Math-Phys Meddel 14:1–34Google Scholar
  159. Hevesy G, Levi H (1938) Artificial activity of Hafnium and some other elements. Det Kgl Danske Videnskab Selskab Math-Phys Meddel 15:1–18Google Scholar
  160. Hill HA, Blair JM (1956) Yields of the O18(p, α)F18 reactions for protons of 800 kev to 3500 kev. Phys Rev 104:198–201CrossRefGoogle Scholar
  161. Hiyama T, Nishimura M, Chance B (1969) Determination of carotenes by thin-layer chromatography. Anal Biochem 29:339–342PubMedCrossRefGoogle Scholar
  162. Holt AS, French CS (1948a) Oxygen production by illuminated chloroplasts suspended in solutions of oxidants. Arch Biochem 19:368–378PubMedGoogle Scholar
  163. Holt AS, French CS (1948b) Isotopic analysis of the oxygen evolved by illuminated chloroplasts in normal water and in water enriched with O18. Arch Biochem 19:429PubMedGoogle Scholar
  164. Hornyak WF, Lauritsen T (1948) Energy levels of light nuclei. I. Rev Mod Phys 20:191–227CrossRefGoogle Scholar
  165. Hornyak WF, Lauritsen T, Morrison P et al (1950) Energy levels of light nuclei. III. Rev Mod Phys 22:291–372CrossRefGoogle Scholar
  166. Howell JA, Hargis LG (1986) Ultraviolet and light-absorption spectrometry. Anal Chem Fundam Rev 58:R108–R124Google Scholar
  167. Hubbard R, Rimington C (1950) The biosynthesis of prodigiosin, the tripyrrylmethene pigment from bacillus prodigiosus (Serratia marcescens). Biochem J 46:220–225PubMedCentralPubMedCrossRefGoogle Scholar
  168. Hunt L, Miller WW (1965) Activation analysis for oxygen-18 isotope abundance utilizing recoil protons. Anal Chem 37:1269–1272CrossRefGoogle Scholar
  169. Inoue Y, Matsushima A, Shibata K (1975) Difference-derivative absorbance spectrophotometry as a technique to measure state of phenylalanine residues in protein. Biochim Biophys Acta 379:653–657PubMedCrossRefGoogle Scholar
  170. Inoue Y, Ogawa T, Kawai T, Shibata K (1973) Analysis if rice mutants by low temperature derivative spectrophotometry in relation to pigment compositions and photochemical activities. Physiol Plantarum 29:390–395CrossRefGoogle Scholar
  171. Ioffe BK, Zenkevich IG, Kuznetsov MA, Bershtein I (1984) New physical and physical-chemical methods of study of organic compounds (in Russian). Izd-vo Leningr. un-ta, Leningrad, p 240Google Scholar
  172. Ishii H, Satoh K (1982a) Determination of micro amounts of samarium and europium by analogue derivative spectrophotometry. Fresen J Anal Chem 312:114–120CrossRefGoogle Scholar
  173. Ishii H, Odoshima T, Imamura T (1982b) Synthesis and chromogenic properties of Phtalazinhydrazones and spectrophotometric and analogue derivative spectrophotometric determination of micro-amounts of nicl with 5-methylfurfural-1-phthalazinohydrazone. Analyst (Lond) 107:885–895CrossRefGoogle Scholar
  174. Ismail M, Glenn AL (1964) Reproducibility of extinctions measured on the slopes of absorption curves. J Pharm Pharmacol 16(S1):150T–155TCrossRefGoogle Scholar
  175. Ivanović D, Medenica M, Nivaud-Guernet E, Guernet M (1995) Fourth-derivative spectrophotometric determination of some pharmaceutical substances. Spectrosc Lett 28:557–571CrossRefGoogle Scholar
  176. Jeffrey SW (1961) Paper chromatographic separation of chlorophylls and carotenoids in marine algae. Biochem J 80:336–342PubMedCentralPubMedCrossRefGoogle Scholar
  177. Jeffrey SW (1965) Paper chromatographic separation of pigments in marine phytoplankton. Aust J Mar Freshwater Res 16:307–313CrossRefGoogle Scholar
  178. Jeffrey SW (1968) Quantitative thin-layer chromatography of chlorophylls and carotenoids from marine algae. Biochim Biophys Acta 162:271–285PubMedCrossRefGoogle Scholar
  179. Jeffrey SW, Allen MB (1967) A paper chromatographic method for separation of phytoplankton pigments at sea. Limnol Oceanogr 12:53–537CrossRefGoogle Scholar
  180. Kaler VL, Sergeev AA, Skachkov NM (1967) Derivative spectrophotometry of biological objects with the spectrophotometer SP-10. In: Bioenergetics and biological Spectrophotometry (in Russian). Nauka, Moscow, pp 123–126Google Scholar
  181. Karpinska J (2012) Basic principles and analytical application of derivative spectrophotometry, Chap 13. In: Uddin J (ed) Macro to nano spectroscopy. INTECH, Rijeka, pp 253–268, 448pGoogle Scholar
  182. Kataoka T, Muroi M, Ohkuma S (1995) Prodigiosin 25-C uncouples vacuolar-type H(+)-ATPhase, inhibits vacuolar acidification and affects glycoprotein processing. FEBS Lett 359:53–59PubMedCrossRefGoogle Scholar
  183. Khit O (1972) Photosynthesis (in Russian). Mir, Moscow, p 315 (Heat OVS (1969) Physiological aspects of photosynthesis. Stanford University Press, Sanford)Google Scholar
  184. Khodasevich EV, Godnev TN, Sidorova TV (1966) To methodology of separation and radiochemical purification of alpha- and beta-carotenes. In: Research on physiology and biochemistry of plants. Nauka I tehnika, Minsk, pp 13–16Google Scholar
  185. Kitamura K, Majima R (1983) Determination of salicylic-acid in aspirin powder by 2nd derivative ultraviolet spectrometry. Anal Chem 55:54–56PubMedCrossRefGoogle Scholar
  186. Klein MP, Dratz EA (1968) Derivative spectroscopy with recording spectrometers. Rev Sci Instrum 39:397–399PubMedCrossRefGoogle Scholar
  187. Kok B (1959) Light induced absorption changes in photosynthetic organisms. II. A split-beam difference spectrophotometer. Plant Physiol 34:184–192PubMedCentralPubMedCrossRefGoogle Scholar
  188. Kok B (1961) Partial purification and determination of oxidation-reduction potential of the photosynthetic chlorophyll complex absorbing at 700 mm. Biochim Biophys Acta 48:527–533PubMedCrossRefGoogle Scholar
  189. Kok B (1969) Photosynthesis. In: Wilkins MB (ed) Physiology of plant growth and development. McCraw-Hill, London, pp 335–379Google Scholar
  190. Komar’ NP, Samoilov VP (1963) Errors of spectrophotometric measurement (in Russian). Zhurn Analit Khim 18:1284–1290Google Scholar
  191. Komar’ NP, Samoilov VP (1967) Influence of errors caused by preliminary adjustment of the device and by indication of transmission on results of spectrophotometric measurement (in Russian). Zhurn Analit Khim 22:1285–1296Google Scholar
  192. Komar’ NP, Samoilov VP (1969) About influence of some conditions on accuracy of spectrophotometric measurement (in Russian). Zhurn Analit Khim 24:1133–1137Google Scholar
  193. Konev SV, Volotovskii IV (1974) Photobiology (in Russian). Izd-vo BGU, Minsk, p 348Google Scholar
  194. Korablev IV (1967) Instrumental error of spectrophotometer and errors of the difference method of spectrophotometry (in Russian). Zhurn Analit Khim 28:837–847Google Scholar
  195. Korany MA, Wahbi AM, Elsayed MA, Mandour S (1984) First derivative spectrophotometric determination of certain drugs in two-component mixtures. Anal Lett 17:1373–1389CrossRefGoogle Scholar
  196. Kornyushenko GA, Popova IA (1970) Comparative characterization of methods of paper and thinlayer chromatography of carotenoids of a green leaf. Sov Plant Physiol 17:1277–1283Google Scholar
  197. Kornyushenko GA, Sapozhnikov DI (1969) Methodology of determination of carotenoids of a green leaf with help of thinlayer chromatography. In: Methods of complex investigation of photosynthesis. NI Vavilov VIR, Leningrad, pp 181–192Google Scholar
  198. Korobkov ME (1975) Inaccuracy of the derivative spectrophotometry method when using the spectrophotometer SP-10 (in Russian). Physiol Biokhim Kul’t Rasten 7:211–213Google Scholar
  199. Kucher AA, Poluektov NS, Mishchenko VT, Aleksandrova NN (1983) Differentiating attachment for spectrophotometer “Specord” and its usage for the analysis of samarium and europium mixture (in Russian). Zavodskaya Lab 49:11–13Google Scholar
  200. Kutyurin VM, Artamkina IY (1962) Determination of chlorophylls purity. Sov Plant Physiol 9:493–496Google Scholar
  201. Kutyurin VM, Ulubekova MV, Artamkina IY (1962) The method of chlorophyll isolation from plants. Sov Plant Physiol 9:115–120Google Scholar
  202. Kutyurin VM, Ulubekova MV, Nazarov NM (1969) About the ratio between intensity of oxygen liberation and reactions of xanthophylls transformations in Elodea canadensis at different spectral composition of light (in Russian). Doklady Akad Nauk SSSR 187:470–472Google Scholar
  203. Kuznetsov RA (1967) Activation analysis. Atomizdat, Moscow, 201pGoogle Scholar
  204. Kvaratskheli YK, Demin YV (1983) About appropriateness of choice of 2-nd order derivatives of optical density in spectrophotometry (in Russian). Zhurn Analit Khim 38:1427–1433Google Scholar
  205. Kvaratskheli YK, Pchelkin VA, Demin YV et al (1981) About one variant of the first derivative spectrophotometry method (in Russian). Zhurn Analit Khim 36:2054–2058Google Scholar
  206. Kvaratskheli ZK, Demin ZV, Pchelkin VA et al (1983) The detection of zirconium in presence of hafnium by picrin amine E using method of the first derivative (in Russian). Zhurn Analit Khimii 38:1334–1338Google Scholar
  207. Kvitko KV, Chunaev AS, Baranov AA, Saakov VS (1977a) Fine structure of absorption spectra of Scenedesmus obliquus (Tuerp) Krueger mutants with changed pigment composition (in Russian). In: Proceedings of the scientific symposium 11th scientific-coordinator Meeting on Theme 1–184 SEV. Izd-vo Leningrad un-ta, Leningrad, pp 49–73Google Scholar
  208. Kvitko KV, Boyadzhiev PK, Chunaev AS et al (1977b) Research of absorption spectran of Chlamydomonas reinhardii 137C mutants with changed reaction to light (in Russian). Eksperiment al’gologiya: Tr Petergof biolog in-ta pri LGU 25:106–132Google Scholar
  209. Lawrence AH, Kovar J (1984) Analysis of heroin morphine mixtures by zero order and 2nd derivative ultraviolet spectrometry. J Anal Chem 56:1731–1734CrossRefGoogle Scholar
  210. Lawrence EO, Livingston MS (1934) The multiple acceleration of ions to very high speeds. Phys Rev 45:608–611CrossRefGoogle Scholar
  211. Lbov AA, Naumova II (1959) Radioactivation analysis with application of neutrons of energy of 14 MeV. Atomic Energy 6:468–470Google Scholar
  212. Lebedeva VV (1977) Technique of optical spectroscopy. Izd-vo Mosk. un-ta, Moscow, p 383Google Scholar
  213. Leclerc JC, Hoarau J, Guerin-Dumatrait E (1975) An analysis of DIV Porphyridium absorption bands with a digital spectrophotometer. Photochem Photobiol 22:41–48PubMedCrossRefGoogle Scholar
  214. Lemberg IKh (1963) Investigation of Coulomb excitation of nuclear levels. Dissertation. Prof. title, status. Phys. Technic. Inst. Name Joffe Acad. Sci. USSR, Leningrad, P. 53Google Scholar
  215. Lemberg IK, Girshin АB, Gusinskii GМ (1966) Determination of O18 content with help of detection of γ-quanta emitted in reaction О 18 (α, nγ)Ne 21. Zavodskaya Lab 22(12):1499–1501Google Scholar
  216. Lester D (1970) Computerized resolution of overlapping bands in UV spectra using Gaussian profile approximations. Anal Biochem 36:253–267PubMedCrossRefGoogle Scholar
  217. Lewis D, Mervell PB, Hamill WH (1970) Low energy electron reflection spectrometry for thin films of aromatic and aliphatic molecules at 77_K. J Chem Phys 53:2750–2756CrossRefGoogle Scholar
  218. Lichtenthaler HK (ed) (1988) Application of chlorophyll fluorescence. Kluwer, Dordrecht, 366pGoogle Scholar
  219. Litvin FF, Belyaeva OB, Gulyaev BA et al (1973a) System of chlorophyll native forms, its role in primary products of photosynthesis and development in process of plant leaves greening (in Russian). In: Shlyk AA (ed) Chlorophyll. Nauka i tekhnika, Minsk, pp 215–231Google Scholar
  220. Litvin FF, Belyaeva OB, Gulyaev BA, Sineshchekov VA (1973b) Organization of pigment system of photosynthetic organisms and its connection with primary photoprocesses (in Russian). Problemy biofotokhimii: Tr. MOIP. Nauka, Moscow, pp 132–147Google Scholar
  221. Litvin FF, Gulyaev BA (1969) Derivative spectrophotometry and mathematical analysis of absorption spectra in a plant cell. (in Russian). NDVSH Biol Nauk 2:118–135Google Scholar
  222. Losev AP (1964) About the methodology of obtaining of radiochemically pure xanthophylls. Sov Plant Physiol 11:1098–1104Google Scholar
  223. Lutsenko GN, Saakov VS (1969) To the method of radiochemical cleaning of xanthophylls. Inform Bull Sib Inst Plant Biochem Physiol 5:64–65Google Scholar
  224. Lutsenko GN, Saakov VS (1971) Renovation and kinetics of C14 inclusion in carotenoids molecules (in Russian). Biokhimiya i biopysica photosinteza. SIFIBR SO AN SSSR, Irkutsk, pp 80–86Google Scholar
  225. Lutsenko GN, Saakov VS (1972) Change in specific activity of carotenoids under conditions of the object presence in labelled medium (in Russian). Fiziol i Biokhim Kul’t Rastenii 4:608–613Google Scholar
  226. Lutsenko GN, Saakov VS (1973) The renovation of carotenoids in the green plants (in Russian). Sov Fiziolog rastenii 20:90–95Google Scholar
  227. Magomedov IM, Saakov VS (1978) Research of chlorophyll forms in plant chloroplasts of various ecological groups. (in Russian). Questions of ecology, anatomy and physiology of plants. Vopr. ekologii, anatomii i fiziologii rastenii: Tr. Petergof. biol. in-ta. Leningrad: Izd-vo Leningr. un-ta, 27: 134–142Google Scholar
  228. Magomedov IM, Saakov VS (1973) The second derivative of absorption spectra of two types of chloroplasts from Zea mays L. leaves. (in Russian). Bot Zhurn 58:1201–1204Google Scholar
  229. Magomedov IM, Stepanova AM, Saakov VS (1974) Research of activity of 1 and 2 photochemical systems of corn chloroplasts. Photosynthesis and corn. (in Russian). Photosintez i kukuruza, In-t fotosinteza AN SSSR. Pushchino Oke, pp 65–71Google Scholar
  230. Mahrous MS, Abdel-Khalek MM, Abdel-Hamid ME (1985) Quantitation of indomethacin, naproxen, and ibuprofen in pharmaceutical dosage forms by 1st and 2nd derivative ultraviolet spectrometry. J Assoc Off Anal Chem USA 68:535–539Google Scholar
  231. Maiorov RV (1956) Electron regulators (in Russian). Izd-vo tekhn.-teor. lit, Moscow, p 236Google Scholar
  232. Marenko VA, Saakov VS (1973) Derivative spectrophotometry on the basis of recording spectrophotometer SP-10 (in Russian). Sov Physiol Rastenii 20:637–645Google Scholar
  233. Marenko VA, Saakov VS, Dorokhov BL, Shpotakovskii VS (1972) Experience of application of the recording spectrophotometer SP-10 for registration of spectra of the first and second derivatives of absorption (in Russian). Izv AN MSSR Ser Biol Khim Nauk 4:30–35Google Scholar
  234. Mark H, Goodman C (1955) Angular distribution of neutrons from O18(p, n)F18. Phys Rev 101:768–771CrossRefGoogle Scholar
  235. Martin AE (1957) Difference and derivative spectra. Nature 180:231–233CrossRefGoogle Scholar
  236. Martin AE (1959) Multiple differentiation as a means of band sharpening. Spectrochim Acta 14:97–103CrossRefGoogle Scholar
  237. Maslov IA (1964) Determination of gas admixtures in metals by the method of radioactivation analysis. Zavodskaya Lab 30:51–54Google Scholar
  238. Matsushima A, Inoue Y, Shibata K (1975) Derivative absorption spectrophotometry of native proteins. Anal Biochem 65:362–368PubMedCrossRefGoogle Scholar
  239. McKay HAC, Scargill D (1968) The resolution of complex spectra. J Inorg Nucl Chem 30:3095–3098CrossRefGoogle Scholar
  240. McWilliam IG (1959) An oscillation-plate differentiator for spectrophotometry. J Sci Instrum 36:51–52CrossRefGoogle Scholar
  241. McWilliam IG (1969) Derivative spectroscopy and its application to the analysis of unresolved bands. Anal Chem 41:674–676CrossRefGoogle Scholar
  242. Meal L (1983) Identification of ketones by 2nd derivative ultraviolet spectrometry. Anal Chem 55:2448–2450CrossRefGoogle Scholar
  243. Meinke WW (1955) Trace-element sensitivity: comparison of activation analysis with other methods. Science 121:177–184PubMedCrossRefGoogle Scholar
  244. Meister A (1966a) Ein registrierendes Spectrophotometer zur Aufzeichung der Extintion, ihrer 1. und 2. Ableitung nach der Wellenl€ange. Exp Tech Phys 14:168–173Google Scholar
  245. Meister A (1966b) Zur Untersuchung der verschiedenen Formen von Chlorophyl in der lebenden Pflanzen durch Anwendung der Derivativ-Spektrophotomerie. Kulturpflanze 14:235–255CrossRefGoogle Scholar
  246. Melvin MS, Tomlinson JT, Park G et al (2002) Influence of the A-ring on the proton affinity and anticancer properties of the prodigiosins. Chem Res Toxicol 15:734–741PubMedCrossRefGoogle Scholar
  247. Mikhailyuk IK (2003) Development and application of high order derivative spectrophotometry methods for detection of the fine structure of optical spectra of photosynthetic pigment-protein complexes. (in Russian). Dissertation, Ph.D. in phys-math. sciences. Moscow State UniversityGoogle Scholar
  248. Miller JN, Ahmad TA, Fell AF (1982) Derivative fluorescence spectroscopy. Anal Proc (Lond) 19:37–41CrossRefGoogle Scholar
  249. Mishchenko VT, Poluektov NS, PerfilevVA, Aleksandrova NN (1987) Application of the derivative spectrophotometry in analysis of biologically active substances (in Russian). In: Spectroscopic methods of research in physiology and biochemistry. Nauka, Leningrad, pp 72–75Google Scholar
  250. Montaner B, Perez-Tomas R (2001) Prodigiosin-induced apoptosis in human colon cancer cells. Life Sci 68:2025–2036PubMedCrossRefGoogle Scholar
  251. Moos RA, Loomis WE (1952) Absorption spectra of leaves. I. The visible spectrum. Plant Physiol 27:370–391CrossRefGoogle Scholar
  252. Morelli B (1983) Determination of ruthenium(III) and palladium(II) in mixtures by derivative spectrophotometry. Analyst (Lond) 108:1506–1510CrossRefGoogle Scholar
  253. Morton RA (1975) Biochemical spectroscopy. Adam Hilger, Bristol. 1: 1–380; 2: 381–383Google Scholar
  254. Moskvin AF, Doktorova LN, Shukshina EN (1973) Spectrophotometrical method of determination of abietinic acid in galipot (in Russian). Zavodskaya Lab 39:1327–1329Google Scholar
  255. Mukhtarov RN, Nikolaev AN (1979) About application of radiation frequency modulation in laser gas analyzers (in Russian). Zhurn Prikl Spektrosk 70:1008–1010Google Scholar
  256. Nagibina IM, Prokof’ev VK (1961) Spectral instruments and spectroscopy technique (in Russian). Mashinostroenie, Leningrad, p 211Google Scholar
  257. Navarro S, Verdu J, Costa F, Carpena O (1972) Method for the quantitation of carotenoid pigments. An Quim Real Soc Esp Fis 68:1125–1131Google Scholar
  258. Nazarova GD, Alekseeva NR, Saakov VS (1971) Features of purification of radiochemically pure carotenoids of Euglena. Inform Bull SIFIBR SO AN SSSR 8:50–51Google Scholar
  259. Nazarova GD, Saakov VS, Myl’nikova EV (1969) An assessment of effectivity of separation of plastids pigments with various kinds of chromatographic paper. Inform Bull SIFIBR SO AN SSSR 4:82–84Google Scholar
  260. Nazarenko NA, Poluektov NS, Mishchenko VT et al (1982) Fine structure of absorption spectra of gadolinium ions in solutions of chloride and of some complexes. (in Russian). Dokl Akad Nauk SSSR 266:399–402Google Scholar
  261. Nozaki T, Tanaka S, Furukawa M, Saito K (1961) Radioactivation analysis of oxygen in silicon by irradiation with α-particles in a cyclotron. Nature 190:39–40CrossRefGoogle Scholar
  262. O’Haver TC (1976) Modulation and derivative techniques in luminescence spectroscopy. In: Wehry EL (ed) Modern fluorescence spectroscopy, vol 1. Plenum, New York, pp 65–81CrossRefGoogle Scholar
  263. O’Haver TC (1978) Wavelength modulation spectroscopy. In: Hercules DM (ed) Contemporary topics in analytical and clinical chemistry, vol 2. Plenum, New York, London, pp 1–28CrossRefGoogle Scholar
  264. O’Haver TC (1979) Derivative and wavelength modulation spectrometry. Anal Chem 51:91A–100ACrossRefGoogle Scholar
  265. O’Haver TC (1982) Derivative spectroscopy and its application in analysis. Anal Proc (Lond) 19:22–28CrossRefGoogle Scholar
  266. O’Haver TC, Green GL (1976) Numerical error analysis of derivative spectrometry for the quantitative analysis of mixtures. Anal Chem 48:312–318CrossRefGoogle Scholar
  267. Olson EC, Alway CD (1960) Automatic recording of derivative ultra-violet spectra. Anal Chem 32:370–373CrossRefGoogle Scholar
  268. Ojeda Bosch C, Rojas Sanchez F (2004) Recent development in derivative ultraviolet visible absorption spectrophotometry. Anal Chim Acta 518:1–24CrossRefGoogle Scholar
  269. Ojeda BC, Sanchez RF, Cano Pavon JM (1995) Recent developments in derivative ultraviolet-visible absorption spectrophotometry. Talanta (Oxford) 42:1195–1214CrossRefGoogle Scholar
  270. Ostrovskaja LK (ed) (1975) Photochemical systems of chloroplasts (in Russian). Naukova dumka, Kiev, p 207Google Scholar
  271. Parks J, Worth HG (1985) Carboxyhemoglobin determination by 2nd-derivative spectroscopy. Clin Chem 31:279–281PubMedGoogle Scholar
  272. Patty FA (1949) Industrial hygiene and toxicology, vol 2 Vols. Interscience, New York, LondonGoogle Scholar
  273. Pemsler JP (1957) Method of obtaining derivative spectra. Rev Sci Instrum 28:274–275CrossRefGoogle Scholar
  274. Perfilev VA, Mishchenko VT, Poluektov NS (1983a) Derived absorption spectra of some complex compounds of uranyl ion. (in Russian). Dokl AN USSR Ser B 2:41–44Google Scholar
  275. Perfilev VA, Mishchenko VT, Poluektov NS (1985) Usage of derivative spectrophotometry for study and analysis of substances in solutions of complex composition (review) (in Russian). Zhurn Analit Khim 40:1349–1363Google Scholar
  276. Perfilev VA, Mishchenko VT, Poluektov NS, Kucher AA (1983b) Derivative Spectrophotometry in study of complex formation of f-elements ions. Complex formation of U(IV) with ethylendiaminetetraacetic and oxalic acids (in Russian). Dokl Akad Nauk SSSR 271:1436–1439Google Scholar
  277. Perregaux A, Ascarelli G (1968) A simple technique for wavelength modulation of optical spectra. Appl Opt 7:2131–2035CrossRefGoogle Scholar
  278. Phyllips JP (1962) Reproducibility of electronic spectral data in the literature. Anal Chem 34:171CrossRefGoogle Scholar
  279. Platonova NV, Popov KR, Shamolina II, Smirnov LV (1970) Spectroscopical investigation of binding of phenthiazine dyes with polyvinyl alcohol: electron spectra (in Russian). Opt Spektrosk 29(3):473–476Google Scholar
  280. Popov KR, Smirnov LV (1971) Electron transitions in absorption spectra of elementary monoazodyes (in Russian). Opt Spektrosk 3:628–632Google Scholar
  281. Popova IA (1965) Development and application of the paper chromatography method for investigation of properties and physiological role of plastids pigments. PhD dissertation boil. Sci. VL Komarov Botan. Inst. Acad Sci, LeningradGoogle Scholar
  282. Porro TJ (1972) Double-wavelength spectroscopy. Anal Chem 44:93A–103ACrossRefGoogle Scholar
  283. Pronkin AA, Saakov VS (1997) Application of thermodynamic methods at research of reaction mechanisms, proceeding in system aromatic aminoacids at gamma- irradiation. In: Abstract of the 10th conference international society for biology calorimetry: from human beings to molecules, Monte Verita 27–30 April, Ascona, Switzerland, p 15Google Scholar
  284. Rabinovich E (1953) Photosynthesis (in Russian), vol 2. Izd-vo inostr lit, Moscow, pp 9–21Google Scholar
  285. Randerath K (1965) Carotinoide und Ghlorophylle. In: Dünnschichtschromatographie. Weinheim, Verl. Chemie. 236pGoogle Scholar
  286. Rapoport H, Holden KG (1962) The synthesis of prodigiosin. J Am Chem Soc 84:635–642CrossRefGoogle Scholar
  287. Ren Y, Liu Z, Zhou H (1985) Higher derivative absorption spectra of the complexes of rare earths. II. Determination of neodymium, holmium, erbium, and thulium in rare earth mixtures by third derivative spectrophotometry with thenoyltrifluoroacetone. Fenxi Huaxue 13:6–11Google Scholar
  288. Richards HT, Smith RV, Browne CP (1950) Proton–neutron reactions and thresholds. Phys Rev 80:524–530CrossRefGoogle Scholar
  289. Rojas Sanchez F, Ojeda Bosch C (2009) Recent development ultraviolet visible absorption spectrophotometry: 2004–2008. Anal Chim Acta 635:22–44CrossRefGoogle Scholar
  290. Rotfarb RM (1970) About isolation and purification of zeaxanthin in blue-green alga Anacystis nidulans. In: Physiological and biochemical investigations of plants. Minsk, Nauka I tehnika, p. 3–5Google Scholar
  291. Rozengart EV, Saakov VS (2002) The chelating ability of the anti-coccidial drug 1,3—bis(p-chlorbensilidenoamino)guanidine: the complexes with Ca2+ and La3+. Dokl Biochem Biophys 385:219–223, Translated from Russian Dokl RAN 385:699–703PubMedCrossRefGoogle Scholar
  292. Rozengart EV, Saakov VS (2003) The characteristics of the interaction of Ca2+ with anticoccidial bis(chlorobenzylideneamino)guanidine derivatives in dependence on the position of the chlorine atom, determined by derived spectrophotometry. Dokl Akad Nauk 393:315–320, Translated from Dokl Akad Nauk 393:263–268Google Scholar
  293. Rubin AB (ed) (1974) Modern methods of investigation of photobiological processes (in Russian). Izd-vo Mosk. un-ta, Moscow, p 160Google Scholar
  294. Rubin AB (1975) Biophysics of photosynthesis (in Russian). Izd-voMosk un-ta, Moscow, p 224Google Scholar
  295. Rubin AB (2000) Biophysical methods in ecological monitoring. Soros Educational Journal 6(4):1–9Google Scholar
  296. Rutman GI, Saakov VS (1978) Contribution to the technique for the registration of derivative spectra in physiological studies. In: Trudy VIR, Methods of comprehensive studies of photosynthesis, vol 61, pp 140–143Google Scholar
  297. Rutman GI, Saakov VS, Drapkin VZ, Makarov YA (1976a) Derivative spectrophotometry in biological studies. Practical schemes and recommendations (in Russian). Bull VIR im NI Vavilova 63:70–79Google Scholar
  298. Rutman GI, Saakov VS, Drapkin VZ, Makarov YA (1976b) Methods of molecular spectrophotometry in study of the plastid apparatus (in Russian). Trudy Prikl Bot Genet Selektsii 57:130–147Google Scholar
  299. Ryasantseva IN, Saakov VS, Andreeva IN, Ogorodnikova TI, Zuev YF (2012) Response of pigment Serratia marcescens to the illumination. J Photoch Photobio B 106:18–23CrossRefGoogle Scholar
  300. Saakov VS (1963a) The assessment of effectiveness of the chromatographic method of xanthophylls separation on paper with help of the isotope C14. Biophysica (Biofizika) 8:123Google Scholar
  301. Saakov VS (1963b) To the methodology of obtaining of pure xanthophylls. Botan Zhurn 48:554–557Google Scholar
  302. Saakov VS (1963c) The characteristic of light reaction of xanthophylls. Dissertation PhD in biol. Sci. Botan. Inst. Name VL Komarov Russ. Acad. Sci., Leningrad, pp. 138Google Scholar
  303. Saakov VS (1964) Role of carotenoids in mechanism of oxygen transfer in photosynthesis (in Russian). Doklady Akad Nauk SSSR 155:1212–1215Google Scholar
  304. Saakov VS (1965a) Metabolism of violaxanthine-C-14 in leaf and its role in photosynthetic reactions (in Russian). Doklady Akad Nauk SSSR 165:230–233Google Scholar
  305. Saakov VS (1965b) On the possible role of xanthophylls in oxygen transfer during photosynthesis (in Russian). Sov Physiolog Rasten 12:377–385Google Scholar
  306. Saakov VS (1971a) Action of ATP, inhibitors and photophosphorylation entcouplers on xanthophylls transformation in leaf (in Russian). Dokl Akad Nauk SSSR 198:966–969Google Scholar
  307. Saakov VS (1971b) Correlation between light-induced xanthophyll conversions and electron-transport chain of photosynthesis (in Russian). Sov Physiol Rastenii 18:1088–1097Google Scholar
  308. Saakov VS (1971c) Relation between xanthophylls deepoxidation reaction and electron transport chain of photosynthesis (in Russian). Dokl Akad Nauk SSSR 201:1257–1260Google Scholar
  309. Saakov VS (1973a) Die durch Hemmstoffe induzierten Umwandlungen der Karotinoidpigmente in Pflanzenzellen. Biochem Physiol Pflanz 164:213–227Google Scholar
  310. Saakov VS (1973b) Der Einfluss einiger Inhibitoren auf den Chlorophyllgehalt in gruenen. Zellen Biochem Physiol Pflanz 164:199–212Google Scholar
  311. Saakov VS (1987) Spectrophotometrical methods in study of reactions of plant plastid apparatus under extremal influences (in Russian). In: Svidersky VL, Saakov VS (eds) Spectrophotometrical research methods in physiology and biochemistry. Nauka, Leningrad, pp 115–126Google Scholar
  312. Saakov VS (1990a) Redox conversions of carotenoids in a green cell. Thesis of the professor of Biol.Sci/Institute of biophysics and physiology of plants. AS Tadzh SSR. Dushanbe, 56pGoogle Scholar
  313. Saakov VS (1990b) Die Anwendung der Lumineszenz, der Ableitungen der Spektrophotometrie und der photoakustischen Spektroskopie zur Charakterisierung von Schaeden in Chlorophyll-Protein Komplex der Chloroplasten. Colloq Pflanzenphysiologie der Humboldt-Universitaet zu Berlin 14:163–170Google Scholar
  314. Saakov VS (1993) The effect of gamma-radiation on the stability of energetics and pigment system of the photosynthetic apparatus (in Russian). Dokl Akad Nauk 328:520–523Google Scholar
  315. Saakov VS (1994) Assessment ways of reparation abilities of photosynthesizing apparatus of plants in cenoses exposured to ionizing radiation influence. Proc. Int. Symp. “Theory and practice of complex ecological expertise” SPb-Saint Petersburg. Publ. Acad. Sci.- Nauka. 31 May–2 June, pp 83–84Google Scholar
  316. Saakov VS (1996a) Application of PAM-method for estimating the damage of Photosynthetic apparatus of chloroplasts during gamma-irradiation. In: Abstracts of international conference on spectroscopy and optical Techniques. in animal and plant biology. Muenster, Uni., Germany, p 96Google Scholar
  317. Saakov VS (1996b) The use of derivative and difference derivative spectra of the absorption for estimation the state of chloroplasts under the influence of stress factors (SF). In: Abstracts of international conference on spectroscopy and optical techniques in animal and plant biology. Muenster, Uni., Germany p 97Google Scholar
  318. Saakov VS (1998a) Specific changes of modulated fluorescence F-o and F-m under dithiothreitol influence on zeaxanthin content (in Russian). Dokl Akad Nauk 361:830–833Google Scholar
  319. Saakov VS (1998b) Some mechanisms of adaptation to stress in plant and animal cells. Doklady Biologic Sciences 361:371–375, Translated from Doklady Akad. Nauk 361:568–572Google Scholar
  320. Saakov VS (2000a) The application of high orders (DVIII–DXVI) derivative spectrophotometry for the fine analysis of UV-spectra structure under estimation of purity criteria of aromatic amino acids, globulins and albumin. Fast definition of cleanliness criteria at a number physiological neurotransmitters and secondary products with use of analytical opportunities of the high orders derivative spectrophotometry. Abstracts of Posters. Addenda. Biosynthesis and accumulation of secondary products. Halle Saale Septemb. 2427, Martin-Luther Univer. Halle-Wittenberg. Deutsche Pharmaz. Gesellsch., pp 11–14Google Scholar
  321. Saakov VS (2000b) A coupling between albumin high orders derivative spectra changes and the precision of detection of albumin globulin coefficient under gamma- irradiation shock (in Russian). Dokl Akad Nauk 371:548–552Google Scholar
  322. Saakov VS (2000c) Specific features of gamma-globulin denaturation under exposure to thermal and radiation factors. Dokl Biochem Biophys 373:167–172, Translated from Doklady Akad. Nauk 373:561–566Google Scholar
  323. Saakov VS (2000d) The features of change of light harvesting complex of photosystem-2 under gamma-radiation influence. International conference in honor of 100 jubilee of NV Timofeev-Ressovskyi “Modern Problems of Radiobiology, radioecology and Evolution”. Joint Inst. Nucl. Resch. Dubna, Abstract, 6–9 Sept, p 149Google Scholar
  324. Saakov VS (2001a) New aspects of the concept of energy mechanisms determining stability of prokaryotic and eukaryotic green cells. Effects of negative temperature on kinetic parameters of modulated pulse fluorescence (F0, Fmax, and Fv). Dokl Biochem Biophys 381:378–383PubMedCrossRefGoogle Scholar
  325. Saakov VS (2001b) Application of pulse amplitude modulation fluorescence method for the estimation the localisation of damage influences in electron transport chain of water oxygen oxidation under gamma-irradiation. In: Proceedings of the 2nd international conference instrumentation and method analysis. Greece, Joannina, Sept.:117Google Scholar
  326. Saakov VS (2001c) Materials to reasoning of energetic bases of the theory of resistance of the photosynthetic apparatus of Procaryota and Eucaryota cells (in Russian). Vest Bashkir un-ta Spets vyp Ufa: Izd-vo Bashkir un-ta 2:73–76Google Scholar
  327. Saakov VS (2002a) Evaluation of the heterogeneity and specificity of promising antitumoral preparations by means of high-order derivative spectroscopy. Dokl Biol Sci 386:440–444, Translated from Doklady Akad Nauk 385:821–829PubMedCrossRefGoogle Scholar
  328. Saakov VS (2002b) Application of pulse amplitude modulation fluorescence for estimation the inhibition of charged transfer in the system R680 PheoQA. Progr. In: Abstracts of scientific contributions. Euroanalysys-12. Dortmund, Germany. Poster P2-100: 531Google Scholar
  329. Saakov VS (2002c) High-temperature stress-related changes in the harmonics F0, Fm, and Fv of pulse-amplitude modulated fluorescence signals: locating thermal damage in reaction centers of photosystem II. Dokl Biochem Biophys 382:4–9, Translated from Doklady Akad Nauk 382:118–123PubMedCrossRefGoogle Scholar
  330. Saakov VS (2002d) Specific effects of gamma-radiation on the fine structure of the photosynthetic apparatus: evaluation of the character of disturbances in vivo using high-order derivative spectrophotometry. Dokl Biochem Biophys 387:313–319, Translated from Doklady Akad Nauk 387:265–271PubMedCrossRefGoogle Scholar
  331. Saakov VS (2002e) Effect of Na+, Cl, and SO4 2+ ions on changes in the kinetic parameters of modulated pulse fluorescence: the characteristics of the phototrophic function tolerance of photosystem 2 under the conditions of salinization. Dokl Biochim Biophys 385:228–234, Translated from Doklady Akad Nauk 385:121–125Google Scholar
  332. Saakov VS (2003a) Specific effects induced by gamma-radiation on the fine structure of the photosynthetic apparatus: evaluation of the pattern of changes in the high-order derivative spectra of a green leaf in vivo in the red spectral region. Dokl Biochem Biophys 388:22–28, Translated from Doklady Akad Nauk 388:265– 271PubMedCrossRefGoogle Scholar
  333. Saakov VS (2003b) Association of the mechanisms of green cell resistance with changes in the parameters of modulated pulse fluorescence under the exposure to atmospheric drought:localization of damage in the link P680QA. Dokl Biochem Biophys 388:8–14, Translated from Doklady Akad Nauk 388:123–130PubMedCrossRefGoogle Scholar
  334. Saakov VS (2003c) Energetical theory of plant green cells resistance by Procaryota and Eucaryota to extreme environmental influences. Fourth European Meeting on Environmental Chemistry. Plymouth. England. Ref. 1785Google Scholar
  335. Saakov VS (2003d) The particularities of light harvesting complex of photosystem-2 changes under gamma-radiation influence evaluated by means of high order derivative Spectrophotometry and PAM-methods. Colloquium. Spectroscopicum Internationale. No 560. Cranada, SpainGoogle Scholar
  336. Saakov VS (2004a) The substantiation of the energy foundations of the theory of resistance of phototrophic prokaryotic and eucaryotic cells to abiotic environmental factors: problems of resistance of the chloroplast. Dokl Biochem Biophys 395:64–68CrossRefGoogle Scholar
  337. Saakov VS (2004b) Development of knowledge about energetic nature of resistance of photosynthetic apparatus to influence of extreme factors of environment. (in Russian). Annual meeting of Russian Plant Physiology Society and International scientific conference “Physiological problems of North plants”. Tez dokl Petrozavodsk, p 158Google Scholar
  338. Saakov VS (2004c) Coupling of electron transport damage in the link of primary acceptor with change of coefficients of amplitude-modulated fluorescence quenching under influence of short-time frost on phototrophic tissues. (in Russian). Annual meeting of Russian Plant Physiology Society and International scientific conference “Physiological problems of North plants”. Tez dokl Petrozavodsk, p 157Google Scholar
  339. Saakov VS (2004d) Significance of the energetical theory of phototrophical cells resistance for the investigation of stress environmental influences. 5th Europe Meeting of Ecological Chemistry,Bari, Italy. PB 31Google Scholar
  340. Saakov VS (2005a) Dynamics of pulse amplitude-modulated fluorescence coefficients under longterm exposure to soil drought and high temperature. Dokl Biochem Biophys 403:275–280PubMedCrossRefGoogle Scholar
  341. Saakov VS (2005b) Application of derivative spectrophotometry of high orders (DIV-DVIII-DXII) as one of criteria at radiochemical purification and concentration of pigments. Proc. 2nd Int, Conference “Separation and concentration in analytical chemistry and radiochemistry” Krasnodar, 25–30 Sept. 2005Google Scholar
  342. Saakov VS (2011) Ways of functional and structural diagnostic of stability phototrophical cells to extreme effects. In: “Actual problems of biology and ecology (in Russian). SPb, PH Forestry Engineering Academy, pp 312–325Google Scholar
  343. Saakov VS, Baranov AA, Hoffmann P (1978a) Pigmentphysiologischen Untersuchungen mit Hilfe der Derivativ-Spektrophotometrie. Stud Biophys 70:129–142Google Scholar
  344. Saakov VS, Baranov AA, Hoffman P (1978b) Derivativ-spektroskopische Charakteristik Des pigmentphysiologischen Zustandes des Phothosyntheseapparates unter besonderer Beruecksichtigung der Temperatur. Stud Biophys 70:163–173Google Scholar
  345. Saakov VS, Barashkova EA, Kozhushko NN et al (1975a) The centres of localization of harmful influences of extreme factors in chloroplasts. Abstr of XII Intern Botan Congr Leningrad II: 478Google Scholar
  346. Saakov VS, Danilov AF, Leontjev VG (1987a) Spectrophotometrical analysis of aromatic amino acids, proteins and biologically active substances with the method of second derivative (in Russian). In: Svidersky VL, Saakov VS (eds) Spectroscopic methods of research in physiology and biochemistry. Nauka, Leningrad, pp 76–96Google Scholar
  347. Saakov VS, Dorokhov BL, Shiryaeva GA (1973) Second derivative of difference absorption spectra on example of chlorophyll a and b and of blood pigment (in Russian). Izv AN MoldSSR Ser Biol-Khim Nauk 2:73–82Google Scholar
  348. Saakov VS, Drapkin VY, Krivchenko AI et al (2010) Derivative spectrophotometry and spectroscopy EPR for solving ecological and biological problems. Technolit, SPbGoogle Scholar
  349. Saakov VS, Drapkin VZ, Janchurov VA et al (1987b) Ways of differentiation of spectral curves when realizing the method of derivative spectrophotometry (in Russian). In: Svidersky VL, Saakov VS (eds) Spectroscopic methods of research in physiology and biochemistry. Nauka, Leningrad, Leningrad, pp 59–71Google Scholar
  350. Saakov VS, Drapkin VZ, Makarov YuA et al (1976) Application of the derivative spectroscopy for study of optical properties of a plastid apparatus under extreme influences (in Russian). In: Methods of assessment of plant resistance to unfavorable factors of environment. Kolos, Leningrad, pp 287–301Google Scholar
  351. Saakov VS, Drapkin VZ, Krivchenko AI, Rozengart EV, Bogachev YV, Knyazev MN (2013) Derivative spectrophotometry and electron spin resonance (ESR) spectroscopy for ecological and biological questions. Springer, WienCrossRefGoogle Scholar
  352. Saakov VS, Hoffmann P (1974) Zur Bedeutung der Karotinoide fuer die Photosynthese unter besonderer Beruecksichtigung der Photophosphorylierung. Wiss Zt d Humboldt-Univer zu Berlin Math-Nat Reihe Bd XXIII 6:577–580Google Scholar
  353. Saakov VS, Lang M, Schindler C, Lichtenthaler HK (1993) Changes in chlorophyll fluorescence and photosynthetic activity of French bean leaves induced by gamma radiation. Photosynthetica 27:369–383Google Scholar
  354. Saakov VS, Lemberg IK, Nazarova GD et al (1969) Application of activating analysis for research of reactions of xanthophylls oxygen metabolism (in Russian). Inform Bull SIFIBR SO AN SSSR 5:57–58Google Scholar
  355. Saakov VS, Lemberg IK, Nazarova GD et al (1970a) About oxygen exchange between water and xanthophylls. (in Russian). Doklady Akad Nauk SSSR 193:713–715Google Scholar
  356. Saakov VS, Leontjev VG (1988) Untersuchungen ueber die Molekularspektrophotometrische Reaktion des pflanzliche Photosynthese-apparates auf Stressbedingungen. Colloquia Pflanzenphysiologie der Humboldt Univer zu Berlin 12:143–156Google Scholar
  357. Saakov VS, Moshkov AV (2003) Specificity of physicochemical state of antibiotic prodigiosin analysed by fourth-eighth order derivative adsorption spectrophotometry. Colloquium Spectroscopicum Internationale. Granada, Spain, p 585Google Scholar
  358. Saakov VS, Moshkov AV, Petrova TA (1998) The application of derivative high orders (D2–D8) spectrophotometry for estimation the purity of vitamins and hormones. In: Abstracts of the 3rd international congress on vitamins and related biofactors. Coslar, Germany, p 60Google Scholar
  359. Saakov VS, Nazarova GD (1970) Markierungsexperimente zur Umwandlung des Antheraxanthis in vivo. Studia Biophysyca 20:65–72Google Scholar
  360. Saakov VS, Nazarova GD, Myl’nikova EV, Alekseeva NR (1970) Exchange between oxygen fond of xanthophylls and water oxygen under light influence on plant (in Russian). Mineral’noe pitanie rastenii i fotosintez. SIFIBR SO AN SSSR, Irkutsk, pp 217–227Google Scholar
  361. Saakov VS, Nazarova GD, Myl’nikova EV, Alekseeva NR (1971a) Influence of inhibitors of photosynthesis on a pigment system. (in Russian). Biohem Biophys Photosynthesa. Irkutsk, SIFIBR SO AN SSSR: 28–36Google Scholar
  362. Saakov VS, Nazarova GD, Myl’nikova EV, Alekseeva NR (1971b) Reactions of xanthophylls metabolism in plants. (in Russian). Biohem Biophys Photosintesa. Irkutsk, SIFIBR SO AN SSSR: 43–51Google Scholar
  363. Saakov VS, Petrova TA (1996) The application of derivative high-orders spectrophotometry (D4–D8) for aromatic amino acids and proteins analysis in UV-region. In: Abstracts of international conference on spectroscopy and optical techniques in animal and plant biology. Muenster University, Germany, p 98Google Scholar
  364. Saakov VS, Rozengart EV, Suvorov AA, Khovanskikh AE (2003) Specific features of Ca2+ binding by mono-, di-, and trisubstituted guanidine derivates. Dokl Biochem Biophys 390:165–170, Translated from Doklady Akad Nauk 390:693–699PubMedCrossRefGoogle Scholar
  365. Saakov VS, Rozengart EV, Suvorov AA (2004) Spectrophotometric study of specific features of the interaction between Ca2+ and anticoccidial benzylidenaminoguanidine derivatives containing an electron-donoror electron-acceptor substituent. Dokl Biochem Biophys 399:376–379, Translated from Doklady Akad Nauk 399:698–701PubMedCrossRefGoogle Scholar
  366. Saakov VS, Rozengart EV (2005) Application of high-order derivative spectrophotometry for studying the interaction of calcium ions with various anticoccidial aminoguanidine derivatives. Dokl Biochem Biophys 402:214–219, Translated from Doklady Akad Nauk 402;409–414PubMedCrossRefGoogle Scholar
  367. Saakov VS, Rutman GI, Drapkin VZ, Serdyuk AS (1977) Registration of the first and second derivatives of absorption spectra on serial spectrophotometers. In: The report at the second All-Union conference on spectrophotometry, Leningrad-Moscow, September 1977, pp 28–30Google Scholar
  368. Saakov VS, Saidov AS (1965) Some methodological questions of obtaining of high-active preparations of xanthophylls. Uzbek Biol J 4:5–9Google Scholar
  369. Saakov VS, Shiryaev DV (2000) To evolution of hypothesis on location of damage influences of environmental factors in green leaf: the after-effect of gamma- irradiation on energetic of chloroplasts (in Russian). Dokl Akad Nauk 371:280–285Google Scholar
  370. Saakov VS, Shiryaeva GA (1967) To question of the methodology of paper chromatography of carotenoids. Trudy Bot Inst name VL Komarov, ser 4 Exp Bot 18:151–165Google Scholar
  371. Saakov VS, Spotakovskii VS (1973) The method of derivative spectrophotometry in study of structure of photosynthesizing apparatus. (in Russian). In: Methods of complex study of photosynthesis. VIR im. N. I. Vavilova, Leningrad 2:280–295Google Scholar
  372. Saakov VS, Udovenko GV, Barashkova EA et al (1975b) The centres of localization of harmful influences of extreme factors in chloroplasts. In: Abstracts of the 12th international botanical congress, vol 2. Leningrad, 478pGoogle Scholar
  373. Saakov VS, Zhukovskii YuG (2001) Analysis of charge transport in the system R680PheoQA with the pulse-modulated fluorescence method under influence of extremal environmental factors. (in Russian). Povolzh. conference on analytical chemistry. Tez dokl Kazan’, 20–22 Nov, p 41Google Scholar
  374. Samsonova NS, Gak GA (1971) Usage of calculational method for identification of UV-spectra of mixtures of derivatives of xanthogenic acid. (in Russian). Isvest Akad Nauk KazSSR Ser Chim 5:61–66Google Scholar
  375. Sapozhnikov DI, Alkhazov DG, Eidel'man ZM et al (1961) Inclusion of O 18 from heavy-oxygen water into violaxanthin under light influence on plants. (in Russian). Botan zhurn 46:673–676Google Scholar
  376. Sapozhnikov DI, Alkhazov DG, Eidel’man ZM et al (1964) About xanthophylls participation in the photosynthetic oxygen transfer (in Russian). Doklady Akad Nauk SSSR 154:974–977Google Scholar
  377. Sapozhnikov DI, Bronstein IA, Krasovskaya TA (1955) Application of the method of paper chromatography for analysis of pigments of green leaf plastids. Biochimia 20:286–291Google Scholar
  378. Sapozhnikov DI, Bronstein-Popova IA, Krasovskaya TA et al (1956) Quantitative determination of main carotenoids of a green leaf with help of paper chromatography. Sov Plant Physiol 3:487–489Google Scholar
  379. Sapozhnikov DI, Кutyurin VM, Maslova TG et al (1967) About an oxygen exchange of xanthophylls in connection with their role during. Dokl Akad Nauk SSSR 113:465–467Google Scholar
  380. Sato T, Konno H, Tanaka Y et al (1998) Prodigiosins as a new group of H+ Cl symporters that uncouple proton translocators. J Biol Chem 273:21455–21462Google Scholar
  381. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639CrossRefGoogle Scholar
  382. Scharff-Goldhaber G, Goodman A, Silbert MG (1960) Decay of oxygen 20. Phys Rev Lett 4:25CrossRefGoogle Scholar
  383. Schmitt A (1977) Derivativspektroskopie: Eine Einführung mit praktischen Beispielen Angewandte UV-Spektroskopie Bodenseewerk Perkin-Elmer. Überlingen 1977. H. 1:3–7Google Scholar
  384. Schreiber U (1983) Chlorophyll fluorescence yield changes as a tool in plant physiology. I. The measuring system. Photosynth Res 4:361–373CrossRefGoogle Scholar
  385. Schreiber U (1986) Detection of rapid induction kinetics with a new type of high frequency modulated chlorophyll fluorometer. Photosynth Res 9:261–272PubMedCrossRefGoogle Scholar
  386. Schreiber U, Bilger W (1987) Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements, NATO ASI series Plant response to stress. Springer, Heidelberg, pp 27–53Google Scholar
  387. Schreiber U, Bilger W, Neubauer C (1997) Photosynthesis: a comprehensive treatise. Cambridge University Press, Cambridge, pp 320–336Google Scholar
  388. Semenova AV, Saakov VS (1989) The method of factorial experiment as a mode of interpretation of derivative spectra at the analysis native albuminous structures. Sov (Russ) Plant Physiol 36:1207–1212Google Scholar
  389. Semenov IN, Perfilova IL (2000) Chemistry (in Russian—Khimiya). Khimizdat, SPb, 656Google Scholar
  390. Semikhatova OA, Saakov VS (1962) The investigation of the temperature after-effect on intensity of Polygonum sachalinense photosynthesis. Proc Komarov Bot Inst Аcad Sci of the USSR, ser4 Exp Bot 15:25–42Google Scholar
  391. Serdyukova IA, Khabapashev AG, Zenter EM (1957) The investigation of (α, nγ)reaction on oxygen. News Acad Sci USSSR XXI 7:1017–1019Google Scholar
  392. Sestak Z (1958) Paper chromatography of chloroplast pigments. J Chromatogr 1:293–308CrossRefGoogle Scholar
  393. Sestak Z (1959) Paper chromatography of chloroplast pigments. Chromatogr Rev 1:193–208CrossRefGoogle Scholar
  394. Sestak Z (1965) Paper chromatography of chloroplast pigments (Chlorophylls and carotenoids) part 2. Chromatogr Rev 7:65–97PubMedCrossRefGoogle Scholar
  395. Sestak Z (1967) Thin layer chromatography of chlorophylls. Photosynthetica 1:169–292Google Scholar
  396. Shabalin II, Petrova LP (1969) Comparison of absorption spectra measured in different devices SP-4. (in Russian). Zavodskaya Lab 30:551–552Google Scholar
  397. Shaklee KL, Rowe JE (1970) Wavelength modulation spectrometer for studying the optical properties of solids. Appl Opt 9:627–632PubMedCrossRefGoogle Scholar
  398. Sharma VK, Aulakh JS, Malik AK (2003) Fourth derivative spectrophotometric determination of fungicide thiram tetramethyldithiocarbamate in commercial sample and wheat grains using copper (II)sulphate. Electron J Environ Agric Food Chem 2:570–573Google Scholar
  399. Sherma J, Zweig G (1967a) Separation of chloroplast leaf pigments by thin-layer chromatography on cellulose sheets. J Chromatogr 31:439–445CrossRefGoogle Scholar
  400. Sherma J, Zweig G (1967b) Chromatographic separation and identification of chloroplasts pigments in Chlorella pyrenoidosa. J Chromatogr 31:589–591CrossRefGoogle Scholar
  401. Shibata S, Furukawa M, Goto K (1969) Dual-wavelength spectrophotometry. Part 1. General method. Anal Chim Acta 46:271–279CrossRefGoogle Scholar
  402. Shibata S, Furukawa M, Goto K (1973) Dual-wavelength spectrophotometry. Part IV. Qualitative and quantitative analysis by means of first-derivative spectra. Anal Chim Acta 65:49–58CrossRefGoogle Scholar
  403. Shibata S, Furukawa M, Nakashima R (1976) Dual-wavelength spectrophotometry. Part VI. Determination of phenol in industrial waste and the determination of 2,4-dichlorophenol and 2,4,6-tri-chlorophenol in mixtures by first derivative spectra. Anal Chim Acta 81:206–210PubMedCrossRefGoogle Scholar
  404. Shibata S, Goto K, Ishiguro Y (1972) Dual-wavelength spectrophotometry. Part III. Determination of arsenazo I in arsenazo III. Anal Chim Acta 62:305–310CrossRefGoogle Scholar
  405. Shlyk AA (1955) About experimental features of the method of labelled atoms. In: Isotopes in microbiology. Acad Sci, Minsk, pp 70–109Google Scholar
  406. Shlyk AA (1959) Studying of the chlorophyll renewal process by the method of labelled atoms. In: Problems of photosynthesis, Acad Sci, Moscow, pp 179–184Google Scholar
  407. Shlyk AA (1965) Metabolism of chlorophyll in a green plant. Nauka I tehnika, MinskGoogle Scholar
  408. Shlyk AA (1971) Determination of chlorophylls and carotenoids in green leaves (in Russian). In: Biochemical methods in plant physiology. Nauka, Moscow, pp 154–170Google Scholar
  409. Shlyk AA, Prudnikova IV, Gaponenko VI, Fradkin LI (1959) About conditions of determination of specific radioactivity of chlorophyll in thin infinite preparations. Dokl Akad Nauk 3:484–487Google Scholar
  410. Shlyk AA, Rotfarb RM, Lyakhnovich YP (1958) Criteria of radiochemical purity of chlorophyll. Bull Inst of Biology Acad Sci BelSSR 3:115–124Google Scholar
  411. Shneour EA (1961) A study of light-catalysed oxygen transport in photosynthesis. University of California Radiation Laboratory Report UCRL-9900Google Scholar
  412. Shneour EA (1962a) Carotenoid pigment conversion in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 62:534–540PubMedCrossRefGoogle Scholar
  413. Shneour EA (1962b) The source of oxygen in Rhodopseudomonas spheroides pigment Conversion. Biochim Biophys Acta 65:510–511PubMedCrossRefGoogle Scholar
  414. Shneour EA, Calvin M (1962) Isotopic oxygen incorporation in xanthophylls of Spinacia oleracea quantasomes. Nature 196:439–441CrossRefGoogle Scholar
  415. Shpolskii EV (1950) Atomic physics. v1–2 L, Leningrad, LGU, 329p; 465pGoogle Scholar
  416. Shukolyukov SA, Saakov VS (2001) American cockroach, Periplaneta americana, synthesizes carotenoids from their precursor—pyrophosphate [14C] mevalonic acid. Biochimia 66:663–669Google Scholar
  417. Siek TJ, Rieders F (1984) Determination of carboxyhemoglobin in the presence of other blood hemoglobin pigments by visible spectrophotometry. J Forensic Sci 1:39–54Google Scholar
  418. Singleton F, Collier GL (1956) Infra-red analysis by the derivative method. J Appl Chem 6:495–510CrossRefGoogle Scholar
  419. Skujins S (1986a) UV Instruments at work. Varian AG. No UV-31. Pt. 2:1–52Google Scholar
  420. Skujins S (1986b) UV Instruments at work. Varian AG. No UV-31. Pt. 1:1–33Google Scholar
  421. Smirnov BS, Badu EI (1967) The way of differentiation of random time functions with given accuracy at electron modeling machines (in Russian). Trudy Leningr mekhanich in-ta Technical cybernetics 62:142–150Google Scholar
  422. Sneddon J, Bezur L, Michel RG, Ottaway JM (1982) Square-wave wavelength modulation system for use in atomic spectrometry. Anal Proc (Lond) 19:35–37CrossRefGoogle Scholar
  423. Snell AH (1937) A new radioactive isotope of fluorine. Phys Rev 51:16–18Google Scholar
  424. Snellman W (1968) An a scanning method with increases sensitivity in atomic absorption analysis using a continuum primary source. Spectrochim Acta 23B:403–411CrossRefGoogle Scholar
  425. Snellman W, Pains TC, Yee KW et al (1970) Flame emission spectrometry with repetitive optical scanning in the derivative mode. Anal Chem 42:394–398CrossRefGoogle Scholar
  426. Spitsyn PK, Korepanov VE (1980) Modernization of registrating spectrophotometer SP-8 (in Russian). Zhurn Analit Khim 35:2441–2444Google Scholar
  427. Spitsyn PK, L’vov ON (1985) Derivative spectrophotometry of rare-earth elements (in Russian). Zhurn Analit Khim 40:1241–1248Google Scholar
  428. Stahl E, Bolliger HR, Lehnert L (1963) Dünnschichtchromatographie von Carotin und Carotinoidgemischen. Wiss Veröff Dtsch Ges Ernärung Carotine u Carotinoide 9:129–133Google Scholar
  429. Stanishevskaya EM (1962) To the methodology of paper chromatography of chlorophyll a and b. (in Russian) News AN Belorus SSR, seria biol sci 4:52–56Google Scholar
  430. Stanishevskaya EM (1964) Dark biosynthesis of phytol and chlorophyll b in a green plant. PhD Dissertation in Biol Sci Minsk, 137pGoogle Scholar
  431. Strominger D, Hollander JM, Seaborg GT (1958) Table of isotopes. Rev Mod Phys 30:585–630CrossRefGoogle Scholar
  432. Such V, Traveset J, Gonzalo R, Gelpi E (1980) Stability assays of aged pharmaceutical formulas for thiamine and pyridoxine by high performance thin-layer chromatography and derivative ultraviolet spectrometry. Anal Chem 52:412–419PubMedCrossRefGoogle Scholar
  433. Stauffer FR, Sakai H (1968) Derivative spectroscopy. Appl Opt 7:61–65PubMedCrossRefGoogle Scholar
  434. Stern E, Timmonis K (1974) Electronic absorption spectroscopy in organic chemistry. In: Pentin YuA (ed) Mir, Voacow, p 296Google Scholar
  435. Sverdlova OV (1973) Electron spectra in organic chemistry (in Russian). Khimiya, Leningrad, p 248Google Scholar
  436. Talsky G (1994) Derivative spectrophotometry. Law and high orders. VCH Verlaggesellsch. GmbH, Weinheim, p 228CrossRefGoogle Scholar
  437. Talsky G, Mayring L (1978) Über die analoge—Differentiation höher Ordnung zur Feinlauflösung von UV-Visible-Spektren und anderen elektrischen Meßsignalen. Fresenius Y Analyt Chem 292:233–235CrossRefGoogle Scholar
  438. Talsky G, Mayring L, Kreuzer H (1978a) High-resolution, higher-order UV VIS—derivative spectrophotometry. Angew Chem 17:785–799CrossRefGoogle Scholar
  439. Talsky G, Mayring L, Kreuzer H (1978b) Derivativespektrophotometrie höher Ordnung zur Feinauflösung von UV–VIS-Spektren. Angew Chem 9:563–564CrossRefGoogle Scholar
  440. Tarasov KI (1968) Spectral devices (in Russian). Mashinostroenie, Leningrad, p 237Google Scholar
  441. Taulier A, Levillain P, Lemonnier A (1986) Advantage of spectrophotometry in derivative for the dosage plasma and urinary hemoglobin—Comparison with the method using Allen’s correction. Comparison with the method using Allen’s correction. Ann Biol Clin (Paris) 44:242–248Google Scholar
  442. Teilor D (1965) Neutron radiation and activation analysis. Atomizdat, Moscow, 245pGoogle Scholar
  443. Temmer GM, Haydenburg NP (1956) Coulomb excitation of medium-weight nuclei. Phys Rev 104:967–980CrossRefGoogle Scholar
  444. Tereshin GS (1959a) Accuracy of spectrophotometry. Communication 1. Errors when measuring in spectrophotometer (in Russian). Zhurn Analit Khim 14:388–395Google Scholar
  445. Tereshin GS (1959b) Accuracy of spectrophotometry. Communication 2. Difference method and optimal spectrophotometric conditions (in Russian). Zhurn Analit Khim 14:516–522Google Scholar
  446. Ter-Pogossian M, Powers WE (1957) The use of oxygen-15 in the determination of oxygen content in malignant neoplasms. In: Extermann RC (ed) Radioisotopes in scientific research, vol 3. Pergamon, New York, p 625Google Scholar
  447. Trofimov AV (1953) Carbonate variant of the mass-spectral analysis of water oxygen (in Russian). J Analyt, Chimii 8:353–359Google Scholar
  448. Tswett V (1906) Adsorbtionanalyse und chromatographischeMethode. Anwendung auf die Chemie des Chlorophylls. Ber Dtsch Bot Ges 24:384–393Google Scholar
  449. Twyman F, Lothian GF (1933) Conditions for securing accuracy in spectrophotometry. Proc Phys Soc 45:643–662CrossRefGoogle Scholar
  450. Udovenko GV, Baranov AA, Rutman GI, Saakov VS et al (1974) Method of derivative spectrophotometry as the way of assessment of plastid apparatus reaction on extremal influence (in Russian). In: Proceedings of the 1st All-USSR symposium on molecular and applied biophysics. Krasnodar, 10–13 Sept, pp 185–186Google Scholar
  451. Udovenko GV, Saakov VS (1976) Resistenz der getreidepflanzen gegen unguenstige Bedingungen des Milieus: physiologische und genetische Aspekte. Wissenschaftl Zeit der Humboldt Univer zu Berlin Math Naturwiss Reihe 25:776–786Google Scholar
  452. Vartapetian BB (1963) Water relation of plants in experiments with heavy isotope O 18. Proc Symp Water Stress in Plants. p 72Google Scholar
  453. Vartapetian BB (1970) Molecular oxygen and water in cells metabolism. Nauka, Moscow, 254pGoogle Scholar
  454. Vartapetian BB, Dmitrovsky AA, Lemberg IH (1967) A new approach in the study of mechanism of carotene conversion to vitamin A by activation of O18 in the nuclear reaction O 18 (α,nγ)N 21. Abstr. 7th Inter. Congr. Biochem, Tokyo, p 815Google Scholar
  455. Vartapetyan BB, Dmitrovskii AA, Alkhazov DG et al (1966) New approach to study of mechanism of vitamin A biosynthesis from carotene by means of oxygen activation as a result of nuclear reaction O18(α, nγ)Ne21 with help of cyclotron accelerated α-particles (in Russian). Biokhimiya 31:881–886Google Scholar
  456. Vierordt K (1873) Die Anwendung des Spektralapparates zur Photometrie der Absorptionsspectren und zur quantitativen chemischen Analyse. Laupp, Tuebingen, p 170Google Scholar
  457. Vinogradov AP (1962) Isotopes of oxygen and photosynthesis. Timiryazev Reading, Academy of Science of USSR, Moscow, 145pGoogle Scholar
  458. Vinogradov AP, Kutyurin VM, Ulubekova MV et al (1961) Isotope content of the oxygen of photosynthesis and respiration (in Russian). Dokl Akad Nauk SSSR 134:1486–1489Google Scholar
  459. Vinogradov AP, Teys RV (1941) Isotope content of the oxygen of various origin (oxygen of photosynthesis, air, CO2, H2O). (in Russian). Dokl Akad Nauk SSSR 9:497–591Google Scholar
  460. Wahbi AM, Ebel S (1974) The use of the first-derivative curves of absorption spectra in quantitative analysis. Anal Chim Acta 70:57–63CrossRefGoogle Scholar
  461. Weissberger A (1955) Organic solvents. In: Proskauer E, Riddick JA, Toops EE (eds) Organic solvents. Interscience, New York, p 518Google Scholar
  462. Whitten WB, Nairn JA, Pearlstein RMW (1978) Derivative absorption spectroscopy from 5–300 K of bacteriochlorophyll a-protein from Prosthecochloris aestuarii. Biochim Biophys Acta Bioenerg 503:251–262CrossRefGoogle Scholar
  463. Williams JGM (1959) An oscillating-plate differentiator for spectrophotometry. J Scientific Instrum 36:51–52CrossRefGoogle Scholar
  464. Williams BL, Willson K (eds) (1975) Principles and techniques of practical biochemistry. Edward Arnold, London, p 268Google Scholar
  465. Williams DT, Hager RN Jr (1970) The derivative spectrometer. Appl Opt 9:370–373CrossRefGoogle Scholar
  466. Williams JH, Britton G, Goodwin TW (1967) The biosynthesis of cyclic carotenes. Biochem J 105:99–105PubMedCentralPubMedCrossRefGoogle Scholar
  467. Willis HA, Miller RGJ (1959) Difference spectroscopy in the near infra-red. J Appl Chem 3:119–126Google Scholar
  468. Witt HT (1971) Coupling of quanta, electrons, fields, ions and phosphorylation in the Functional membrane of photosynthesis. Results by pulse spectroscopic methods. Quart Rev Biophys 4:365–377CrossRefGoogle Scholar
  469. Witt HT (1979) Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of electric field. Biochim Biophys Acta 505:355–427PubMedCrossRefGoogle Scholar
  470. Witt HT, Müller A, Rumberg B (1961) Experimental evidence for the mechanism of photosynthesis. Nature 191:194–195PubMedCrossRefGoogle Scholar
  471. Yamamoto D, Kiyozuka Y, Uemura Y et al (2000) Cycloprodigiosin hydrochloride, a H+/Cl symporter, induces apoptosis in human breast cancer cell lines. J Cancer Res Clin 126:191–197CrossRefGoogle Scholar
  472. Yamamoto C, Takemoto H, Kuno K et al (1999) Cycloprodigiosin hydrochloride, a new H(+) Cl(—) symporter, induces apoptosis in human and rat hepatocellular cancer cell lines in vitro and inhibits the growth of hepatocellular carcinoma xenografts in nude mice. Hepatology 30:894–902PubMedCrossRefGoogle Scholar
  473. Zaidel’ AN, Ostrovskaya GV, Ostrovskii YI (1972) Technique and practice of spectroscopy (in Russian). Nauka, Moscow, p 375Google Scholar
  474. Zeinalov Y (1974) Obtaining of the first and the second derivatives of absorption spectrum with the spectrophotometer “Unicam SP-800”. Fiziol Rasteniyata, Sofiya 1:17–21Google Scholar
  475. Zucca R, Shen YR (1973) Wide-range wavelength modulation spectrometer. J Appl Opt 12:1293–1298CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Vladimir S. Saakov
    • 1
  • Alexander I. Krivchenko
    • 2
  • Eugene V. Rozengart
    • 2
  • Irina G. Danilova
    • 3
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of ScienceSaint PetersburgRussia
  2. 2.Inst. of Evolutionary Physiology and Biochem.Russian Academy of ScienceSaint PetersburgRussia
  3. 3.Morbid Anatomy LaboratoryResearch Institute of Medical PrimatologySochi (Adler)Russia

Personalised recommendations