Successes in Application of Pulse-Amplitude Modulated Fluorescence

  • Vladimir S. Saakov
  • Alexander I. Krivchenko
  • Eugene V. Rozengart
  • Irina G. Danilova


Fluorescence is used not only in studying the functions of molecules, as demonstrated by the example of photosynthetic reactions (see Chap.  1), but also for an assessment of changes in molecular structure as a consequence of protein interactions with other molecules (e.g., with other proteins or DNA) or the influence of damaging agents such as temperature, light, chemical agents, and radiation (see Chap.  4).


Pulse Amplitude Modulated Fluorescence (PAMF) Saakov Lichtenthaler 1969a FRET Efficiency Photosynthetic Devices 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allakhverdiev SI, Nishyama Y, Suzuki I, Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci U S A 96(10):5862–5867PubMedCentralPubMedCrossRefGoogle Scholar
  2. Aoki K, Ideguchi T, Yamashita J, Horio T (1986) Effects of NaCl and glycerol on photosynthetic oxygen-evolving activity with thylakoid membranes from halophilic green alga Dunaliella tertiolecta. J Biochem 100(5):1223–1230PubMedGoogle Scholar
  3. Armond PA, Schreiber U, Bjorkman O (1978) Photosynthetic acclimation to temperature in desert shrub Larrea divaricata. II. Light harvesting efficiency and electron transport. Plant Physiol 31:411–415CrossRefGoogle Scholar
  4. Baltscheffsky M (1971) Energy transduction in respiration and photosynthesis. Adriatica, Bari, pp 639–648Google Scholar
  5. Baranov AA, Dorokhov BL, Saakov VS (1974) Izv Akad Nauk Mold SSR Ser Biol Khim Nauk (5):29–36Google Scholar
  6. Baranov AA, Saakov VS, Chunaev AA, Kvitko KV (1975) Reactions of chlorophyll formation and light protection in mutants of green algae studied by absorption spectrophotometry (in Russian). Sov Physiol Rastenii 22:702–711Google Scholar
  7. Bassi R, Machold O, Simpson D (1985) Chlorophyll-proteins of two photosystem I preparations from maize. Carlsberg Res Commun 50(3):145–162CrossRefGoogle Scholar
  8. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242, PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bilger W, Bjorkman O (1980) Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Annu Rev Plant Physiol 31:491–543CrossRefGoogle Scholar
  10. Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light induced absorbance changes of fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185PubMedCrossRefGoogle Scholar
  11. Bilger W, Björkman O, Thayer SS (1989) Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophylls cycle components in cotton leaves. Plant Physiol 91:542–551PubMedCentralPubMedCrossRefGoogle Scholar
  12. Bilger W, Heber U, Schreiber U (1988) Kinetic relationship between energy-dependent fluorescence quenching, light scattering, chlorophyll luminescence and proton pumping in intact leaves. Zt Naturforsch 43c:877–887Google Scholar
  13. Bilger W, Johnsen T, Schreiber U (2001) UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants. Plants under stress Special issue. J Exp Bot 52:2007–2014PubMedCrossRefGoogle Scholar
  14. Bolhar-Nordenkampf HR (1997) Rapid light curves. A new method to determine light stress in the field. In: Stress of life congress, 1–5 July 1997, Budapest, Hungary, Abstract N D 4-5, p 117Google Scholar
  15. Bolhar-Nordenkampf HR, Long SP, Öquist C et al (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field. A review of current instrumentation. Funct Ecol 3:497–514CrossRefGoogle Scholar
  16. Bradbury M, Baker NR (1981) Analysis of the slow phases of the in vivo chlorophyll fluorescence induction curve. Changes in redox state of photosystem II electron acceptors and fluorescence emission from photosystem I and II. Biochim Biophys Acta 635:542–551, Куда пропала эта ссылкаPubMedCrossRefGoogle Scholar
  17. Briantais JM, Vernotte C, Krause GH, Weis E (1986) Chlorophyll a fluorescence of higher plants: chloroplasts and leaves. In: Govindjee, Amesz J, Fork D (eds) Light emission by plant and bacteria. Academic, Orlando, pp 539–583Google Scholar
  18. Bukhov NG, Heber U, Shuvalov VA (2001a) Energy dissipation in photosynthesis: quenching of chlorophyll fluorescence in reaction centers and antenna complexes. Planta 212:749–758PubMedCrossRefGoogle Scholar
  19. Bukhov NG, Heber U, Shuvalov VA, Carpentier R (2001b) Non-photochemical dissipation of excited states in photosystems 1 and 2 in chloroplasts: mechanisms of protection from photoinhibition. Vestnik (Herald) 2:17–19Google Scholar
  20. Bungard RA, Ruban AV, Hibberd JM et al (1999) Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proc Natl Acad Sci U S A 97:1135–1139CrossRefGoogle Scholar
  21. Cantor ChR, Schimmel PR (1980) Biophysical chemistry. Part II: Techniques for the study of biological structure and function. Freeman, San FranciscoGoogle Scholar
  22. Chauhan VS, Singh V, Singh S, Bisen PS (2001) Regulation of sodium influx in the NaCl-resistant (NaCl(r)) mutant strain of the cyanobacterium Anabaena variabilis. Curr Microbiol 42:100–105PubMedCrossRefGoogle Scholar
  23. Chen R, Edelhock F (eds) (1976) Biochemical fluorescence concepts. Dekker, New YorkGoogle Scholar
  24. Danilova IG, Shevelev IV, Isaev-Ivanov VV et al (2005) Molecular bases of regulation of the enzymatic activity of bovine pancreatic deoxyribonuclease I as determined by laser correlation and fluorescence spectroscopy. Biophysics (Biofizika translated into English from Russian) 50(1):43–55Google Scholar
  25. Demming-Adams B (1990) Carotenoids and photoprotection of plants: a role for xanthophylls zeaxanthin. Biochim Biophys Acta 1020:1–24CrossRefGoogle Scholar
  26. Demming-Adams B, Adams WW III (1990) The carotenoid zeaxanthin and “high-energy state quenching” of chlorophyll fluorescence. Photosynth Res 25:187–197CrossRefGoogle Scholar
  27. Demming-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626CrossRefGoogle Scholar
  28. Demming-Adams B, Adams WW (1996) The role of xanthophylls cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26CrossRefGoogle Scholar
  29. Demming-Adams B, Adams WW III, Heber U et al (1990) Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts. Plant Physiol 92:293–301CrossRefGoogle Scholar
  30. Demming-Adams B, Winter K, Czygan FC et al (1989) Photosynthetic characteristics and the ratios of chlorophyll, β-carotene, and the components of xanthophylls cycle upon a sudden increase in growth light regime in several plant species. Bot Acta 102:319–325CrossRefGoogle Scholar
  31. Demming-Adams B, Winter K, Krüger A, Czygan FC (1987) Photoinhibition and zeaxanthin formation in intact leaves. Plant Physiol 84:218–244CrossRefGoogle Scholar
  32. Dietz KJ, Schreiber U, Heber U (1985) The relationship between the redox state of QA and photosynthesis in leaves at various carbon-dioxide, oxygen and light regimes. Planta 166:219–226PubMedCrossRefGoogle Scholar
  33. Diner B (1974) Cooperativity between photosystem II centers at the level of primary electron transfer. Biochim Biophys Acta 368(3):371–385PubMedCrossRefGoogle Scholar
  34. Dobretsov GE (1987) The study of interaction of biologically active compounds with membranes by the method of fluorescent probes. In: Sviderskii VL, Leont’ev VG, Saakov VS (eds) Spectroscopic methods of research in physiology and biochemistry. Collection of research papers. Nauka, Leningrad, pp 3–12 (in Russian)Google Scholar
  35. Doskoch JaE, Parkhomenko, Tarusov BN (1971) Spontaneous and induced chemiluminescence of spores of thermophilic microorganisms in relation to their thermal stability. Mikrobiologia 40:849–857Google Scholar
  36. Dzhanumov DA, Veselovsii VA, Tarusov BN, Marenkov VS, Pogosyan SJ (1970) Temperature resistance of plants studied by methods of spontaneous and photoinduced chemiluminescence. Sov Physiol Rastenii 18:588–593Google Scholar
  37. Egorova EA, Bukhov NG, Krendeleva TE, Rubin AB, Wiese K, Heber U (2001) Ways of the electron transfer from the photosystem 1 to the photosystem 2 in intact leaves. Vestnik Bashkir Univ 2:35–37Google Scholar
  38. Fork DC, Hiyama T (1973) The photochemical reactions of photosynthesis in an alga exposed to extreme conditions. Carnegie Inst Wash YBK 72:384–388Google Scholar
  39. Fork DC, Mohaty P, Hoshina S (1985) The detection of early events in heat disruption of thylakoid membranes by delayed light emission. Physiol Veget 23:511–521Google Scholar
  40. Foyer CH, Dujardyn M, Lemoine EY (1990b) Turnover of the xanthophylls cycle during photoinhibition and recovery. In: Baltscheffsky M (ed) Current research in photosynthesis, vol 2. Kluwer, Dordrecht, pp 491–494Google Scholar
  41. Foyer CH, Furbank R, Harbinson J, Horton P (1990a) The mechanisms contributing to photosynthetic control of electron transport by carbon assimilation in leaves. Photosynth Res 25:83–100PubMedCrossRefGoogle Scholar
  42. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92CrossRefGoogle Scholar
  43. Goncharova NV, Sheverdov VV (1993) III S’ezd Vseros. Ob–va fiziolog. Rastenii (III Congress of the All-Russia 128 Saakov V.S Society of Plant Physiologists), vol 8, St. Petersburg, p 788Google Scholar
  44. Gonzalez FJ, Moreno MO (1983) Report of Junta de energia nuclear. Madrid, 30pGoogle Scholar
  45. Gounaris K, Brain APR, Quinn PJ, Williams WP (1983) Structural and functional changes associated with heat-induced phase-separations of non-bilayer lipids in chloroplast thylakoid membranes. FEBS Lett 153:47–52CrossRefGoogle Scholar
  46. Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714PubMedCrossRefGoogle Scholar
  47. Guex N, Peitsch MC (1997) Swiss-Model and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723, PubMedCrossRefGoogle Scholar
  48. Havaux M (1988) Effects of temperature on the transitions between state-1 and state-2 intact maize leaves. Plant Physiol Biochem 26:245–251Google Scholar
  49. Havaux M, Devaud A (1994) Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of photosystem II activity – preferential inactivation of photosystem I. Photosynth Res 40:75–92PubMedCrossRefGoogle Scholar
  50. Heber U, Bukhov NG, Shuvalov VA, Kobayashi Y, Lange OL (2001) Protection of the photosynthetic apparatus against damage by excessive illumination in homoiohydric leaves and poikilohydric mosses and lichens. J Exp Bot 52(363):1999–2006PubMedCrossRefGoogle Scholar
  51. Heber U, Santarius KA (1973) Cell death by cold and heat and resistance to extreme temperatures. Mechanisms of hardening and dehardening. In: Precht H, Christophersen J, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin, pp 232–263Google Scholar
  52. Henckel PA (1954) Sur la résistance des plantes à la sécheresse et les moyens de la diagnostiquer et de l΄augmenter. In: Essais de botanique. V 2. Editions de l΄Académie des sci. de L΄URSS, Moscow-Leningrad, pp 436–453Google Scholar
  53. Hoshida H, Tanaka Y, Hibino T et al (2000) Plant Mol Biol 43(1):103–111PubMedCrossRefGoogle Scholar
  54. Ignacimuthu S, Babu CR (1989) Improving productivity promoting traits in wild and cultivated urd and mung beans. J Nucl Agr Biol 18:6–12Google Scholar
  55. Isaev-Ivanov VV, Kozlov MG, Baitin DM et al (2000) Fluorescence and excitation Escherichia coli RecA protein spectra analyzed separately for tyrosine and tryptophan residues. Arch Biochem Biophys 376:124–140PubMedCrossRefGoogle Scholar
  56. Ivanova SV, Kirpichenok LN (2008) Application of fluorescence methods in medicine. Med News 12:56–61 (in Russian)Google Scholar
  57. Jajoo A, Bharti S, Govindjee (1998) Inorganic anions induce state changes in spinach thylakoid membranes. FEBS Lett 434:193–196PubMedCrossRefGoogle Scholar
  58. James WO (1953) Plant respiration. Clarendon, Oxford, 439p.Google Scholar
  59. Junowicz E, Spencer JH (1973) Studies on bovine pancreatic deoxyribonuclease A. II The effect of different bivalent metals on the specificity of degradation of DNA. Biochim Biophys Acta 312:72–84PubMedCrossRefGoogle Scholar
  60. Klimov VV, Krasnovskii AA (1981) Pheophytin as a primary electron acceptor in photosystem II reaction center. Photosynthetica 15:592–609Google Scholar
  61. Klimov VA, Krasnovsky AA (1977) Reduction of pheophytin in the primary light reaction of photosystem II. FEBS Lett 82:183–186PubMedCrossRefGoogle Scholar
  62. Kochetov YuB, Tarusov BN (1975) The effect of heavy metal salts on the ultraweak chemiluminescence of aquatic plants leaves. Biophysics (Biofizika) 20:537–539Google Scholar
  63. Kochetov Yu, Tarusov BN (1977) Chemiluminescence of plant tissue preserved in aldehydes and exposed to the salt of heavy metals. Biophysics (Biofizika) 22:872–875Google Scholar
  64. Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plant 74:566–574CrossRefGoogle Scholar
  65. Krause GH, Somersalo S (1989) Fluorescence as a tool in photosynthesis research: application in studies of photoinhibition? Cold acclimation and freezing stress. Philos Trans R Soc Lond B 323:281–293CrossRefGoogle Scholar
  66. Krause GH, Weis E (1984) Chlorophyll fluorescence as a tool in plant physiology. II Interpretation of fluorescence signals. Photosynth Res 5:139–157PubMedCrossRefGoogle Scholar
  67. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 43:313–349CrossRefGoogle Scholar
  68. Kreps EM (1976) About the morpho-physiological and biochemical evolutions. Zh Evol Biokhim Fiziol 12(6):493–502PubMedGoogle Scholar
  69. Lahm A, Suck D (1991) DNase I-induced DNA conformation. 2 A structure of a DNase I-octamer complex. J Mol Biol 222:645–667PubMedCrossRefGoogle Scholar
  70. Lakowicz JR (ed) (1983) Principles of fluorescence spectroscopy. Springer, LondonGoogle Scholar
  71. Lang M (1994) Blue, green and red fluorescence signatures and images of tobacco leaves. Bot Acta 107:230–236CrossRefGoogle Scholar
  72. Lichtenthaler HK (ed) (1988a) Application of chlorophyll fluorescence. Kluwer, Dordrecht, 356 pGoogle Scholar
  73. Lichtenthaler HK (1988b) In vivo chlorophyll fluorescence. In: Lichtenthaler HK (ed) Application of chlorophyll fluorescence. Kluwer, Dordrecht, P. 129–142Google Scholar
  74. Lichtenthaler HK (ed) (1996a) Vegetation stress. Fischer, Stuttgart, 656pGoogle Scholar
  75. Lichtenthaler HK (1996b) Vegetation stress: an introduction to the stress concept in plant. J Plant Physiol 148:4–14CrossRefGoogle Scholar
  76. Lichtenthaler HK (2000) Discoveries in plant biology, vol 3. World Scientific, Singapore, pp 141–161CrossRefGoogle Scholar
  77. Lichtenthaler HK, Rinderle UR (1988) The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit Rev Anal Chem 19(Suppl 1):S29–S85CrossRefGoogle Scholar
  78. Malkin S, Siederer Y (1977) Delayed luminescence. In: Barber J (ed) Primary process of photosynthesis. Elsevier, Amsterdam, pp 349–432Google Scholar
  79. McSwain BD, Tsujimoto HY, Arnon DI (1976) Effects of magnesium and chloride ions on light-induced electron transport in membrane fragments from a blue-green alga. Biochim Biophys Acta 423(2):313–322PubMedCrossRefGoogle Scholar
  80. Mohammed GH, Binder WD, Gilles SL (1996) Chlorophyll fluorescence: a review of its practical forestry applications and instrumentation. Scand J Forest Res 10:383–410CrossRefGoogle Scholar
  81. Monson RK, Stiham MA, Williams GJ et al (1982) Temperature dependence of photosynthesis in Agropyron-smithii Rydb 1 Factors affecting net CO2 uptake in intact leaves and contribution from ribulose-1,5-bisphosphate carboxylase measured in vivo and in vitro. Plant Physiol 69:921–928PubMedCentralPubMedCrossRefGoogle Scholar
  82. Nytek Instruments (2004) Fluorofory u fluorestsentnye zondy (Fluorophores and fluorescent probes). (In Russian)
  83. Oefner C, Suck D (1986) Crystallographic refinement and structure of DNase I at 2 A resolution. J Mol Biol 192:605–632PubMedCrossRefGoogle Scholar
  84. Oshima RG, Price PAJ (1974) Effect of sulfate on the activity and the kinetics of deoxyribonucleic acid degradation by porcine spleen deoxyribonuclease. Biol Chem 249:4435–4438Google Scholar
  85. Perelygin VV, Tarusov BN (1966) Flash ultra weak radiation during damage of living tissue. Biophysika 11:539–541Google Scholar
  86. Peterman EJ, Cradinaru CC, Calkoen F et al (1997) Xanthophylls in light-harvesting complex II of higher plants: light harvesting and triplet quenching. Biochemistry 36:12208–12215PubMedCrossRefGoogle Scholar
  87. Popov GA, Tarusov BN (1964) Kinetics of chemi-luminescence during decomposition of hydrogen peroxide with water-salt animal liver extracts. Biofizika 9:528–529PubMedGoogle Scholar
  88. Richter M, Gross R, Böthin B, Wild A (1994) Zeaxanthin dependent and zeaxanthin independent changes in nonphotochemical energy dissipation. J Plant Physiol 143:495–499CrossRefGoogle Scholar
  89. Rinderle U, Haitz M, Lichtenthaler HK, Kähny DH, Shi Z, Wiesbeck W (1988) Correlation of radar reflectivity and chlorophyll fluorescence of forest trees. In: Remote sensing: moving towards the 21st century: 1988 International geoscience and remote sensing symposium: IGARSS’88, vol 3, 12–16 September, Edinburgh, pp 1343–1346. doi: 10.1109/IGARSS.1988.569462
  90. Rozengart EV, Saakov VS (2002) The chelating ability of the anti-coccidial drug 1,3-bis(p-chlorbensilidenoamino)guanidine: the Complexes with Ca2+ and La3+. Dokl Biochem Biophys 385:219–223, Translated from Russian Dokl RAN 385:699–703PubMedCrossRefGoogle Scholar
  91. Rubin AB (1987) Biophyzika. Volume 1: Theoretical biophysics, 319p; Volume 2: Biophysics of cellular processes, 302p. Publishing House Higher School, MoscowGoogle Scholar
  92. Rubin AB (1997) Primary processes of photosynthesis. Soros Educ Mag 10:79–84Google Scholar
  93. Rubin AB (2000a) Biophysical methods in ecological monitoring. Soros Educ Mag 6:1–9Google Scholar
  94. Rubin AB (2000b) Biophysics, 2nd edn. Volume 1: Theoretical biophysics, 448p (1999–2000), volume 2: Biophysics of cellular processes, 467p (2000). Publishing House of Moscow University, MoscowGoogle Scholar
  95. Rubin AB (2004) Biophysics, 3rd edn. Volume 1: Theoretical biophysics, 462p (2004), volume 2: Biophysics of cellular processes, 469p (2004). Publishing House of Moscow University, MoscowGoogle Scholar
  96. Saakov VS (1959) The comparative characteristic of gasometric and radiometric methods of estimation of photosynthesis intensity. Vestn Leningrad Univ Ser 4 21(4):42–50Google Scholar
  97. Saakov VS (1960) Some questions of the methodology of manometric determination of photosynthesis of terrestrial plants leaves (in Russian). Vest Leningrad Univ Ser 4 4(21):33–41Google Scholar
  98. Saakov VS (1961) Einige methodische Probleme der manometrischen Bestimmung der Photosynthese an Blattern von Landpflanzen. Sowjetwiss Naturwissenschaftl Beitrage 9:53–962, Translated from Russian into German from Vestn Len Univ, Ser Biol, 1960, (21): 33–41Google Scholar
  99. Saakov VS (1963) To mechanism of the light reaction of xanthophylls in chloroplasts suspension (in Russian). Bot Zhurn 48:888–891Google Scholar
  100. Saakov VS (1965) On the possible role of xanthophylls in oxygen transfer during photosynthesis. Sov Plant Physiol 12:377–385Google Scholar
  101. Saakov N (1971) Reactions of pigment system of Euglena under conditions of artificially created heterotrophism. Dokl Akad Nauk USSR 204:744–747Google Scholar
  102. Saakov VS (1971a) Relation between xanthophylls deepoxidation reaction and electron transport chain of photosynthesis (in Russian). Dokl Akad Nauk SSSR 201:1257–1260Google Scholar
  103. Saakov VS (1971b) Correlation between light-induced xanthophyll conversions and electron transport chain of photosynthesis (in Russian). Sov Physiol Rastenii 18:1088–1097Google Scholar
  104. Saakov VS (1972) [Reactions of the pigment system of Euglena under conditions of artificially created heterotrophism]. Dokl Akad Nauk SSSR 204:744–747PubMedGoogle Scholar
  105. Saakov VS (1973) Die durch Hemmstoffe induzierten Umwandlungen der Karotinoidpigmente in Pflanzenzellen Der Einfluss einiger Inhibitoren auf den Chlorophyllgehalt in gruenen Zellen. Biochem Physiol Pflanzen 164:199–227Google Scholar
  106. Saakov VS (1976) Research of damaging influences localization centers in chloroplast membranes with methods of molecular spectroscopy (in Russian). Trudy Prikl Bot Genet Selektsii L VIR 57:17–34Google Scholar
  107. Saakov VS (1987) Spectrophotometrical methods in study of reactions of plant plastid apparatus under extremal influences (in Russian). In: Svidersky VL, Saakov VS (eds) Spectrophotometrical research methods in physiology and biochemistry. Nauka, Leningrad, pp 115–126Google Scholar
  108. Saakov VS (1990) Die Anwendung der Lumineszenz, der Ableitungen der Spektrophotometrie und der photoakustischen Spektroskopie zur Charakterisierung von Schaeden in Chlorophyll-Protein Komplex der Chloroplasten. Colloq Pflanzenphysiol d Humboldt-Universitaet zu Berlin 14:163–170Google Scholar
  109. Saakov VS (1992) Die Anwendung der Luminescenz, der Ableitungen der Spektrophotometrie und der photoakustischen Spektroskopie zur Charakterisierung von Scheaden in Chlorophyll-Protein-Komplex der Chloroplasten. Colloq Pflanzenphysiol der Humboldt Universitaet (HU) zu Berlin 14:163–170Google Scholar
  110. Saakov VS (1993a) The effect of gamma-radiation on the stability of energetics and pigment system of the photosynthetic apparat. (in Russian). Dokl Akad Nauk 328:520–523Google Scholar
  111. Saakov VS (1993b) The inhibition of kinetics of light deepoxidation of violaxanthin and the activity of xanthophyll cycle under the influence of gamma-radiation (in Russian). Dokl Akad Nauk 329:96–99Google Scholar
  112. Saakov VS (1993c) The alteration of phenylalanine optical-spectra under its radiational chemical conversions (in Russian). Dokl Akad Nauk 333:661–665PubMedGoogle Scholar
  113. Saakov VS (1993d) The influence of gamma-radiation on the kinetic of changes in violaxanthin content and on the xanthophyll cycle. Photosynthetica 28:439–445Google Scholar
  114. Saakov VS (1994) Peculiarities of the optical-spectra changes of tyrosine under its radiolysis. (in Russian). Dokl Akad Nauk 334:517–521PubMedGoogle Scholar
  115. Saakov VS (1996) Application of the PAM-method for estimating the damage of photosynthetic apparatus of chloropalsts during gamma-irradiation. In: Abstracts of international conference on spectroscopy and optical technigues in animal and plant biology, Münster Universität, BRD, Sept 30–Okt 3, p 96Google Scholar
  116. Saakov VS (1998a) Some mechanisms of adaptation to stress in plant and animal cells. Doklady Biol Sci 361:371–375, Translated from Doklady Akad Nauk 361:568–572Google Scholar
  117. Saakov VS (1998b) Specific changes of modulated fluorescence F-o and F-m under dithiothreitol influence on zeaxanthin content (in Russian). Dokl Akad Nauk 361:830–833Google Scholar
  118. Saakov VS (2000a) Characteristics of structural stability of the photosystem II light-harvesting complex exposed to gamma-radiation. Dokl Biochem Biophys 373:123–128, Translated from Doklady Akad Nauk 373:112–116Google Scholar
  119. Saakov VS (2000b) Changes of gamma-globulin optical spectra and possible mechanisms of its physiological action in organism under gamma-irradiation (in Russian). Dokl Akad Nauk 370:562–567Google Scholar
  120. Saakov VS (2000c) Energetics of green cell stress resistance: a concept. Dokl Biol Sci 375:613–620, Translated from Doklady Akademii Nauk 375:278–285PubMedCrossRefGoogle Scholar
  121. Saakov VS (2000d) A coupling between albumin high orders derivative spectra changes and the precision of detection of albumin globulin coefficient under gamma-irradiation shock (in Russian). Dokl Akad Nauk 371:548–552Google Scholar
  122. Saakov VS (2000e) To evolution of hypothesis on location of damage influences of environmental factors in green leaf: the after-effect of gamma-irradiation on energetic of chloroplasts (in Russian). Dokl Akad Nauk 371:280–285Google Scholar
  123. Saakov VS (2001a) New aspects of the concept of energy mechanisms determining stability of prokaryotic and eukaryotic green cells Effects of negative temperature on kinetic parameters of modulated pulse fluorescence (F0, Fmax, and Fv). Dokl Biochem Biophys 381:378–383, Translated from Doklady Akad Nauk 381:126–131PubMedCrossRefGoogle Scholar
  124. Saakov VS (2001b) Materials to justification of energetic bases of the theory of tolerance of the photosynthetic apparatus of Procaryota and Eucaryota cells (in Russian). Vestn Bashkir Univ PH Bashkir UniverUfa specific issue 2(v1):73–76Google Scholar
  125. Saakov VS (2002a) High-temperature stress-related changes in the harmonics Fo, Fm, and Fv of pulse-amplitude modulated fluorescence signals: locating thermal damage in reaction centers of photosystem II. Dokl Biochem Biophys 382:4–9, Translated from Doklady Akad Nauk 382:118–123PubMedCrossRefGoogle Scholar
  126. Saakov VS (2002b) Effect of Na+, Cl, and SO4 2− ions on changes in the kinetic parameters of modulated pulse fluorescence: the characteristics of the phototrophic function tolerance of photosystem 2 under the conditions of salinization. Dokl Biochim Biophys 385:228–234, Translated from Dokl Akad Nauk 2002, 385:823–829CrossRefGoogle Scholar
  127. Saakov VS (2002c) Specific effects of gamma-radiation on the fine structure of the photosynthetic apparatus: evaluation of the character of disturbances in vivo using high-order derivative spectrophotometry. Dokl Biochem Biophys 387:313–319, Translated from Doklady Akad Nauk 387:265–271PubMedCrossRefGoogle Scholar
  128. Saakov VS (2003a) Specific effects induced by gamma-radiation on the fine structure of the photosynthetic apparatus: evaluation of the pattern of changes in the high-order derivative spectra of a green leaf in vivo in the red spectral region. Dokl Biochem Biophys 388:22–28, Translated from Doklady. Akad. Nauk. 388:265–271PubMedCrossRefGoogle Scholar
  129. Saakov VS (2003b) Association of the mechanisms of green cell resistance with changes in the parameters of modulated pulse fluorescence under the exposure to atmospheric drought: localization of damage in the link P680QA. Dokl Biochem Biophys 388:8–14, Translated from Doklady Akad. Nauk. 388:123–130PubMedCrossRefGoogle Scholar
  130. Saakov VS (2004) The coupling of disturbance of an electron transport in link of a primary electron acceptor under the influence of low temperature. In: Materials of international symposium of plant physiologists “Problems of phytophysiology of a north”, Petrozavodsk, 23–29 Sept 2004, pp 157–158Google Scholar
  131. Saakov VS, Baranov AA (1987) Spektroskopicheskie metody issledovaniya v fiziologii i biokhimii (Spectroscopic methods in physiology and biochemistry) (in Russian). Nauka, Leningrad, pp 97–126Google Scholar
  132. Saakov VS, Baranov AA, Hoffmann P (1978) Pigmentphysiologischen Untersuchungen mit Hilfe der Derivativ-Spektrophotometrie. Studia Biophys 70:129–142Google Scholar
  133. Saakov VS, Barashkova EA (1999) To development of a hypothesis about localization of extreme factors damaging influences of an environmental affairs in chloroplast. In: Materials of 4th congress of All Union Society of Plant Physiologists, Moscow, 4–9 Oct 1999Google Scholar
  134. Saakov VS, Barashkova EA, Kozhushko NN et al (1975) The centres of localization of harmful influences of extreme factors in chloroplasts. In: Abstr of XII Intern Botan Congr Leningrad II, p 477Google Scholar
  135. Saakov VS, Barashkova EA, Rutman GI, Boyarshinova GA et al (1976) The centers of localization of damaging influences in plants chloroplasts. In: Materials of All Union meeting “Biochemical aspects of plants resistance to adverse factors of an environmental affairs”, Irkutsk, 20–26 Sept 1976, pp 93–95Google Scholar
  136. Saakov VS, Drapkin VZ, Krivchenko AI, Rozengart EV, Bogachev TV, Knyazev MN (2013) Derivative spectrophotometry and electron-spin resonance spectroscopy for ecological and biological questions. Springer, Heidelberg, 357pCrossRefGoogle Scholar
  137. Saakov VS, Hoffmann P (1974) Zur Bedeutung der Karotinoide fuer die Photosynthese unter besonderer Beruecksichtigung der Photophosphorylierung. Wiss Zt d Humboldt-Universitaet Zu Berlin Math-Nat Reihe Bd XXIII 6:577–580Google Scholar
  138. Saakov VS, Lang M, Schindler C, Lichtenthaler HK (1993) Changes in chlorophyll fluorescence and photosynthetic activity of French bean leaves induced by gamma radiation. Photosynthetica 27:369–383Google Scholar
  139. Saakov VS, Leontjev VG (1988) Untersuchungen ueber die molekularspektro-photometrische Reaktion des pflanzliche Photosynthese-apparates auf Stressbedingungen. Colloq Pflanzenphysiol d Humboldt-Univer zu Berlin 12:143–156Google Scholar
  140. Saakov VS, Nazarova GD (1972) Reactions of the pigment system of Euglena under conditions of artificially created heterotrophism. Dokl Akad Nauk 204:744–747Google Scholar
  141. Saakov VS, Nazarova GD, Myl’nikova EV, Alekseeva NR (1971a) Influence of inhibitors of photosynthesis on a pigment system (in Russian). Biochem Biophys Photosynthesa Irkutsk SIFIBR SO AN SSSR 28–36Google Scholar
  142. Saakov VS, Nasarova GD, Myl’nikova EV, Alekseeva NR (1971b) Reactions of xanthophylls metabolism in plants (in Russian). Biochem Biophys Photosynthesa Irkutsk SIFIBR SO AN SSSR 43–51Google Scholar
  143. Saakov VS, Shiryaev AV (2000) To evolution of hypothesis on location of damage influences of environmental factors in green leaf: the after-effect of gamma-irradiation on energetic of chloroplasts (in Russian). Dokl Akad Nauk 371:280–285Google Scholar
  144. Sakamoto A, Murata A, Murata N (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019PubMedCrossRefGoogle Scholar
  145. Sakamoto A, Murata A, Murata N (1999) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold (corrections to vol 38, pp 1011, 1998). Plant Mol Biol 40:195–198CrossRefGoogle Scholar
  146. Schindler C, Lichtenthaler HK (1990) In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms, vol 5. Wiley-Liss, Dordrecht, pp 4253–4258Google Scholar
  147. Schindler C, Lichtenthaler HK (1996) Photosynthetic CO2-assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and a cloudy day. J Plant Physiol 148:399–412CrossRefGoogle Scholar
  148. Schreiber U (1983) Chlorophyll fluorescence yield changes as a tool in plant physiology. I. The measuring system. Photosynth Res 4:361–373CrossRefGoogle Scholar
  149. Schreiber U (1986) Detection of rapid induction kinetics with a new type of high frequency modulated chlorophyll fluorometer. Photosynth Res 9:261–272PubMedCrossRefGoogle Scholar
  150. Schreiber U (1998) Chlorophyll fluorescence: new instruments for special applications. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol 5. Kluwer, Dordrecht, pp 4253–4258Google Scholar
  151. Schreiber U, Bery JA (1977) Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta 136:233–238PubMedCrossRefGoogle Scholar
  152. Schreiber U, Bilger W (1987) Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. In: Tenhungen JD, Catarino FM, Lange OL, Oeschel WC (eds) Plant responses to stress: functional analysis in Mediterranean ecosystems, vol 15, NATO ASI subseries G: Ecological sciences. Springer, New York, pp 27–53CrossRefGoogle Scholar
  153. Schreiber U, Bilger W (1993) Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. Prog Bot 54:151–173Google Scholar
  154. Schreiber U, Bilger W, Hormann H, Neubauer C (1997) Chlorophyll fluorescence as a diagnostic tool: basics and some aspects of physiological relevance. In: Raghavendra AS (ed) Photosynthesis: a comprehensive treatise. Cambridge University Press, Cambridge, pp 320–336Google Scholar
  155. Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis, vol 100, Ecological studies. Springer, Heidelberg, pp 49–70Google Scholar
  156. Schreiber U, Neubauer C (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination. II. Partial control by the photosystem II donor side and possible ways of interpretation. Zt Naturforsch 42c:1255–1264Google Scholar
  157. Schreiber U, Neubauer C (1990) O2-dependent electron flow, membrane energization and mechanisms of nonphotochemical quenching of chlorophyll fluorescence. Photosynth Res 25:279–293PubMedCrossRefGoogle Scholar
  158. Semikhatova OA, Saakov VS (1962) The study of high temperature after- effect on the photosynthesis intensity of Polygonum sachalinense (in Russian). Tr Bot Inst Akad Nauk SSSR Ser IV Eksp Bot 15:25–42Google Scholar
  159. Snel JFH, van Kooten O (eds) (1990) The use of chlorophyll fluorescence and other noninvasive spectroscopic techniques in plant stress physiology. Photosynth Res (Special Issue) 25(3):146–332Google Scholar
  160. Strehler BL, Arnold WA (1951) Light production by green plants. J Gen Physiol 34:809–811PubMedCentralPubMedCrossRefGoogle Scholar
  161. Tarusov BN (1966) On the 70th anniversary of laureate of the Nobel prize of academician NN Semenov. The influence of NN Semenov and his school on the development of radiation biophysics. Radiobiologia 6:161–165Google Scholar
  162. Tarusov BN, Polivoda AI, Zhuravlev AI (1962) Ultraweak spontaneous luminescence in animal tissue. Tsitologiia 4:696–699PubMedGoogle Scholar
  163. Timofeev-Ressovsky NV, Savich AV, Shalnov MI (1981) Introduction in molecular radiobiology. Medicine, MoscowGoogle Scholar
  164. Tuba Z, Lichtenthaler HK, Czintalan Z et al (1994) Reconstitution of chlorophylls and photosynthetic CO2 assimilation in the desiccated poikilochlorophyllous plant Xerophyta scabrida upon rehydration. Planta 192:414–420CrossRefGoogle Scholar
  165. Udovenko GV (ed) (1976) Methods of assessment of plant resistance to unfavorable environmental conditions. Publishing House “Kolos”, Leningrad, 340pGoogle Scholar
  166. Udovenko GV, Saakov VS (1976) Resistenz der getreidepflanzen gegen unguenstige Bedingungen des Milieus: physiologische und genetische Aspekte. Wissenschaftl Zeit der Humboldt Univer zu Berlin Math Naturwiss Reihe 25:776–786Google Scholar
  167. van Kooten O, Snel JFH (1990a) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150Google Scholar
  168. van Kooten O, Snel JFH (eds) (1990b) Photosynth Res 25(Spl Iss):147–150Google Scholar
  169. Veselovskii VA (1987) Хемилюминесцентный метод анализа в биологии. In: Svidersky VL, Saakov VS (eds) Spectrophotometrical research methods in physiology and biochemistry. Nauka, Leningrad, pp 34–38Google Scholar
  170. Veselovskii VA, Leshinskaya LV, Tarusov BN et al (1976) Effect of illumination of cotton leaves on heat resistance of the photosynthetic apparatus. Sov Fiziol Rast 23:399–403Google Scholar
  171. Weis E (1981a) Reversible effects of high, sublethal temperatures on light induced light-scattering changes and electrochromic pigment absorption shift in spinach leaves. Zt Pflanzenphysiologie 101:169–178CrossRefGoogle Scholar
  172. Weis E (1981b) Reversible effects of high, sublethal temperatures on light induced light-scattering changes and electrochromic pigment absorption shift in spinach leaves. Z Pflanzenphysiol 101:169–178CrossRefGoogle Scholar
  173. Weston SA, Lahm A, Suck D (1992) X-ray structure of the DNase I-d(GGTATACC)2 complex at 2.3 A resolution. J Mol Biol 226:1237–1256PubMedCrossRefGoogle Scholar
  174. Wydrzynski T, Gross EL, Govindjee (1975) Effects of sodium and magnesium cations on the “dark-” and light-induced chlorophyll a fluorescence yields in sucrose-washed spinach chloroplasts. Biochim Biophys Acta 376:151–161PubMedCrossRefGoogle Scholar
  175. Yamamoto HY (1995) Xanthophyll cycle. Methods Enzymol 110:303–312CrossRefGoogle Scholar
  176. Yamamoto HY, Nakayama TOM, Chichester CO (1962) Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys 97:168–173PubMedCrossRefGoogle Scholar
  177. Zakarian AE, Tarusov BN (1966) Inhibition of chemiluminescence of the blood plasma in malignant growth. Biofizika 11:919–921PubMedGoogle Scholar
  178. Zhukovskii YuG, Saakov VS (2002) Re-evaluation of the heterogeneity and specificity of promising antitumoral properties by means of high order derivative spectroscopy (in Russian). Dokl Akad Nauk 386(6):839–844Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Vladimir S. Saakov
    • 1
  • Alexander I. Krivchenko
    • 2
  • Eugene V. Rozengart
    • 2
  • Irina G. Danilova
    • 3
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of ScienceSaint PetersburgRussia
  2. 2.Inst. of Evolutionary Physiology and Biochem.Russian Academy of ScienceSaint PetersburgRussia
  3. 3.Morbid Anatomy LaboratoryResearch Institute of Medical PrimatologySochi (Adler)Russia

Personalised recommendations