Skip to main content

Abstract

In the period of writing our previous books and this present monograph, a group of authors was formed, every one of whom has worked hard for the development of modern methodological approaches in different areas of physical and chemical biology. This has led to a productive working symbiosis of representatives of physiological and physical schools and experts in the field of organic chemistry and the biochemistry of pigments and also in the field of computer data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajzenberg-Selove F, Lauritsen T (1959) Energy levels of light nuclei VI. Nucl Phys 10:340

    Google Scholar 

  • Akhmetzyanov IM, Zhin’ KP, Zinkin VI, Leushina AI (1994) Criteria of ecological safety. The St.-Petersburg centre of science, 31.05.–2.06.1993. Spb.: Poligraf, p 123

    Google Scholar 

  • Aleinikov IM (1974) The role of carotenoids during the photosynthesis process: Avtoref. dissertation. PhD biol. nauk. Kiev.

    Google Scholar 

  • Aleksandrova NN, Mishchenko VT, Poluektov NS, Kucher AA (1982) The derivative spectrophotometry in studying of complex formation of ions of f-elements. Complex of Pr3+ formation with ethylene diamine tetra acetic acid. Dokl AN USSR Ser B (9):23–36

    Google Scholar 

  • Aliev DA, Gusejnova IM, Sulejmanov SJ, Zulfugarov IS (2001) Light-induced biogenesis of chlorophyll-protein complexes in developing wheat thylakoids. Biochemistry 66:610–615

    Google Scholar 

  • Almela L, Garcia AL, Navarro S (1983) Application of derivative spectroscopy to the quantitative-determination of chlorophylls and related pigments. 2. Simultaneous determination of pheophytins-a and pheophytins-b. Photosynthetica 17:216–222

    CAS  Google Scholar 

  • Anderson JM, Blass U, Calvin M (1960) Biosynthesis and possible relations among the carotenoids and between chlorophyll a and b. In: Allen MB (ed) Comparative biochemistry of photoreactive systems. Academic, New York, pp 215–226

    Google Scholar 

  • Anderson JM, Krinsky NI (1972) Protective action of carotenoid pigments against photodynamic damage to liposomes. Photochem Photobiol 18(3):403–408

    Google Scholar 

  • Anderson IC, Robertson DS (1960) Role of carotenoids in protecting chlorophyll from photodestruction. Plant Physiol 35:531–534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Babushkin AA, Bazhulin PA, Korolev FA, Levshin VS (1974) Methods of the spectral analysis. PH Moskow University, Moscow, p 510

    Google Scholar 

  • Balny C, Lange R (1999) Optical spectroscopic techniques in high pressure bioscience. In: Winter W, Jonas J (eds) High pressure molecular science, NATO Science series. Kluwer Academic, Dordrecht, pp 405–422

    Chapter  Google Scholar 

  • Balny C, Saldana JL, Dahan N (1984) High pressure stopped-flow spectrometry at low temperatures. Anal Biochem 139:178–179

    Article  CAS  PubMed  Google Scholar 

  • Balny C, Saldana JL, Dahan N (1987) High pressure stopped-flow spectrometry at subzero temperatures. Anal Biochem 163:309–315

    Article  CAS  PubMed  Google Scholar 

  • Balny C, Saldana JL, Lange R, Kornblatt MJ, Kornblatt JA (1996) UV Vis biochemical spectroscopy under high pressure. In: von Rohr PhR, Trepp Ch (eds) High pressure chemical engineering. Elsevier, Amsterdam, pp 553–558

    Google Scholar 

  • Bamji MS, Krinsky NI (1965) Carotenoid de-epoxidation in algae. Enzymatic conversion of antheraxanthin to zeaxanthin. J Biol Chem 240:467–470

    CAS  PubMed  Google Scholar 

  • Barber J (ed) (1979) Primary processes of photosynthesis. Top Photosynth 2:1979. 3. Elsevier, Amsterdam

    Google Scholar 

  • Barber MS, Malkin S, Telfer A (1989) The origin of chlorophyll fluorescence in vivo and its quenching by the photosystem II reaction centre. Philos Trans R Soc Lond Ser B 323:227–239

    Article  CAS  Google Scholar 

  • Barnes SW, DuBridge LA, Wiig EC et al (1937) Proton-induced radioactivity of heavy nuclei. Phys Rev 51:777–778

    Article  Google Scholar 

  • Baroli J, Do AD, Yamane T, Niyogi KK (2003) Zeaxanthin accumulation in the absence of a functional xanthophylls cycle protects Chlamydomonas reinhardtii from photooxidative stress. Plant Cell 15:992–1008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bazhanova NV, Maslova TG, Popova IA et al (1964) Pigments of plastids of green plants and methods of their research. Sapozhnikov DI (ed) Nauka, Moscow-Leningrad (in Russian)

    Google Scholar 

  • Bazhanova NV, Sapozhnikov DI (1963) To characterization of the dark reaction of xanthophylls interconversion. Doklady Akad Nauk SSSR 151:1219–1221

    CAS  Google Scholar 

  • Bilger W, Björkmam O (1980) Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Annu Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Bilger W, Björkmam O (1990) Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  PubMed  Google Scholar 

  • Bilger W, Björkman O, Thayer SS (1989) Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophylls cycle components in cotton leaves. Plant Physiol 91:542–551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bilger W, Schreiber U (1986) Energy-dependent quenching of dark level chlorophyll fluorescence in intact leaves. Photosynth Res 10:303–308

    Article  CAS  PubMed  Google Scholar 

  • Bilger W, Schreiber U (1990) Chlorophyll luminescence as an indicator of stretch-Induced damage to the photosynthetic apparatus. Effects of heat-stress in isolated chloroplasts. Photosynth Res 25:161–171

    Article  CAS  PubMed  Google Scholar 

  • Bilger W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102:425–432

    Article  Google Scholar 

  • Blaser IP, Boehm F, Marmier P et al (1949) Fonction d′excitation dela reaction O 18(p, n)F 18. Helvet Phys Acta 22(6):598–599

    Google Scholar 

  • Blaser IP, Boehm F, Marmier P et al (1951) Fonctions d′excitation (p, n) (III) elements layers. Helvet Phys Acta 24:465–482

    CAS  Google Scholar 

  • Blaser IP, Marmier P, Sempert M (1952) Anregungsfunktion der Kernreaktion N 14(p, α)C 11. Helvet Phys Acta 25(5):442–444

    Google Scholar 

  • Blass U, Anderson JM, Calvin M (1959) Biosynthesis and possible functional relationships among the carotenoids and between chlorophyll a and chlorophyll b. Plant Physiol 34:329–333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blinks LR (1954) The photosynthetic function of pigments other than chlorophyll. Annu Rev Plant Physiol 5:93–114

    Article  CAS  Google Scholar 

  • Bolhar-Nordenkampf HR, Long SP, Öquist C et al (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field. a review of current instrumentation. Funct Ecol 3:497–514

    Article  Google Scholar 

  • Borisov AYu (1974) To a question on the mechanism of protective action of carotenoids. Doklady Acad.Sci. 215:1240–1242 (in Russian)

    Google Scholar 

  • Brestkin АP, Moralev SN, Rozengart EV, Epstein LM (1997) Cholinesterases of terraneous animals and hydrobionts. PH TINRO-Centre, Vladivostok

    Google Scholar 

  • Britton G (1985) Biochemistry of natural pigments. Cambridge University Press, Cambridge

    Google Scholar 

  • Brooks MD, Niyogi KK (2011) Use of pulse-amplitude modulated chlorophyll fluorimeter to study the efficiency of photosynthesis in Arabidopsis plants. Methods Mol Biol 775:299–310

    Article  CAS  PubMed  Google Scholar 

  • Buch K, Stransky H, Hager A (1995) FAD is a further essential cofactor of the NAD(P)H and O2-dependent zeaxanthin-epoxidase. FEBS Lett 376:45–48

    Article  CAS  PubMed  Google Scholar 

  • Bugos RC, Yamamoto HY (1996) Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli. Proc Natl Acad Sci U S A 93:6320–6325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bungard RA, Ruban AV, Hibberd JM, Press MC et al (1999) Unusual carotenoid composition and a new type of xanthophylls cycles in plants. Proc Natl Acad Sci U S A 96:1135–1139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burnet JH (1965) Functions of carotenoids other than in photosynthesis. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic, London, pp 381–403, Chapter 14

    Google Scholar 

  • Buschmann C, Langsdorf G, Lichtenthaler HK (2000) Imaging of the blue, green and red fluorescence emission of plants: an overview. Photosythetica 38:483–491

    Article  CAS  Google Scholar 

  • Buschmann C, Lichtenthaler HK (1988) Reflectance and chlorophyll fluorescence signatures in leaves. In: Lichtenthaler HK (ed) Application of chlorophyll fluorescence in photosynthesis research, stress physiology, hydrobiology and remote sensing. Proceedings first international chlorophyll fluorescence symposium. Bad Honnef F.R.G. Kluwer, Dordrecht, pp 325–332

    Google Scholar 

  • Calvin M (1955) Function of carotenoids in photosynthesis. Nature 176:1215

    Article  CAS  Google Scholar 

  • Claes H (1957) Biosynthese von Carotinoiden bei Chlоrella. 3. Untersuchungen über die lichtabhängige Synthese von α- und ß-Carotin und Xanthophyllen bei der Ghlorella-Mutante 5 520. Z Naturforsch 12:401–407

    Article  Google Scholar 

  • Claes H (1958) Biosynthese von Carotinoiden bei Chlorella. 4. Die Carotinsynthese einer Chlorophylls-Mutante bei anaerober Belichtung. Z Naturfosch 13:222–224

    Google Scholar 

  • Claes H (1961) Energieübertragung von angeregtem Chlorophyll auf C40-Polyene mit verschiedenen сhromophoren Gruppen. Z Naturforsch 16:445–454

    Article  Google Scholar 

  • Claes H, Nakayama TOM (1959a) Das photooxidative Ausbleichen von Chlorophyll in vitro in Gegenwart von Carotinen mit verschiedenen Chromophoren Gruppen. Z Naturforsch 14:746–747

    Google Scholar 

  • Claes H, Nakayama TOM (1959b) Isomerisation of poly-cis-carotene by chlorophyll in vivo and in vitro. Nature 183:1053

    Article  CAS  PubMed  Google Scholar 

  • Cogdell RI (1978) Carotenoids in photosynthesis. In: Goodwin TW (ed) Biochemical functions of terpenoids in plants. Royal Society, London, pp 131–141

    Google Scholar 

  • Cohen-Bazire GW, Sistrom WR, Stanier RY (1957) Kinetic studies of pigment synthesis by nonsulphur purple bacteria. J Cell Comp Physiol 49:25–67

    Article  CAS  Google Scholar 

  • Cohen-Bazire GW, Stanier RY (1958) Specific inhibition of carotenoid synthesis in a photosynthetic bacterium and its physiological consequences. Nature 181:250–252

    Article  CAS  PubMed  Google Scholar 

  • Costes C (1963a) Metabolisme de la luteine et de la violaxanthine dans leschloroplasts. Compt Rend Ac Sci gr 13 256:5656–5659

    CAS  Google Scholar 

  • Costes C (1963b) Incorporation de 14CO2 d’acetate-2-14C et de mevalonate-2-14C dans les carotenoides de la feuille adulte de tomate. Ann Physiol Veg 5:115–140

    CAS  Google Scholar 

  • Costes C (1965a) Metabolisme et role physiologique des carotenoides dans les feuilles vertes. Ann Physiol Veg 7:105–142

    CAS  Google Scholar 

  • Costes C (1968) Carotenoides et photosynthese: variations induites de la teneur on pigments dans des folioles excises de tomate. Ann Physiol Veg 10:171–197

    CAS  Google Scholar 

  • Costes C, Monties B (1977) Spectroscopic effects of reactions between electrophilic reagents and epoxycarotenoids violaxanthin and neoxanthin. Physiol Veget 15:667–678

    CAS  Google Scholar 

  • Cruz A, Lopez-Rivadulla M, Sanchez I et al (1993) Simultaneous determination of carboxyhemoglobin and total hemoglobin in carbon monoxide-intoxicated patients by use of third derivative spectrophotometry. Anal Lett A Lond 26:1087–1097

    Article  CAS  Google Scholar 

  • Dalterio RA, Hurtubise RJ (1984) Second derivative solid surface luminescence analysis of two component liquid chromatography fractions. Anal Chem (Wash A) 56:1183–1186

    Article  CAS  Google Scholar 

  • Davies BH (1976) Carotenoids. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments, 2nd edn. Academic, London, pp 65–66

    Google Scholar 

  • Dorough C, Calvin M (1951) The path of oxygen in photosynthesis. J Am Chem Soc 73:2362–2365

    Article  CAS  Google Scholar 

  • Doskoch JaE, Kovrizhkyn VV, Tarusov BN (1973) Effect of physicochemical factors on the intensity of ultra-weak fluorescence of plants. Biophysics (Biofizika).18:94–97

    Google Scholar 

  • Doskoch JaE, Parkhomenko AN, Tarusov BN (1971) Spontaneous and induced chemiluminescence of spores of thermophilic microorganisms in relation to their thermal stability. Mikrobiologia 40:849–857

    Google Scholar 

  • DuBridge LA, Barnes SW, Buck JH (1937) Proton-induced radioactivity in oxygen. Phys Rev 51(11):995–1011

    Article  CAS  Google Scholar 

  • DuBridge LA, Barnes SW, Buck JH, Strain CV (1938) Proton-induced radioactivities. Phys Rev 53:447–453

    Article  CAS  Google Scholar 

  • Dutton HI, Manning WM (1941) Evidence for carotenoid sensitized photosynthesis in the diatom Nitzschia closterium. Ann J Bot 28:516–526

    Article  CAS  Google Scholar 

  • Dutton HI, Manning WM, Dugger BM (1943) Chlorophyll fluorescence and energy transfer in the diatom Nitzschia closterium. J Phys Chem 47(4):308–313

    Article  CAS  Google Scholar 

  • Dymond EG (1924) On the measurement of the critical potentials of gases. Radiat Environ Biophys 32:357–365

    Google Scholar 

  • Egorova EA, Bukhov NG, Krendeleva TE, Rubin AB, Wiese K, Heber U (2001) Ways of the electron transfer from the photosystem 1 to the photosystem 2 in intact leaves. Vestnik (Herald) Bashkir Univ City Ufa 2:35‒37

    Google Scholar 

  • Engelhardt VA (1955) Resumes and prospects of application of radioactive isotopes in biochemistry. In: Proceeding of the session AN SSSR on peaceful application of atomic energy, 1–5 July 1955. Plenary meeting, Izd-vo AN SSSR, Moscow

    Google Scholar 

  • Feldman L, Lindstrom E (1964) The effect of carotenoid pigments on photooxidations of some photosynthetic bacteria. Biochim Biophys Acta 79:266–272

    Article  CAS  PubMed  Google Scholar 

  • Fell AF (1979) The analysis of aromatic amino acids by second and fourth derivative UV-spectroscopy. J Pharm Pharmacol 31 Suppl:23p

    Article  CAS  PubMed  Google Scholar 

  • Fell AF (1980) Present and future perspectives in derivative spectroscopy. UV Spectr Group Bull 8:5

    CAS  Google Scholar 

  • Fell AF, Jarvie DR, Stewart MJ (1981) Analysis for paraquat by second- and fourth-derivative spectroscopy. Clin Chem 27:288–292

    Google Scholar 

  • Fell AF, Smith G (1982) Higher derivative methods in ultraviolet-visible and infrared spectrophotometry. Anal Proc (Lond) 19:28–33

    CAS  Google Scholar 

  • Fleckenstein A (1961) Aktuelle Probleme der Muskelphysiologie und ihre Analyse mit Isotopen. In: Künstliche radioactive Isotope in physiologie Diagnostik II (Handbuch). Springer, Heidelberg, pp 179–228

    Google Scholar 

  • Fleckenstein A, Gerlach E, Janke I, Marmier P (1959) Die Bestimmung des Turnovers von ATP Kreatinphosphat und ortophosphat in lebenden Muskeln mittels H2O18. Z Naturwissensch 46:365

    Article  CAS  Google Scholar 

  • Fleckenstein A, Gerlach E, Janke I, Marmier P (1960) Die Inkorporation von markiertem Sauerstoff und Wasser in die ATP Kreatinphosphat und Ortophosphat intakter muskelnbei Ruhe, Tetanischer Reizung und Erholung. Pflügers Arch f gesamt Physiol Mensch Tiere 271:75–104

    Article  CAS  Google Scholar 

  • Fogelstrom-Fineman I, Holm-Hansen O, Tolbert BM, Calvin M (1957) A tracer study with O18 in photosynthesis by activation analysis. Int J Appl Radiat Isot 2:280–286

    Article  CAS  PubMed  Google Scholar 

  • Foote CS (1968) Mechanism of photosensitized oxidation. Science 162:963–970

    Article  CAS  PubMed  Google Scholar 

  • Foyer ChH, Dujardyn M, Lemoine Y (1990) Turnover of the xanthophylls cycle during photoinhibition and recovery. Curr Res Photosynth II:491–494, Baltscheffsky M (ed). Kluwer-Academic, Dordrecht

    Google Scholar 

  • Frank S (1951) The relation between carotenoid and chlorophyll pigments in Avena coleoptiles. Arch Biochem Biophys 30:52–61

    CAS  Google Scholar 

  • Freifelder DM (1976) Physical biochemistry. W. H. Freeman, San Francisco

    Google Scholar 

  • French CS (1962) Different forms of chlorophyll in plants (in Russian). Structure and function of photosynthetic apparatus. IL, Moscow, pp 82–90

    Google Scholar 

  • French CS, Church AB (1955) Derivative spectrophotometry: apparatus. Carnegie I Wash 54:162–165

    Google Scholar 

  • French CS, Church AB, Eppley RWA (1954) A derivative spectrophotometer. Carnegie I Wash 53:182–184

    Google Scholar 

  • Fujimori E, Livingston E (1956) Interaction of chlorophyll in its triplet state with oxygen and carotene. Nature 180:1036–1038

    Article  Google Scholar 

  • Fukuda M, Kunugi S (1982) Pressure dependence of thermolysin catalysis. Eur J Biochem 124:157–163

    Article  Google Scholar 

  • Gaponenko VN (1976) Influence of external factors on a metabolism of chlorophyll. Science and Technics PH, Minsk

    Google Scholar 

  • García-Plazaola JI, Esteban R, Fernández-marín B, Kranner I et al (2012) Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model. Photosynth Res 113:89–103

    Article  PubMed  CAS  Google Scholar 

  • García-Plazaola JI, Matsubara S, Osmond CB (2007) The lutein epoxide cycle in higher plants: its relationship to other xanthophylls cycles and possible functions. Funct Plant Biol 34:759–773

    Article  Google Scholar 

  • Gilmore AM (1997) Mechanistic aspects of xanthophylls cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99:197–209

    Article  CAS  Google Scholar 

  • Gilmore AM, Yamamoto HY (1992) Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP. Proc Natl Acad Sci U S A 89:1899–1903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gilmore AM, Yamamoto HY (1993) Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth Res 35:67–78

    Article  CAS  PubMed  Google Scholar 

  • Goedheer JC (1957) Some properties of carotenoids in bacterial chromatophores. Carnegie Inst Wash YBK 57:300–303

    Google Scholar 

  • Goedheer JC (1959) Energy transfer between carotenoids and bacteriochlorophyll in chromatophores of purple bacteria. Biochim Biophys Acta 55:1–8

    Article  Google Scholar 

  • Goedheer JC (1969a) Energy transfer from carotenoids to chlorophyll in blue-green, red and green algae and greening bean leaves. Biochim Biophys Acta 172:252–265

    Article  CAS  PubMed  Google Scholar 

  • Goedheer JC (1969b) Carotenoids in blue-green algae and red algae. In: Metzner H (ed) Progress in photosynthesis research, vol 2. International Union of Biological Sciences, Tübingen, pp 811–817

    Google Scholar 

  • Goedheer JC (1972) Fluorescence in relation to photosynthesis. Annu Rev Plant Physiol 23:87–112, Goettingen-Heidelberg

    Article  CAS  Google Scholar 

  • Goodwin TW (1955) Carotenoids. Annu Rev Biochem 24:497–522

    Article  CAS  PubMed  Google Scholar 

  • Goodwin TW (1957) Carotenoids as photoreceptors in plants. In: Atti. 2-d Congr. Intern. Photobiol., Turin, Italy, pp 361–369

    Google Scholar 

  • Goodwin TW (1958a) Incorporation of 14CO2, 2-14C-acetate, 2-14C-mevalonic acid into β-carotene in etiolated maize seedlings. Biochem J 68:26P–27P

    Article  Google Scholar 

  • Goodwin TW (1958b) Studies in carotenogenesis. 25: The incorporation of 14CO2 , 2-14C-acetate, 2-14C-mevalonic acid into β-carotene by illuminated etiolated maize seedlings. Biochem J 70:612–617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goodwin TW (1959) The biosynthesis and function of carotenoids pigments. Adv Enzymol 21:268–295

    Google Scholar 

  • Goodwin TW (1961) Biosynthesis and function of carotenoids. Annu Rev Plant Physiol 12:219–244

    Article  CAS  Google Scholar 

  • Goodwin TW (1965) The biosynthesis of carotenoids. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic, London, pp 143–173, Chapter 5

    Google Scholar 

  • Goodwin TW (1969) Carotenoid biosynthesis in chloroplasts. In: Metzner H (ed) Progress in photosynthesis research, vol 2. International Union of Biological Sciences, Tübingen, pp 669–674

    Google Scholar 

  • Goodwin TW (1971a) Biosynthesis by chloroplasts. In: Gibbs M (ed) Structure and function of chloroplasts. Springer, Heidelberg, pp 215–276

    Google Scholar 

  • Goodwin TW (1971b) Biosynthesis. In: Isler O (ed) Carotenoids. Birkhäusler, Basel, pp 577–636

    Chapter  Google Scholar 

  • Goodwin TW (1980) The biochemistry of carotenoids. V.1. Plants. Chapman Hall, London

    Book  Google Scholar 

  • Goodwin TW, Williams RJ (1965a) A mechanism for the cyclization of an acyclic precursor to form beta-carotene. Biochem J 94:5–7

    Article  Google Scholar 

  • Goodwin TW, Williams RJ (1965b) A mechanism for the biosynthesis of α-carotene. Biochem J 97:28c–31c

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    Article  CAS  Google Scholar 

  • Govindjee (ed) (1975) Bioenergetics of photosynthesis, 2nd edn. Wiley, New York

    Google Scholar 

  • Govindjee, Papageorgiou G (1971) Chlorophyll fluorescence and photosynthesis fluorescence transients. In: Giese A (ed) Photophysiology, vol 6. Academic, New York, pp 2–40

    Google Scholar 

  • Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714

    Article  CAS  PubMed  Google Scholar 

  • Griffits M, Sistrom WR, Cohen-Bazire G, Stanier RY (1955) Function of carotenoids in photosynthesis. Nature 176(4495):1211–1214

    Article  Google Scholar 

  • Griffits M, Stanier RY (1956) Some mutational changes in the photosynthetic pigment system of Rhodopseudomonas sphaeroides. J Gen Microbiol 14:698–715

    Article  Google Scholar 

  • Gross R, Bohme K, Wilhelm C (1998) The xanthophyll cycle of Mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin: consequences for the mechanism of enhanced non photochemical energy dissipation. Planta 205:613–621

    Article  Google Scholar 

  • Gross R, Pinto EA, Wilhelm C, Richter M (2006) The importance of a highly active and ΔpH regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. J Plant Physiol 163:1008–1021

    Article  CAS  Google Scholar 

  • Grouneva I, Jakob T, Wilhelm C, Gross R (2006) Influence of ascorbate and pH on activity of diatom xanthophylls cycle-enzyme diadinoxanthin de-epoxidase. Physiol Plant 126:205–211

    Article  CAS  Google Scholar 

  • Grouneva I, Jakob T, Wilhelm C, Gross R (2009) The regulation of xanthophylls cycle activity and of nonphotochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana. Biochim Biophys Acta 1787:929–938

    Article  CAS  PubMed  Google Scholar 

  • Gruszecki WI (1995) Different aspects of protective activity of the xanthophyll cycle under stress conditions. Acta Physiol Plant 17:145–152

    CAS  Google Scholar 

  • Gulyaev BA, Litvin FF (1970) First and second derivatives of absorption spectrum of chlorophyll and of accompanying pigments in cells of higher plants and algae at 20 °C (in Russian). Biophysics (Biofizika) 15:670–680

    CAS  Google Scholar 

  • Gulyaev BA, Litvin FF, Vedeneev VA (1971) Expansion of complex spectral curves of biological objects in components with help of derived spectra (in Russian). NDVSH Biol Nauk (4):49–57

    Google Scholar 

  • Hager A (1955) Chloroplasten Farbstoffe, ihre Papierchromatographische Trennung und ihre Veränderungen durch Ausfaktoren. Zt Naturforsch 10:310–312

    Google Scholar 

  • Hager A (1957) Über den Einfluß klimatischer Faktoren auf den Blattfarbstoffgehalt höherer Pflanzen. Planta 49:524–560

    Article  CAS  Google Scholar 

  • Hager A (1966) Die Zusammenhänge zwischen lichtinduzierten Xanthophyll-Umwand-lungen und Hill-Reaktionen. Ber Dtsch Bot Ges Bd 79:94–107

    CAS  Google Scholar 

  • Hager A (1967a) Untersuchungen über die lichtinduzierten Xanthophyllumwandlungen an Chlorella und Spinacia. Planta 74:148–173

    Article  CAS  PubMed  Google Scholar 

  • Hager A (1967b) Untersuchungen über die Rückreaktionen in Xanthophyll Cyclus bei Chlorella, Spinacia und Taxus. Planta 76:138–148

    Article  CAS  PubMed  Google Scholar 

  • Hager A (1969) Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin → Zeaxanthin Umwandlung: Beziehungen zur Photophosphorylierung. Planta 89:224–243

    Article  CAS  PubMed  Google Scholar 

  • Hager A (1975) Die reversiblen, lichtabhängigen Xanthophyllumwanglungen in Chloro-plasten. Ber Dtsch Bot Ges 88:27–44

    CAS  Google Scholar 

  • Hager A (1980) The reversible, light-induced conversions of xanthophylls in chloroplast. In: Czygan FCh (ed) Pigments in plants. G. Fischer, Stuttgart, pp 57–79

    Google Scholar 

  • Hager A, Holocher K (1994) Localization of the xanthophyll cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta 192:581–589

    Article  CAS  Google Scholar 

  • Hager A, Perz H (1970) Veränderung der Lichtabsorption eines Carotinoids im Enzym (De-epoxidation)-Substrat (Violaxanthin)-Komplex. Planta 93:314–322

    Article  CAS  PubMed  Google Scholar 

  • Hager A, Stransky H (1970a) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. Arch Mikrobiol 71:68–83

    Article  Google Scholar 

  • Hager A, Stransky H (1970b) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. I. Arch Mikrobiol 71:132–163

    Article  CAS  PubMed  Google Scholar 

  • Hager A, Stransky H (1970c) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. II. Arch Mikrobiol 73(N 1):S77–S89

    Article  Google Scholar 

  • Hagris LG, Howell JA, Sutton RE (1966) Ultraviolet and light absorption spectrometry. Anal Chem (Wash) 68:169R–183R

    Google Scholar 

  • Havaux M (1988) Effects of temperature on the transitions between state-1 and state-2 Intact maize leaves. Plant Physiol Biochem 26:245–251

    CAS  Google Scholar 

  • Havaux M, Bonfils J-P, Lutz C, Niyogi KK (2000) Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase. Plant Physiol 124:273–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Havaux M, Niyogi КК (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci U S A 96:8762–8767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Havaux M, Strasser RJ, Greppin H (1991) A theoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation with photochemical and nonphotochemical events. Photosynth Res 27:41–55

    Article  CAS  PubMed  Google Scholar 

  • Hellmann H (1994) Nutzen des UV VIS Derivative-Spektroskopie in der Wasseranalytik. Vom Wasser A 82:49–65

    CAS  Google Scholar 

  • Henckel PA (1954) Sur la résistance des plantes à la sécheresse et les moyens de la diagnostiquer et de l’augmenter. Essais de botanique 2:436–453, Editions de l’Académie des sci. de L’URSS. Moscow-Leningrad

    Google Scholar 

  • Hieber AD, Bugos RC, Yamamoto HY (2000) Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase. Biochim Biophys Acta 1482:84–91

    Article  CAS  PubMed  Google Scholar 

  • Hornyak WF, Lauritsen (1948) Energy levels of light nuclei. I. Rev Mod Phys 20(1):191–227

    Article  CAS  Google Scholar 

  • Hornyak WF, Lauritsen T, Morrison P et al (1950) Energy levels of light nuclei. III. Rev Mod Phys 22:291–372

    Article  CAS  Google Scholar 

  • Ichikawa T, Terada H (1977) Second derivative Spectrophotometry as an effective tool for examining phenylalanine residues in proteins. Biochim Biophys Acta 494:267–270

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa H, Terada H (1979) Estimation of state and amount of phenylalanine residues in proteins by second derivative spectrophotometry. Biochim Biophys Acta 580:120–128

    Article  CAS  PubMed  Google Scholar 

  • Isler O (ed) (1971) Carotenoids. Birkhäusler, Basel-Stuttgart. Chem. Reihe 23, 932p

    Google Scholar 

  • Ivantsova LV (1969) The action of some inhibitors and metabolites on reactions of violaxanthin cycle. Abstract of thesis of PhD dissertation. BIN Academy of Sciences USSR, Leningrad, 24p

    Google Scholar 

  • Ivantsova LV (1971) The effect of some inhibitors and metabolites on violaxanthin cycle reactions. PhD dissertation. Biological Sciences Botanical Institute Academy of Sciences USSR, Leningrad, 24p

    Google Scholar 

  • Jensen SL, Cohen-Bazire G, Nakayama TOM, Stanier EY (1958) The path of carotenoid synthesis in a photosynthetic bacterium. Biochim Biophys Acta 29:477–499

    Article  CAS  PubMed  Google Scholar 

  • Karnaukhov VN (1988) Biological functions of carotenoids. EA Burstein (ed) Nauka, Мoscow, 239 p

    Google Scholar 

  • Karnaukhov VN (1990) Carotenoids: recent progress, problems and prospects. Comp Biochem Physiol B 95:1–20

    Article  CAS  PubMed  Google Scholar 

  • Karnaukhov VN (2000) Functions of carotenoids—object of biophysical researches. Biophysics (Biofizika) 45:364–384

    CAS  Google Scholar 

  • Karpinska J (2012) Basic principles and analytical application of derivative spectrophotometry, Chapter 13. In: Uddin J (ed) Macro to nano spectroscopy. INTECH, Rijeka, Croatia, pp 253–268, 448p

    Google Scholar 

  • Karrer P, Jucker E (1948) Carotinoide. Birkhauser, Basel

    Book  Google Scholar 

  • Kautsky H, Appel W, Amann H (1960) Chlorophyllfluoreszenz und Kohlensäure-assimilation. XIII. Die Fluoreszenzkurve und die Photochemie der Pflanze. Biochem Zt 332:277–292

    CAS  Google Scholar 

  • Kautsky H, Franck U (1943) Chlorophyllfluoreszenz und Kohlensäureassimilation. Biochem Zt 315:139–232

    CAS  Google Scholar 

  • Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlenstoffassimilation. Z Naturwissensch 19:964

    Article  CAS  Google Scholar 

  • Kautsky H, Hirsch A (1934) Das Fluoreszenzverhalten grüner Pflanzen. Biochem Z 274:422–434

    Google Scholar 

  • Kochetov YuB, Tarusov BN (1975) The effect of heavy metal salts on the ultraweak chemiluminescence of aquatic plants leaves. Biophysics (Biofizika) 20:537–539

    Google Scholar 

  • Kochetov YuB, Tarusov BN (1977) Chemiluminescence of plant tissue preserved in aldehydes and exposed to the salt of heavy metals. Biophysics (Biofizika) 22:872–875

    Google Scholar 

  • Konev SV, Volotovskii IV (1974) Fotobiologiya. Izd-vo BGU, Minsk, 348p

    Google Scholar 

  • Kornblatt JA, Kornblatt MJ, Clery C, Balny C (1999) The effects of pressure on the conformation of plasminogen. Eur J Biochem 265:120–126

    Article  CAS  PubMed  Google Scholar 

  • Kornblatt JA, Kornblatt MJ, Hui Bon Hoa G (1995) Second derivative spectroscopy of enolase at high hydrostatic pressure: an approach to study of macromolecular interactions. Biochemistry 34:1218–1223

    Article  CAS  PubMed  Google Scholar 

  • Koroleva OJa (1973) The influence of light and oxygen on violaxanthin cycle reactions in leaves of green plants. Abstract of thesis of PhD dissertation. BIN Academy of Sciences USSR, Leningrad, 23p

    Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plantarum 74:566–574

    Article  CAS  Google Scholar 

  • Krause GH, Somersalo S (1989) Fluorescence as a tool in photosynthesis research: application in studies of photoinhibition? Cold acclimation and freezing stress. Philos Trans R Soc Lond B 323:281–293

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1984) Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosynth Res 5:139–157

    Article  CAS  PubMed  Google Scholar 

  • Krause GH, Weis E (1988) The photosynthetic apparatus and chlorophyll fluorescence: an introduction. In: Lichtenthaler HK (ed) Application of chlorophyll fluorescence in photosynthesis research, stress physiology, hydrobiology and remote sensing. Proceedings first international chlorophyll fluorescence symposium. Bad Honnef F.R.G. Kluwer, Dordrecht, pp 3–12

    Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 43:313–349

    Article  Google Scholar 

  • Krinsky NI (1962) Light-induced changes in carotenoid pigments in Euglena gracilis. Fed Proc 21:92–95

    Google Scholar 

  • Krinsky NI (1964) Carotenoid de-epoxidation in algae. Photochemical transformation of antheraxanthin to zeaxanthin. Biochim Biophys Acta 88:487–491

    CAS  PubMed  Google Scholar 

  • Krinsky NI (1966) The role of carotenoid pigments as protective agents in chloroplasts. In: Goodwin TW (ed) Biochemistry of chloroplasts, vol 1. Academic, London, pp 423–430

    Google Scholar 

  • Krinsky NI (1968) The protective function of carotenoid pigments. In: Giese A (ed) Photophysiology, vol 3. Academic, New York, pp 123–195

    Chapter  Google Scholar 

  • Krinsky NI (1971) Function. In: Isler O (ed) Carotenoids. Birkhauser, Basel, pp 669–716

    Chapter  Google Scholar 

  • Krinsky NI (1972) Evolution of carotenoid functions. In: Abstracts of communications 3rd international symposium on carotenoids other than vitamin A. Cluj, Romania, 4–7 Sept 1972, pp 71–72

    Google Scholar 

  • Krinsky NI (1979) Carotenoid protection against oxidation. Pure Appl Chem 51:649–660

    Article  CAS  Google Scholar 

  • Krinsky NI (1984) Biology and photobiology of singlet oxygen. In: Bors W et al (eds) Oxygen radicals in chemistry and biology. Gruyter, Berlin, pp 453–464

    Google Scholar 

  • Kucher AA, Poluektov NS, Mischenko VN, Aleksandrova NN (1983) Differentiating attachment for spectrophotometer Specord and its usage for the analysis of samarium and europium mixture. Zavodskaya Lab 49:11–13

    CAS  Google Scholar 

  • Kunugi S, Kitayaki M, Yanagi Y, Tanaka N, Lange R, Balny C (1997) The effect of high pressure on thermolysin. Eur J Biochem 248:567–574

    Article  CAS  PubMed  Google Scholar 

  • Kvitko KV, Chunaev AS, Baranov AA, Saakov VS (1976) Tonkaya struktura spektrov pogloshcheniya mutantov s izmenennym pigmentnym sostavom u Scenedesmus obliguus (Tuerp) Krueger. Materialy nauch. simpoz. XI nauch.-koordinats. soveshch. po teme 1-184 SEV. Izd-vo Leningr. un-ta, Leningrad, pp 49–73

    Google Scholar 

  • Lang M, Lichtenthaler HK (1991) Changes in the blue-green and red fluorescence-emission spectra of beech leaves during the autumnal chlorophyll breakdown. J Plant Physiol 138:550–553

    Article  CAS  Google Scholar 

  • Lange R, Balny C (2002) UV-visible derivative spectroscopy under high pressure. Biochim Biophys Acta 1595:80–93

    Article  CAS  PubMed  Google Scholar 

  • Lange R, Bec N, Frank J, Balny C (1996a) Pressure induced protein structural changes as sensed by 4th derivative UV spectroscope. In: Hayashi R, Balny C (eds) High pressure bioscience and biotechnology, vol 13, Progress in biotechnology series. Elsevier, Amsterdam, pp 135–140

    Google Scholar 

  • Lange R, Frank J, Saldana J-L, Balny C (1996b) Fourth derivative UV-spectroscopy of proteins under high pressure. I. Factors affecting the fourth derivative spectrum of aromatic amino acids. Eur Biophys J 24:277–283

    CAS  Google Scholar 

  • Latowski D, Burda K, Strzalka K (2000) A mathematical model describing kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin by the xanthophylls cycle enzyme violaxanthin de-epoxidase. J Theor Biol 206:507–514

    Article  CAS  PubMed  Google Scholar 

  • Latowski D, Kruk J, Burda K, Skrzynecka-Jaskier M et al (2002) Kinetics of violaxanthin de-epoxidation by de-epoxidase, a xanthophylls cycle enzyme is regulated by membrane fluidity in model lipid bilayers. FEBS J 209(18):4656–4665

    Article  CAS  Google Scholar 

  • Lavorel J, Etienne AL (1977) In vivo chlorophyll fluorescence. In: Barber J (ed) Primary processes in photosynthesis. Elsevier, Amsterdam, pp 203–268

    Google Scholar 

  • Lee KH, Yamamoto HY (1968) Action spectra for light-induced de-epoxidation of xanthophylls in spinach leaf. Photochem Photobiol 7:101–107

    Article  CAS  Google Scholar 

  • Lemberg IK, Girshin AB, Gusinskii GM (1966) Definition of О 18 contents with the help of detecting γ quantums which are let out on reaction О18 (α, n γ) Ne21. Zavodskaja Lab 22:1499–1501

    Google Scholar 

  • Leontyev VG, Saakov VS (1989) Redistribution of water in tissues of rats under hyperbaric conditions. In: Proceedings conference SM Kirov Military Medical Academy. L. p 39

    Google Scholar 

  • Lichtenthaler HK (ed) (1988a) Application of chlorophyll fluorescence. Kluwer, Dordrecht

    Google Scholar 

  • Lichtenthaler HK (1988b) In vivo chlorophyll fluorescence. In: Lichtenthaler HK (ed) Application of chlorophyll fluorescence. Kluwer, Dordrecht, pp 129–142

    Google Scholar 

  • Lichtenthaler HK (1989) Applications of remote sensing in agriculture. Butterworths, London, pp 285–305

    Google Scholar 

  • Lichtenthaler HK (1992) The Kautsky effect: 60 years of chlorophyll fluorescence induction kinetics. Photosynthetica 27:45–55

    CAS  Google Scholar 

  • Lichtenthaler HK (ed) (1996) Vegetation stress. Fischer, Stuttgart

    Google Scholar 

  • Lichtenthaler HK (1998) The stress concept in plants: an introduction. Ann N Y Acad Sci 851:187–198

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (2000) The plant prenyllipids, including carotenoids, chlorophylls and prenylquinones. In: Moore TS (ed) Lipid metabolism in plants, Library of Congress Cataloging-in-Publication Data. CRC, Ann Arbor, pp 427–470

    Google Scholar 

  • Lichtenthaler HK, Buschmann C (1984) Das Waldsterben aus botanischer Sicht. Braun, Karlsruhe, S. 87

    Google Scholar 

  • Lichtenthaler HK, Buschmann C, Rinderle U, Schmuck G (1986) Application of chlorophyll fluorescence in ecophysiology. Radiat Environ Biophys 25:297–308

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Rinderle UR (1988) The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit Rev Anal Chem 19(suppl 1):S29–S85, CRC, Baton Rouge

    Article  Google Scholar 

  • Lichtenthaler HK, Schindler C (1992) Studies on the photoprotective function of zeaxanthin at high-light conditions. In: Murata N (ed) Research in photosynthesis, vol 4. Kluwer, Dordrecht, pp 517–520

    Google Scholar 

  • Lichtenthaler HK, Stober F, Buschmann C et al (1990) Laser-induced chlorophyll fluorescence and blue fluorescence of plants. In: International geoscience and remote sensing symposium, IGARSS 90, Washington, DC, vol III. University of Maryland, College Park, pp 1913–1918

    Google Scholar 

  • Litvin FF (1965) Modelling of system of aggregated forms of chlorophyll and coupled pigments in solutions, films and monomer layers (in Russian). Biokhimiya i biofizika fotosinteza. Nauka, Moscow, pp 96–125

    Google Scholar 

  • Litvin FF, Belyaeva OB, Gulyaev BA et al (1973a) System of chlorophyll native forms, its role in primary products of photosynthesis and development in process of plant leaves greening (in Russian). In: Shlyk AA (ed) Chlorophyll. Nauka i tekhnika, Minsk, pp 215–231

    Google Scholar 

  • Litvin FF, Belyaeva OB, Gulyaev BA, Sineshchekov VA (1973b) Organization of pigment system of photosynthetic organisms and its connection with primary photoprocesses (in Russian). Problemy biofotokhimii: Tr. MOIP. Nauka, Moscow, pp 132–147

    Google Scholar 

  • Litvin FF, Gulyaev BA (1969) Derivative spectrophotometry and mathematical analysis of absorption spectra in a plant cell (in Russian). NDVSh Biol Nauk 2:118–135

    Google Scholar 

  • Lundegardh H (1963a) Spectral changes of chloroplast pigments in relation to oxygen, light and substrates. Physiol Plantarum 16:442–453

    Article  CAS  Google Scholar 

  • Lundegardh H (1966) The role of carotenoids in the photosynthesis of green plants. Proc Natl Acad Sci U S A 55:1062–1065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lundegardh H (1967) Role of carotenoids in photosynthesis of green plants. Nature 216:981–985

    Article  CAS  Google Scholar 

  • Lynch VH, French CS (1956) The participation of β-carotene in photochemical reduction by chloroplasts. Carnegie Inst Wash YBK 55:250–251

    Google Scholar 

  • Mach H, Middaugh CR (1994) Simultaneous monitoring of the environment of tryptophan, tyrosine and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy. Anal Biochem 222:323–331

    Article  CAS  PubMed  Google Scholar 

  • Marenko VA, Saakov VS (1973) Derivative spectrophotometry on the basis of an SF-10 recording spectrophotometer. Sov Plant Physiol 20:637–645

    CAS  Google Scholar 

  • Marenko VA, Saakov VS, Dorokhov BL, Shpotakovskii VS (1972) Experience of application recording spectrophotometer SF-10 for removal of the first and second derivatives spectra of absorption. News Akad Nauk MoldSSR Ser Biol Khim Sci 4:30–35

    Google Scholar 

  • Mark H, Goodman C (1955) Angular distribution of neutrons from O18(p,n)F18. Phys Rev 101:768–771

    Article  Google Scholar 

  • Marmier F, Gerlach E, Janke I, Fleckenstein A (1959) Aktivierungsanalyse des stabilen Sauerstoff-Isotope O18. Pflügers Arch f Gesamt Physiol Mensch Tiere 270:19–24

    Article  Google Scholar 

  • Maslova TG, Markovskaia EF (2012) Current views on the function of the violaxanthin cycle (development of ideas put forward by D.I. Sapozhnikov). Russ J Plant Physiol (Fiziologiya Rastenii) 59(3):434–441

    Article  CAS  Google Scholar 

  • Mathews MM (1963) Studies on the localization function and formation of the carotenoid pigments of a strain of Mycobacterium marinum. Photochem Photobiol 2:1–8

    Article  CAS  Google Scholar 

  • Mathews MM (1964a) The effect of low temperature on the localization function and formation of the carotenoids against photosensitization in Sarcina lutea. Photochem Photobiol 3:75–77

    Article  CAS  Google Scholar 

  • Mathews MM (1964b) Protective effect of β-carotene against lethal photosensitization by haematoporphyrin. Nature 203:1092

    Article  CAS  PubMed  Google Scholar 

  • Mathews MM, Krinsky NI (1965) The relationship between carotenoid pigments and resistance to radiation in non-photosynthetic bacteria. Photochem Photobiol 4:813–817

    Article  CAS  PubMed  Google Scholar 

  • Mathews-Roth MM, Krinsky NI (1970) Failure of conjugated actaene carotenoids to protect a mutant of Sarcina lutea against lethal photosensitization. Photochem Photobiol 11:555–557

    Article  CAS  PubMed  Google Scholar 

  • Mathews MM, Sistrom WR (1959) The function of carotenoid pigments in non-photosynthetic bacteria. Nature 184:1892–1893

    Article  CAS  PubMed  Google Scholar 

  • Mathews MM, Sistrom WR (1960) The function of the carotenoid pigments of Sarcina lutea. Arch Microbiol 35:139–146

    CAS  Google Scholar 

  • Mathews-Roth MM, Wilson T, Fujimori EI (1974) Carotenoid chromophore length and protection against photosensitization. Photochem Photobiol 19:217–227

    Article  CAS  PubMed  Google Scholar 

  • Mathis P (1969) Triplet-triplet energy transfer from chlorophyll a to carotenoids in solution and in chloroplasts. In: Metzner H (ed) Progress in photosynthesis research, vol 2. International Union of Biological Sciences, Tübingen, pp 818–822

    Google Scholar 

  • Mathis P, Butler WL, Satoh K (1979) Carotenoid triplet state and chlorophyll fluorescence quenching in chloroplasts and subchloroplasts particles. Photochem Photobiol 30:603–614

    Article  CAS  Google Scholar 

  • Matskevitch YuA, Panov AA, Saakov VS (1994) Regulation of Na-K-ATP-ase activity in unnucleated rodent erythrocytes by intracellular modulators. In: Abstracts international conference on environmental physiology and metabolism. Deutsch. Zoolog. Gesellsch., Fridrichroda, Thuering., p 29

    Google Scholar 

  • Meister A (1966a) Ein registrierendes Spectrophotometer zur Aufzeichung der Extintion, ihrer 1. und 2. Ableitung nach der Wellenlänge. Experiment Techn d Physik 14:168–173

    CAS  Google Scholar 

  • Meister A (1966b) Zur Untersuchung der verschiedenen Formen von Chlorophyll in der lebenden Pflanzen durch Anwendung der Derivativ-Spektrophotomerie. Kulturpflanze 14:235–255

    Article  CAS  Google Scholar 

  • Meister A, Brecht E, Jank H-W (1982) Zerlegung von Spektren in ihre Komponenten. II Spektrenzerlegung mit dem FORTRAN-Programm RESO. Kulturpflanze 30:141–154

    Article  CAS  Google Scholar 

  • Meister A, Maslova TG (1968) Zur Bestimmung der Lichtinduzierten Absorptions-änderungen durch Messung der 2. Ableitung der Extintion. Photosynthetica 2:261–267

    CAS  Google Scholar 

  • Mishchenko VT, Poluektov NS, Perfilev VA, Aleksandrova NN (1987) Primenenie proizvodnoi spektroskopii v analize biologicheski aktivnykh veshchestv. Spektroskopicheskie metody issledovaniya v fiziologii i biokhimii. Nauka, Leningrad, pp 72–75

    Google Scholar 

  • Mohammed GH, Binder WD, Gilles SL (1995) Chlorophyll fluorescence: a review of its practical forestry applications and instrumentation. Scand J Forest Res 10:383–410

    Article  Google Scholar 

  • Monson RK, Stidham MA, Williams GJ, Edwards GE, Uribe EG (1982) Temperature dependence of photosynthesis in Agropyron smithii Rydb. 1. Factors affecting net CO2 uptake in intact leaves and contribution from ribulose-1,5-bisphosphate carboxylase measured in vivo and in vitro. Plant Physiol 69:921–928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moralev SN, Rozengart EV (2007) Comparative enzymology of cholinesterases. International University Line, La Jolla

    Google Scholar 

  • Morton RA (1975) Biochemical spectroscopy. Adam Hilger, Bristol

    Google Scholar 

  • Moster JB, Quackenbush FW (1952a) The carotenoids of corn seedlings from three corn hybrids. Arch Biochem Biophys 38:297–303

    Article  CAS  PubMed  Google Scholar 

  • Moster JB, Quackenbush FW (1952b) The effects of temperature and light on corn seedlings. Arch Biochem Biophys 38:297–303

    Article  CAS  PubMed  Google Scholar 

  • Mozhaev VV, Hermans K, Frank J, Masson P, Balny C (1996) High pressure effects on protein structure and function. Proteins 24:81–91

    Article  CAS  PubMed  Google Scholar 

  • Nazarenko NA, Poluektov NS, Mishchenko VT et al (1982) Fine structure of absorption spectra of gadolinium ions in solutions of chloride and of some complexes. Dokl Akad Nauk SSSR 266:399–402

    CAS  Google Scholar 

  • Natochin YuV, Monin YuG, Gonchrevskaya OA, Saakov VS (1985) Role of Ca2+ and Co2+ dependent protein conformation of blood whey rats in its osmolality regulation. Dokl Akad Nauk USSR 282:236–239

    Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited. Annu Rev Plant Physiol Mol Biol 50:333–359

    Article  CAS  Google Scholar 

  • Niyogi KK, Bjorkman O, Grossman AR (1997a) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci U S A 94:14162–14167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niyogi KK, Bjorkman O, Grossman AR (1997b) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9:1369–1380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niyogi KK, Grossman AR, Bjorkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niyogi KK, Shih C, Pogson RJ, Dellapena D, Bjorkman O (2001) Photoprotection in zeaxanthin and lutein-deficient double mutant Arabidopsis. Photosynth Res 67:139–145

    Article  CAS  PubMed  Google Scholar 

  • Ojeda CB, Rojas FS (2004) Recent development in derivative ultraviolet visible absorption spectrophotometry. Anal Chim Acta 518:1–24

    Article  CAS  Google Scholar 

  • Ojeda CB, Rojas FS, Pavon Cano JM (1995) Recent developments in derivative ultraviolet-visible absorption spectrophotometry. Talanta (Oxford) 42:1195–1214

    Article  CAS  Google Scholar 

  • Ozolina IА, Mochalkin АI (1975) About a protective role of carotenoid pigments in a plant. Izvestia Akad Nauk SSSR Ser Biol 3:387–392

    Google Scholar 

  • Panov AA, Saakov VS (1995) Specificity of water-salt balance of rats under The raised (increased) pressure of various respiratory mixes. Dokl Akad Nauk 340:423–426

    CAS  PubMed  Google Scholar 

  • Panov AA, Saakov VS, Sokolova MM (1989) Influence of the increased pressure of gas environment on the contents of proteins and osmotic properties of blood plasma at rats. In: Proc. Kirov Conf. Milit. Med. Akad., pp 53–54

    Google Scholar 

  • Panov АА, Sokolova ММ, Saakov VS (1994a) The contents of ions K+ and Na+ in blood and tissues of rats after influence hyperbaric conditions and preliminary loading. Dokl Akad Nauk 336:127–129

    CAS  PubMed  Google Scholar 

  • Panov AA, Sokolova MM, Saakov VS (1994b) Influence of physical loading on water-salt exchange of rats after stay in hyperbaric conditions. Dokl Akad Nauk 337:128–130

    CAS  PubMed  Google Scholar 

  • Papageorgiou G (1975) Chlorophyll fluorescence: an intrinsic probe of photosynthesis. In: Govindjee (ed) Bioenergetics of photosynthesis. Academic, New York, pp 320–371

    Google Scholar 

  • Paramonova LI (1984) Research of photobiochemical properties fucoxanthin. Dissertation PhD, AN Bach Institute of Biochemistry, Moscow

    Google Scholar 

  • Perelygin VV, Tarusov BN (1966) Flash ultra weak radiation during damage of living tissue. Biophysics (Biofizika) 11:539–541

    CAS  Google Scholar 

  • Perfil’ev VA, Mishchenko VT, Poluektov NS (1985) Usage of derivative spectrophotometry for study and analysis of substances in solutions of complex compositions (review) (in Russian). Zhurn Analit Khim 40:1349–1363

    Google Scholar 

  • Peterman EJ, Gradinaru CC, Calkoen F, Borst JC (1997) Xanthophylls in light-harvesting complex II of higher plants: light harvesting and triplet quenching. Biochemistry 36:12208–12215

    Article  CAS  PubMed  Google Scholar 

  • Pfündel E, Bilger W (1994) Regulation and possible function of the violaxanthin cycle. Photosynth Res 42:89–109

    Article  PubMed  Google Scholar 

  • Popov GA, Tarusov BN (1964) Kinetics of chemi-luminescence during decomposition of hydrogen peroxide with water-salt animal liver extracts (in Russian). Biophysics (Biofizika) 9:528–529

    CAS  Google Scholar 

  • Popova OF, Sapozhnikov DI (1973) Action of light of various intensity on reaction of violaxanthin cycle in turning green seedlings of corn. Sov Plant Physiol 20:628–631

    Google Scholar 

  • Porter J, Anderson DC (1967) Biosynthesis of carotenes. Precursor to form carotene. Biochem J 94:5–7

    Google Scholar 

  • Ragone R, Colonna G, Balestrieri C, Servillo L et al (1984) Determination of tyrosine exposure in proteins by second derivative spectroscope. Biochemistry 23:1871–1875

    Article  CAS  PubMed  Google Scholar 

  • Randall SA, Andersen RA (1986) Antheraxanthin, a light harvesting carotenoid found in a chromophyte alga. Plant Physiol 80:583–587

    Article  Google Scholar 

  • Rau W (1988) Functions of carotenoids other than in photosynthesis. In: Goodwin T (ed) Plant pigments. Academic, London, pp 231–255

    Google Scholar 

  • Rojas FS, Ojeda BC (2009) Recent development ultraviolet visible absorption spectrophotometry: 2004–2008. Anal Chim Acta 635:22–44

    Google Scholar 

  • Rozengart EV (2012) From a metabolism to comparative biochemistry of toxic organophosphorus compounds. Zhur Evol Biochem Physiol 48:1–7

    Article  CAS  Google Scholar 

  • Ruben S, Randall M, Kamen M, Hyde L (1941) Heavy oxygen-O18 as a tracer in the study of photosynthesis. J Am Chem Soc 63(3):877–879

    Article  CAS  Google Scholar 

  • Rubin AB (ed) (1974) Modern methods of investigation of photobiological processes (in Russian). Izd-vo Mosk. un-ta, Moscow, p 160

    Google Scholar 

  • Rubin AB (ed) (1975) Biophysics of photosynthesis (in Russian). Izd-vo Mosk. un-ta, Moscow

    Google Scholar 

  • Rubin AB (2000) Biophysics, 2nd edn. Vol 1 Theoretical biophysics (1999), Vol 2 Biophysics of cellular processes (2000). Publishing House of Moscow University, Moscow

    Google Scholar 

  • Rubin AB (2004) Biophysics, 3rd edn. Vol 1 Theoretical biophysics (2004), Vol 2 Biophysics of cellular processes (2004). Publishing House of Moscow University, Moscow

    Google Scholar 

  • Rubin BA, Gavrilenko VF (1977) Biochemistry and physiology of photosynthesis (in Russian). Izd-vo Mosk. un-ta, Moscow, p 325

    Google Scholar 

  • Saakov SG Sr (ed) (1948/1949) Vortrag und Diskussion. Die Situation in der biologischen Wissenschaft. Verlag Kultur u. Fortschrift GmbH, Berlin, 456 S

    Google Scholar 

  • Saakov VS (1959) The comparative characteristic of gasometric and radiometric methods of estimation of photosynthesis. Vestnik Leningrad Un-ta Ser Biol 21:42–50

    Google Scholar 

  • Saakov VS (1960) Some questions of a technique of manometrical definition of photosynthesis of leaves of ground plants. Bull Leningrad Univ Ser 4 Biol 21:33–41

    Google Scholar 

  • Saakov VS (1961) Einige methodische Probleme der manometrischen Bestimmung der Photosynthese an Blättern von Landpflanzen. Sowjetwiss Naturwissenschaft Beitrage 9:953–962

    Google Scholar 

  • Saakov VS (1963a) To mechanism of the light reaction of xanthophylls in chloroplasts suspension (in Russian). Botan Zhurn 48:888–891

    Google Scholar 

  • Saakov VS (1963b) Mechanism of violaxanthin conversion during light reaction of chloroplast (in Russian). Doklady Acad Sci USSR 198:1412–1414

    Google Scholar 

  • Saakov VS (1963c) Assessment of effectivenesses of chromatographical method of xanthophylls separation on paper with help of the C14 isotope (in Russian). Biophysics (Biofizika) 8:123

    CAS  Google Scholar 

  • Saakov VS (1963d) The characteristic of light reaction of xanthophylls. Dissertation PhD in Biol. Sci. Botan. Inst. VL Komarov Russ. Acad. Sci., Leningrad, pp 1–138

    Google Scholar 

  • Saakov VS (1964) Role of carotenoids in mechanism of oxygen transfer in photosynthesis (in Russian). Doklady Akad Nauk SSSR 155:1212–1215

    CAS  Google Scholar 

  • Saakov VS (1965a) Metabolism of violaxanthin-C-14 in leaf and its role in photosynthetic reactions (in Russian). Doklady Akad Nauk SSSR 165:230–233

    CAS  Google Scholar 

  • Saakov VS (1965b) On the possible role of xanthophylls in oxygen transfer during photosynthesis (in Russian). Sov Physiol Rasten 12:377–385

    CAS  Google Scholar 

  • Saakov VS (1966) Carbon Isotope C-14 applied to study of lutein exchange (in Russian). Doklady Akad Nauk SSSR 170:460–463

    CAS  Google Scholar 

  • Saakov VS (1967) Mechanism of the interconversions of exogenous carotenoids-C14 in Chlorella (in Russian). Doklady Akad Nauk SSSR 174:978–981

    CAS  Google Scholar 

  • Saakov VS (1971a) Action of ATP, Inhibitors and photophosphorylation uncouplers on xanthophyll transformation in leaf (in Russian). Doklady Akad Nauk SSSR 198:966–969

    Google Scholar 

  • Saakov VS (1971b) Correlation between light-induced xanthophyll conversions and electron transport chain of photosynthesis (in Russian). Sov Physiologiya rastenii 18:1088–1097

    CAS  Google Scholar 

  • Saakov VS (1971c) Relation between xanthophylls deepoxidation reaction and electron transport chain of photosynthesis (in Russian). Doklady Akad Nauk SSSR 201:1257–1260

    CAS  Google Scholar 

  • Saakov VS (1971d) The electron transport chain of photosynthesis and xanthophylls reactions in leaf. In: Biochemistry and biophysics of photosynthesis. SIFIBR SO AN SSSR, Irkutsk, pp 15–20

    Google Scholar 

  • Saakov VS (1976) Investigation of centres of harmful (damage) influences at chloroplasts membranes by means of molecular spectroscopy. Bull Appl Bot Genet Plant Breed (Leningrad) 57:17–34

    Google Scholar 

  • Saakov VS (1990a) Redox conversions of carotenoids in a green cell. Dissertation, Prof. in biol. sc. Institute of Biophysics and Physiology of Plants. AN Tadzh SSR, Dushanbe, pp 1–55

    Google Scholar 

  • Saakov VS (1990b) Die Anwendung der Lumineszenz, der Ableitungen der Spektrophotometrie und der photoakustischen Spektroskopie zur Charakterisierung von Schaeden in Chlorophyll-Protein Komplex der Chloroplasten. Colloq Pflanzenphysiolog der Humboldt-Universitaet zu Berlin 14:163–170

    CAS  Google Scholar 

  • Saakov VS (1991) On the conjugation of interconversions of xanthophylls with energy activity of chloroplast (in Russian). Doklady Akad Nauk SSSR 316:764–767

    Google Scholar 

  • Saakov VS, Baranov AA, Hoffmann P (1978a) Pigmentphysiologischen Untersuchungen mit Hilfe der Derivativ-Spektrophotometrie. Studia Biophys 70:129–142

    CAS  Google Scholar 

  • Saakov VS, Baranov AA, Hoffman P (1978b) Derivativ-spektroskopische Charakteristik des Pigmentphysiologischen Zustandes des Phothosyntheseapparates unter besonderer Beruecksichtigung der Temperatur. Studia Biophys 70:163–173

    CAS  Google Scholar 

  • Saakov VS, Dorokhov BL, Shiryaeva GA (1973) Second derivative of difference absorption spectra on example of chlorophyll a and b and of blood pigment (in Russian). Izv AN MoldSSR Ser Biol Khim Nauki 2:73–82

    Google Scholar 

  • Saakov VS, Drapkin VZ, Krivchenko AI, Rozengart EV et al. (2010) Derivative spectrophotometry and spectroscopy ESR for solving ecological and biological problems. SPb, Technolit, 408 p

    Google Scholar 

  • Saakov VS, Drapkin VZ, Krivchenko AI, Rozengart EV, Bogachev EV, Knyazev MN (2013) Derivative spectrophotometry and electron spin resonance (ESR) spectroscopy for ecological and biological questions. Springer, Heidelberg, 357 p

    Book  Google Scholar 

  • Saakov VS, Konovalov IN (1966) About carotenoid functions in photosynthesis (in Russian). Trudy Botan Ssadov AN KazSSR, Alma-Ata 9:81–98

    Google Scholar 

  • Saakov VS, Lavrova EA, Maksimovich AA, Poliakov VN, Smirnov MV, Natochin YuV (1987) Change of a physico-chemical state of proteins and concentration whey’s ions of blood Oncorhynchus gorbuscha during its migration from sea in the river. Report presented at the first all-union symposium on the ecology, physiology and biochemistry of fishes, 17–19 Nov 1987, Rostov Great - Yaroslavl, pp 171–172

    Google Scholar 

  • Saakov VS, Lemberg IKh, Nazarova GD et al (1969) Application of activating analysis for research of reactions of xanthophylls oxygen metabolism (in Russian). Inform Bull SIFIBR SO AN SSSR 5:57–58

    Google Scholar 

  • Saakov VS, Lemberg IKh, Nazarova GD et al (1970a) About oxygen exchange between water and xanthophylls (in Russian). Doklady Akad Nauk SSSR 193:713–715

    Google Scholar 

  • Saakov VS, Leontjev VG (1988) Untersuchungen über molekularspektrophotometrische Reaktion des pflanzlichen Photosyntheseapparates auf Streßbedingungen. Colloq Pflanzenphysiol d Humboldt-Univer zu Berlin 12:143–156

    CAS  Google Scholar 

  • Saakov VS, Leontjev VG, Sokolova MM et al (1986) Mechanisms of hyperbaric factors action under the circumstances of hyperbaric environments on an organism. In: Proceedings third all-USSR conference on underwater (subwater) physiology and medicine, 12–14 May, Leningrad

    Google Scholar 

  • Saakov VS, Nasarova GD (1970a) Markierungsexperimente zur Umwandlung des Antheraxanthins in vivo. Studia Biophys 20:65–72

    CAS  Google Scholar 

  • Saakov VS, Nazarova GD, Myl’nikova EV, Alekseeva NR (1970b) Exchange between oxygen fund of xanthophylls and water oxygen under light influence on plant (in Russian). Mineral’noe pitanie rastenii i fotosintez. Irkutsk, SIFIBR SO AN SSSR, pp 217–227

    Google Scholar 

  • Saakov VS, Pronkin AA (1994) The influence of gamma radiation (57 Co) upon the change of aromatic amino acids, albumins and globulin derivatives spectra. In: Abstr. 9th ISBC conf. “calorimetry and thermodynamics of biological processes”. International Society for Biological Calorimetry, Berlin, p 33

    Google Scholar 

  • Saakov VS, Saidov AS (1965) Some methodical questions of production of highly active preparations of xanthophylls. Uzbek Biolog J 4:5–9

    Google Scholar 

  • Saakov VS, Shiryaev AV (2000) To evolution of hypothesis on location of damage influences of environmental factors in green leaf: the after-effect of gamma-irradiation on energetic of chloroplasts (in Russian). Doklady Akad Nauk 371:280–285

    CAS  Google Scholar 

  • Saakov VS, Shiryaeva GA (1967) To a question about methodology of paper chromatography of carotene carotenoids (in Russian). Trudy Komarov Botan Inst Akad Nauk SSSR L Ser 4 Eksperiment Botan 18:151–165

    Google Scholar 

  • Saakov VS, Shpotakovskii VS (1973) The method of derivative spectrophotometry in study of structure of photosynthesizing apparatus (in Russian). In: Methods of complex study of photosynthesis. VIR im N I Vavilova L 2:280–295

    Google Scholar 

  • Sadykov AS, Rozengart EV, Abduvakhabov AA et al (1976) Cholinesterase. active center and action mechanisms. PH FAN Uzbek. SSR, Tashkent

    Google Scholar 

  • Sager R, Zalokar M (1958) Pigments and photosynthesis in a carotenoid-deficient mutant of Chlamydomonas. Nature 182:98–100

    Article  CAS  PubMed  Google Scholar 

  • Sapozhnikov DI (1969) Transformation of xanthophylls in chloroplasts. In: Metzner H (ed) Progress in photosynthesis research, vol 2. International Union of Biological Sciences, Tübingen, pp 694–700

    Google Scholar 

  • Sapozhnikov DI (1973a) Investigation of the violaxanthin cycle. Pure Appl Chem 35:47–62

    Article  CAS  PubMed  Google Scholar 

  • Sapozhnikov DI (1973b) Investigation of the violaxanthin cycle. In: Proceedings of the third international symposium on carotenoids other than vitamin A; Cluj, Romania. Butterworths, London, pp 47–62 [quote оn Schubert H et al (1994) J Biol Chem 268(10):7267–7272]

    Google Scholar 

  • Sapozhnikov DI, Alkhazov DG, Eidel’man ZM et al (1961) Inclusion of O 18 from heavy-oxygen water into violaxanthin under light influence on plants (in Russian). Botan Zhurn 46:673–676

    CAS  Google Scholar 

  • Sapozhnikov DI, Alkhazov DG, Eidel’man ZM et al (1964) About xanthophylls participation in the photosynthetic oxygen transfer (in Russian). Doklady Akad Nauk SSSR 154:974–977

    CAS  Google Scholar 

  • Sapozhnikov DI, Alkhazov DG, Eidelman ZM, Bazhanova NV, Lemberg IKh, Maslova TG, Girshin AB, Popova IA, Saakov VS, Popova OF, Shiryaeva GA (1967a) Incorporation of O 18 from heavy oxygen water in violaxanthene under the effect of light on plants. Translated by Shewchuck (University of California Lawrence Radiation Laboratory, Berkeley) from Botan Zhur 1961. 46:673–676. In: Radioisotopes in the biological sciences. An annotated bibliography of selected literature. Compiled by Helen L. Ward. Division of Technical Information, US [Atomic Energy Commision of U.S.A. N 20000912 060] [TID- 3585, Ref. 877, p. 83 (UCRL-Trans-737), See Ward HL]

    Google Scholar 

  • Sapozhnikov DI, Bazhanova NV (1958) To characterization of xanthophylls light reaction in isolated chloroplasts (in Russian). Dokldy Akad Nauk SSSR 120:1141–1144

    CAS  Google Scholar 

  • Sapozhnikov DI, Krasovskaya TA, Maevskaya AA (1957) Change of ratio of main carotenoids in plastids of green leaves under light influence (in Russian). Doklady Akad Nauk SSSR 113:465–467

    CAS  Google Scholar 

  • Sapozhnikov DI, Krasovskaya TA, Maevskaya AN (1959a) Change of state of main carotenoids in green leaves under light influence (in Russian). Problems of photosynthesis. Acad Sci USSR, Moscow, pp 170–174

    Google Scholar 

  • Sapozhnikov DI, Kutyurin VM, Maslova TG et al (1967b) About an oxygen exchange of xanthophylls in connection with their role during. Dokl Akad Nauk SSSR 113:465–467

    Google Scholar 

  • Sapozhnikov DI, Maslova TG, Bazhanova NV, Popova OF (1965a) To a question about kinetics of O 18 inclusions from heavy oxygen waters in a molecule of violaxanthin. (in Russian). Biophysics (Biofizika) 10:349–351

    CAS  Google Scholar 

  • Sapozhnikov DI, Maslova TG, Bazhanova NV, Popova OF (1965b) To a question about kinetics of О 18 inclusions from heavy oxygen waters in a molecule of violaxanthin (in Russian). Dokl Acad Nauk Tadzhik SSR 8(12):40–43

    CAS  Google Scholar 

  • Sapozhnikov DI, Mayevskaya AN, Krasovskaya-Antropova TA et al (1959b) Influence of anaerobiosis on turnover (change) of basic carotenoids of green leaf. Biokhimiia 24:39–41

    CAS  Google Scholar 

  • Sapozhnikov DI, Saakov VS (1962) Application of violaxanthin-C14 for estimation the light reaction of xanthophylls transformation. Dokl Akad Nauk SSSR 147:1487–1488

    CAS  Google Scholar 

  • Sassenscheid K, Klocke U, Tacke M (1998) Neue Perspektiwen in der Verbrennungs und Prozessmesstechnik: UV-Derivative-Spektroskopie. Gefahrstoffe Reinigung der Luft A 58:361–366

    CAS  Google Scholar 

  • Schenk GO, Diner B, Mathis P, Satoh K (1982) Flash induced carotenoid radical cation formation in PS-II. Biochim Biophys Acta 680:216–227

    Article  Google Scholar 

  • Schreiber U (1983) Chlorophyll fluorescence yield changes as a tool in plant physiology I. The measuring system. Photosynth Res 4:361–373

    Article  CAS  Google Scholar 

  • Schreiber U (1986) Detection of rapid induction kinetics with a new type of high frequency modulated chlorophyll fluorometer. Photosynth Res 9:261–272

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U (1994) New emitter-detector cuvette assembly for measuring modulated chlorophyll fluorescence of highly diluted suspensions in conjunction with the standard PAM fluorometer. Z Naturforsch 49c:646–656

    Google Scholar 

  • Schreiber U (1997) Chlorophyll fluorescence energy conversion: simple introductory experiments with the TEACHING-PAM chlorophyll fluorimeter. Heinz Walz, Effeltrich, Germany

    Google Scholar 

  • Schreiber U, Armond PA (1978) Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. Biochim Biophys Acta 502:138–151

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Bery JA (1977) Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta 136:233–238

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Bilger W (1987) Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. In: Tenhungen JD, Catarino FM, Lange OL, Oeschel WC (eds) Plant responses to stress: functional analysis in Mediterranean ecosystems, vol 15, NATO ASI subseries G: Ecological sciences. Springer, New York, pp 27–53

    Chapter  Google Scholar 

  • Schreiber U, Bilger W (1993) Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. Prog Bot 54:151–173, Springer, Berlin

    CAS  Google Scholar 

  • Schreiber U, Bilger W, Hormann H, Neubauer C (1997) Chlorophyll fluorescence as a diagnostic tool: basics and some aspects of practical relevance. In: Raghavendra AS (ed) Photosynthesis: a comprehensive treatise. Cambridge University Press, Cambridge, pp 320–336

    Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vitro photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis, vol 100, Ecological studies. Springer, Berlin, pp 49–70

    Google Scholar 

  • Schreiber U, Colbow K, Vidaver W (1975) Temperature-jump chlorophyll fluorescence induction in plants. Z Naturforsch 30:689–690

    CAS  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical fluorescence quenching with a new type of modulation fluorescence. Photosynth Res 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Schubert H, Kroon BMA, Matthijs HC (1994) In vivo manipulation of the xanthophylls cycle and the role of zeaxanthin in protection against photodamage in the green alga Chlorella pyrenoidosa. J Biol Chem 269(10):7267–7272

    CAS  PubMed  Google Scholar 

  • Schulz H, Brecht E, Machold O (1990) The chlorophyll of pine (Pinus sylvestris L.) as influenced by SO2-incubation. J Plant Physiol 136(3):300–305

    Article  CAS  Google Scholar 

  • Semikhatova OA, Chulanovskaja MV (1965) Manometrical methods of studying respiration and photosynthesis of plants. Science, Moscow-Leningrad

    Google Scholar 

  • Semikhatova OA, Saakov VS (1962) The investigation of the temperature after-effect on intensity of Polygonum sachalinense photosynthesis. Proc Komarov Bot Inst Аcad Sci USSR Ser 4 Exp Bot 15:25–42

    Google Scholar 

  • Shlyk AA (1971) Determination of chlorophylls and carotenoids in green leaves (in Russian). In: Biochemical methods in plant physiology. Nauka, Moscow, pp 154–170

    Google Scholar 

  • Shneour EA (1961) A study of light-catalysed oxygen transport in photosynthesis. University of California Radiation Laboratory Report UCRL-9900

    Google Scholar 

  • Shneour EA (1962a) The source of oxygen in Rhodopseudomonas sphaeroides carotenoid pigment conversion. Biochim Biophys Acta 65:510–511

    Article  CAS  PubMed  Google Scholar 

  • Shneour EA (1962b) Carotenoid pigment conversion in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 62:534–540

    Article  CAS  PubMed  Google Scholar 

  • Shneour EA, Calvin M (1962) Isotopic oxygen incorporation in xanthophylls of Spinaceae oleraceae quantosomes. Nature 196:439–441

    Article  CAS  Google Scholar 

  • Siefermann D (1971) Über den Zusammenhang von Xanthophyllcyclus und Photosynthese bei Lemna gibba L. Diss. zur Erlangung des Grades eines Doktors der Naturwissenschaften dem Fachbereich Biologie der Eberhard-Karls-Universität zu Tübingen, pp 1–83

    Google Scholar 

  • Siefermann-Harms D (1977) The xanthophylls cycle in higher plants. In: Tevini M, Lichtenthaler HK (eds) Lipids and lipid polymers in higher plants. Springer, Berlin, pp 218–230

    Chapter  Google Scholar 

  • Siefermann D, Yamamoto HY (1974) Light-induced deepoxidation of violaxanthin in lettuce chloroplasts. III. Reaction kinetics and effect of light intensity on deepoxidase activity and substrate availability. Biochem Biophys Acta 357:144–150

    CAS  PubMed  Google Scholar 

  • Siefermann D, Yamamoto H (1975a) Light-induced de-epoxidation of violaxanthin in lettuce chloroplasts. The effects of electron-transport conditions on violaxanthin availability. Biochim Biophys Acta 387:149–158

    Article  CAS  PubMed  Google Scholar 

  • Siefermann D, Yamamoto HY (1975b) Properties of NADPH and oxygen-dependent zeaxanthin epoxidation in isolated chloroplasts. Arch Biochem Biophys 171:70–77

    Article  CAS  PubMed  Google Scholar 

  • Siefermann D, Yamamoto HY (1975c) NADPH and oxygen-dependent epoxidation of zeaxanthin. Biochim Biophys Res Commun 62:456–458

    Article  CAS  Google Scholar 

  • Simpson DJ (1988) Low temperature absorption spectroscopy of barley mutants. Gaussian deconvolution and fourth derivative analysis. Carlsberg Res Commun 53:343–356

    Article  Google Scholar 

  • Sistrom WR, Griffits M, Stanier RY (1956) A note on the porphyrins excreted by the blue-green mutant Rhodopseudomonas sphaeroides. J Cell Comp Physiol 48:459–472

    Article  CAS  Google Scholar 

  • Skujins S (1986) Instruments of work. Varian AG No UV-31 (Pts 1 and 2). P 1:1-33; 2: 1-52

    Google Scholar 

  • Snel JFH, van Kooten (eds) (1990) The use of chlorophyll fluorescence and other noninvasive spectroscopic techniques in plant stress physiology. Photosynth Res (Special Issue) 25(3):146–332

    Google Scholar 

  • Snell AH (1937) A new radioactive isotope of fluorine. Phys Rev 51:16–18

    Google Scholar 

  • Sokolova MM, Panov AA, Saakov VS, Leont’ev VG (1992) Change in osmolality, concentration of monovalent cations and blood protein structure in extreme circumstances. Doklady Akad Nauk SSSR 327:277–280

    CAS  Google Scholar 

  • Sokolova MM, Pushkarev YuP, Maslennikova LS, Saakov VS et al (1991) The age-related characteristics of changes in osmotic and ionic homeostasis in spontaneously hypertensive rats. Physiolog zhurn SSSR im I M Sechenova 77:47–54

    Google Scholar 

  • Soloni FG, Cunningham MT, Amazon K (1986) Plasma hemoglobin determination by recording derivative spectrophotometry. Am J Clin Pathol A 85:342–347

    CAS  Google Scholar 

  • Spitsyn PK, L’vov ON (1985) Derivative spectrophotometry of rare-earth elements (in Russian). Zhurn Analit Khim 40:1241–1248

    CAS  Google Scholar 

  • Stanier R (1960) Carotenoid pigments: problem of synthesis and function. Harvey Lect 1958–1959 54:219–255, Academic, New York

    CAS  Google Scholar 

  • Stanier R, Cohen-Bazire GW (1957) The role of light in microbial world: some facts and speculations. In: Microbial ecology: symposium of the Society for General Microbiology, held at the Royal Institute. Cambridge University Press, London, pp 56–89

    Google Scholar 

  • Stober F, Lichtenthaler HK (1992) Changes of the laser-induced blue, green and red fluorescence signatures during greening of etiolated leaves of wheat. J Plant Physiol 140:673–680

    Article  CAS  Google Scholar 

  • Stober F, Lichtenthaler HK (1993) Studies on the constancy of the blue and green fluorescence yield during the chlorophyll fluorescence induction kinetics (Kautsky effect). Radiat Environ Biophys 32:357–365

    Article  CAS  PubMed  Google Scholar 

  • Stober F, Lang M, Lichtenthaler HK (1994) Blue green and red fluorescence emission signatures of green, etiolated and white leaves. Remote Sens Environ 47:65–71

    Article  Google Scholar 

  • Strain HH (1949) Functions and properties of chloroplast pigments. In: Frank J, Loomis WE (eds) Photosynthesis of green plants. Iowa State College Press, Ames, pp 133–178

    Google Scholar 

  • Stransky H, Hager A (1970a) Das Carotenoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. Arch Mikrobiol 71:164–190

    Article  CAS  PubMed  Google Scholar 

  • Stransky H, Hager A (1970b) Das Carotenoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. IV Cyanophyceae und Rhodophyceae. Arch Mikrobiol 72:84–96

    Article  CAS  PubMed  Google Scholar 

  • Stransky H, Hager A (1970c) Das Carotenoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. VI Chemosystematische Betrachtung. Arch Mikrobiol 73:315–323

    Article  CAS  PubMed  Google Scholar 

  • Strasser RJ (1973) Induction phenomena in green plants when the photosynthetic apparatus starts to work. Arch Int Physiol Biochem 81:935–941

    CAS  Google Scholar 

  • Strasser RJ (1986) Laser-induced fluorescence of plants and its application in environmental research. Proc Int Geosci Rem Sens Symp (IGRASS) 3:1581–1584, ESA Publ. Division, Noordwijk

    Google Scholar 

  • Strasser RJ, Govindjee (1992) On the O-J-I-P fluorescence transient in leaves and D1 mutants of Chlamydomonas reinhardtii. Research in photosynthesis (N. Murata ed.), vol 2. Kluwer Acadaemic, Dordrecht, pp 29–32

    Google Scholar 

  • Strehler DL, Arnold W (1951) Light production by green plants. J Gen Physiol 34:809–820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Talanova-Sher TYu (2004) Photosynthetic apparatus of plants upon influence of unfavorable factors. PhD Dissertation. Biological Sciences, Petrozavodsk, 155p

    Google Scholar 

  • Talsky G (1983) Higher-order derivative spectrophotometry in analytical chemistry. Int J Envirion Anal Chem 14:81–91

    Article  CAS  Google Scholar 

  • Talsky G (1994) Derivative spectrophotometry: low and higher order. VCH Verlaggesellschaft GmbH, Weinheim, 228p

    Google Scholar 

  • Tarusov BN (1966) On the 70th anniversary of the Laureate of the Nobel Prize of Academician Nikolai Nikolaevich Semenov. The influence of N N Semenov and his school on the development of radiation biophysics. Radiobiologiia 6:161–165

    CAS  PubMed  Google Scholar 

  • Tarusov BN, Polivoda AI, Zhuravlev AI (1962) Ultraweak spontaneous luminescence in animal tissue. Tsitologiia 4:696–699

    CAS  PubMed  Google Scholar 

  • Tenhunen JD, Catarino FM, Lange WC, Oechel WC (eds) (1987) Plant response to stress: functional analysis in Mediterranean ecosystems, vol 15, NATO ASI subseries G: Ecological sciences. Springer, New York

    Google Scholar 

  • Trebst A (1963) Zur Hemmung photosynthetische Reaktionen in isolierten Chloroplasten durch Salicylaldoxim. Z Naturforsch 18:817–821

    Google Scholar 

  • Trebst A (1966) Zum Mechanismus der Photosynthese. Arbeits-gemeinschaft f Forschung Land NRh-Westf 171:27–53, Westdeutsch, Koln-Opladen

    Google Scholar 

  • Trebst A, Pistorius E (1965) Zum Mechanismus der photosynthetischen Electronentransportes in isolierten Chloroplasten. II. Substituirte p-Phenyilendiamine als Electronendonatoren. Z Naturforsch 20:143–147

    Google Scholar 

  • Udovenko GV (1976) The plant metabolism during adaptation to soil salinity. Bull Appl Bot Genet Plant Breed (Leningrad) 57:3–16

    Google Scholar 

  • van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25(3):147–150

    Article  PubMed  Google Scholar 

  • Vartapetian BB (1963) Water relation of plants in experiments with heavy isotope O 18. In: Proceedings symposium on water stress in plants, p 72

    Google Scholar 

  • Vartapetian BB, Dmitrovsky AA, Lemberg IH (1967) A new approach in the study of mechanism of carotene conversion to vitamin A by activation of O 18 in the nuclear reaction O 18 (α,)N21. In: Abstracts 7th international congress of biochemistry, Tokyo, 19–25 Aug 1967. The Science Council of Japan, Tokyo, p 815

    Google Scholar 

  • Vartapetian BB (1970) Molecular oxygen and water in cells metabolism. Nauka, Moscow

    Google Scholar 

  • Vinogradov AP (1962) Isotopes of oxygen and photosynthesis. Timiryazev Reading Acad. Sci. USSR, Moscow, 145p

    Google Scholar 

  • Vinogradov AP, Teys RV (1941) Isotope content of oxygen of various origin (oxygen of photosynthesis, air, CO2 and H2O (in Russian). Dokl Akad Nauk 33:497–501

    Google Scholar 

  • Vinogradov AP, Teys RV (1947) New detection of isotopic composition of photosynthesis (in Russian). Dokl Akad Nauk USSSR 56:57–58

    Google Scholar 

  • Vladimirov YuA, Litvin FF (1960) Comments to reports. Bull Acad Sci Sov Soc Repub 5:101

    Google Scholar 

  • Voznesenskii VL (1960) Comparative characteristics and theoretical bases of research methods for study plants photosynthesis. IPhR RAN, Moscow

    Google Scholar 

  • Voznesenskii VL, Semikhatova OA, Saakov VS (1959) Experimental verification on the radiometric method of evaluation of the rate of photosynthesis intensity. Sov Plant Physiol 6:380–384

    CAS  Google Scholar 

  • Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  Google Scholar 

  • Whittigham CP (1965) Function in Photosynthesis. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic, London, pp 357–380, Chapter 13

    Google Scholar 

  • Williams JH, Britton G, Goodwin TW (1967) The biosynthesis of cyclic carotenes. Biochem J 105:99–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams BL, Willson K (eds) (1975) Principles and techniques of practical biochemistry. Edward Arnold, London

    Google Scholar 

  • Wollin KM (1990) Derivativespektroskopie V. Ordnung zur Bestimmung von Chlorophyll a und Phaeophytin a. I. Grundlagen des Verfahrens; Kalibrierung und Bestimmung des Säurequotienten von Chlorophyll a. Acta Hydrochimica et Hydrobiologica 18:289–296

    Article  CAS  Google Scholar 

  • Yamamoto HY, Bangham AD (1978) Carotenoid organization in membranes. Thermal transition and spectral properties of carotenoid containing liposomes. Biochim Biophys Acta 507:119–127

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Chang JL, Aihara MS (1967) Light-induced interconversion of violaxanthin and zeaxanthin in New Zealand spinach-leaf segments. Biochim Biophys Acta 141:342–347

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Chichester CO (1965) Dark incorporation of O 18 into antheraxanthin by bean leaf. Biochim Biophys Acta 109:303–305

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Chichester CO, Nakayama TOM (1962a) Biosynthetic origin of origin in the leaf xanthophylls. Arch Biochem Biophys 96(3):645–649

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Chichester CO, Nakayama TOM (1962b) Xanthophylls and Hill reaction. Photochem Photobiol 1:53–57

    Article  CAS  Google Scholar 

  • Yamamoto HY, Higashi RM (1978) Violaxanthin de-epoxidase. Lipid composition and substrate specificity. Arch Biochem Biophys 190:514–522

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Nakayama TOM, Chichester CO (1962c) Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys 97:168–173

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Takeguchi CA (1971) Concepts on the role of epoxy carotenoids in plants. In: Proceedings 2nd international congress on photosynthesis research, vol 1, Stresa, Italy, 24–26 June 1971, pp 621–627

    Google Scholar 

  • Zakarian AE, Tarusov BN (1966) Inhibition of chemiluminescence of the blood plasma in malignant growth (in Russian). Biophysics (Biofizika) 11(5):919–921

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saakov, V.S., Krivchenko, A.I., Rozengart, E.V., Danilova, I.G. (2015). Introduction. Development of the Methodological Base, Disputes, and Conclusions. In: Derivative Spectrophotometry and PAM-Fluorescence in Comparative Biochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-11596-2_1

Download citation

Publish with us

Policies and ethics