Advertisement

Introduction. Development of the Methodological Base, Disputes, and Conclusions

  • Vladimir S. Saakov
  • Alexander I. Krivchenko
  • Eugene V. Rozengart
  • Irina G. Danilova

Abstract

In the period of writing our previous books and this present monograph, a group of authors was formed, every one of whom has worked hard for the development of modern methodological approaches in different areas of physical and chemical biology. This has led to a productive working symbiosis of representatives of physiological and physical schools and experts in the field of organic chemistry and the biochemistry of pigments and also in the field of computer data processing.

Keywords

Electron Spin Resonance Epoxy Group Carotenoid Biosynthesis Foreign Work Back Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ajzenberg-Selove F, Lauritsen T (1959) Energy levels of light nuclei VI. Nucl Phys 10:340Google Scholar
  2. Akhmetzyanov IM, Zhin’ KP, Zinkin VI, Leushina AI (1994) Criteria of ecological safety. The St.-Petersburg centre of science, 31.05.–2.06.1993. Spb.: Poligraf, p 123Google Scholar
  3. Aleinikov IM (1974) The role of carotenoids during the photosynthesis process: Avtoref. dissertation. PhD biol. nauk. Kiev.Google Scholar
  4. Aleksandrova NN, Mishchenko VT, Poluektov NS, Kucher AA (1982) The derivative spectrophotometry in studying of complex formation of ions of f-elements. Complex of Pr3+ formation with ethylene diamine tetra acetic acid. Dokl AN USSR Ser B (9):23–36Google Scholar
  5. Aliev DA, Gusejnova IM, Sulejmanov SJ, Zulfugarov IS (2001) Light-induced biogenesis of chlorophyll-protein complexes in developing wheat thylakoids. Biochemistry 66:610–615Google Scholar
  6. Almela L, Garcia AL, Navarro S (1983) Application of derivative spectroscopy to the quantitative-determination of chlorophylls and related pigments. 2. Simultaneous determination of pheophytins-a and pheophytins-b. Photosynthetica 17:216–222Google Scholar
  7. Anderson JM, Blass U, Calvin M (1960) Biosynthesis and possible relations among the carotenoids and between chlorophyll a and b. In: Allen MB (ed) Comparative biochemistry of photoreactive systems. Academic, New York, pp 215–226Google Scholar
  8. Anderson JM, Krinsky NI (1972) Protective action of carotenoid pigments against photodynamic damage to liposomes. Photochem Photobiol 18(3):403–408Google Scholar
  9. Anderson IC, Robertson DS (1960) Role of carotenoids in protecting chlorophyll from photodestruction. Plant Physiol 35:531–534PubMedCentralPubMedCrossRefGoogle Scholar
  10. Babushkin AA, Bazhulin PA, Korolev FA, Levshin VS (1974) Methods of the spectral analysis. PH Moskow University, Moscow, p 510Google Scholar
  11. Balny C, Lange R (1999) Optical spectroscopic techniques in high pressure bioscience. In: Winter W, Jonas J (eds) High pressure molecular science, NATO Science series. Kluwer Academic, Dordrecht, pp 405–422CrossRefGoogle Scholar
  12. Balny C, Saldana JL, Dahan N (1984) High pressure stopped-flow spectrometry at low temperatures. Anal Biochem 139:178–179PubMedCrossRefGoogle Scholar
  13. Balny C, Saldana JL, Dahan N (1987) High pressure stopped-flow spectrometry at subzero temperatures. Anal Biochem 163:309–315PubMedCrossRefGoogle Scholar
  14. Balny C, Saldana JL, Lange R, Kornblatt MJ, Kornblatt JA (1996) UV Vis biochemical spectroscopy under high pressure. In: von Rohr PhR, Trepp Ch (eds) High pressure chemical engineering. Elsevier, Amsterdam, pp 553–558Google Scholar
  15. Bamji MS, Krinsky NI (1965) Carotenoid de-epoxidation in algae. Enzymatic conversion of antheraxanthin to zeaxanthin. J Biol Chem 240:467–470PubMedGoogle Scholar
  16. Barber J (ed) (1979) Primary processes of photosynthesis. Top Photosynth 2:1979. 3. Elsevier, AmsterdamGoogle Scholar
  17. Barber MS, Malkin S, Telfer A (1989) The origin of chlorophyll fluorescence in vivo and its quenching by the photosystem II reaction centre. Philos Trans R Soc Lond Ser B 323:227–239CrossRefGoogle Scholar
  18. Barnes SW, DuBridge LA, Wiig EC et al (1937) Proton-induced radioactivity of heavy nuclei. Phys Rev 51:777–778CrossRefGoogle Scholar
  19. Baroli J, Do AD, Yamane T, Niyogi KK (2003) Zeaxanthin accumulation in the absence of a functional xanthophylls cycle protects Chlamydomonas reinhardtii from photooxidative stress. Plant Cell 15:992–1008PubMedCentralPubMedCrossRefGoogle Scholar
  20. Bazhanova NV, Maslova TG, Popova IA et al (1964) Pigments of plastids of green plants and methods of their research. Sapozhnikov DI (ed) Nauka, Moscow-Leningrad (in Russian)Google Scholar
  21. Bazhanova NV, Sapozhnikov DI (1963) To characterization of the dark reaction of xanthophylls interconversion. Doklady Akad Nauk SSSR 151:1219–1221Google Scholar
  22. Bilger W, Björkmam O (1980) Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Annu Rev Plant Physiol 31:491–543CrossRefGoogle Scholar
  23. Bilger W, Björkmam O (1990) Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185PubMedCrossRefGoogle Scholar
  24. Bilger W, Björkman O, Thayer SS (1989) Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophylls cycle components in cotton leaves. Plant Physiol 91:542–551PubMedCentralPubMedCrossRefGoogle Scholar
  25. Bilger W, Schreiber U (1986) Energy-dependent quenching of dark level chlorophyll fluorescence in intact leaves. Photosynth Res 10:303–308PubMedCrossRefGoogle Scholar
  26. Bilger W, Schreiber U (1990) Chlorophyll luminescence as an indicator of stretch-Induced damage to the photosynthetic apparatus. Effects of heat-stress in isolated chloroplasts. Photosynth Res 25:161–171PubMedCrossRefGoogle Scholar
  27. Bilger W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102:425–432CrossRefGoogle Scholar
  28. Blaser IP, Boehm F, Marmier P et al (1949) Fonction d′excitation dela reaction O 18(p, n)F 18. Helvet Phys Acta 22(6):598–599Google Scholar
  29. Blaser IP, Boehm F, Marmier P et al (1951) Fonctions d′excitation (p, n) (III) elements layers. Helvet Phys Acta 24:465–482Google Scholar
  30. Blaser IP, Marmier P, Sempert M (1952) Anregungsfunktion der Kernreaktion N 14(p, α)C 11. Helvet Phys Acta 25(5):442–444Google Scholar
  31. Blass U, Anderson JM, Calvin M (1959) Biosynthesis and possible functional relationships among the carotenoids and between chlorophyll a and chlorophyll b. Plant Physiol 34:329–333PubMedCentralPubMedCrossRefGoogle Scholar
  32. Blinks LR (1954) The photosynthetic function of pigments other than chlorophyll. Annu Rev Plant Physiol 5:93–114CrossRefGoogle Scholar
  33. Bolhar-Nordenkampf HR, Long SP, Öquist C et al (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field. a review of current instrumentation. Funct Ecol 3:497–514CrossRefGoogle Scholar
  34. Borisov AYu (1974) To a question on the mechanism of protective action of carotenoids. Doklady Acad.Sci. 215:1240–1242 (in Russian)Google Scholar
  35. Brestkin АP, Moralev SN, Rozengart EV, Epstein LM (1997) Cholinesterases of terraneous animals and hydrobionts. PH TINRO-Centre, VladivostokGoogle Scholar
  36. Britton G (1985) Biochemistry of natural pigments. Cambridge University Press, CambridgeGoogle Scholar
  37. Brooks MD, Niyogi KK (2011) Use of pulse-amplitude modulated chlorophyll fluorimeter to study the efficiency of photosynthesis in Arabidopsis plants. Methods Mol Biol 775:299–310PubMedCrossRefGoogle Scholar
  38. Buch K, Stransky H, Hager A (1995) FAD is a further essential cofactor of the NAD(P)H and O2-dependent zeaxanthin-epoxidase. FEBS Lett 376:45–48PubMedCrossRefGoogle Scholar
  39. Bugos RC, Yamamoto HY (1996) Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli. Proc Natl Acad Sci U S A 93:6320–6325PubMedCentralPubMedCrossRefGoogle Scholar
  40. Bungard RA, Ruban AV, Hibberd JM, Press MC et al (1999) Unusual carotenoid composition and a new type of xanthophylls cycles in plants. Proc Natl Acad Sci U S A 96:1135–1139PubMedCentralPubMedCrossRefGoogle Scholar
  41. Burnet JH (1965) Functions of carotenoids other than in photosynthesis. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic, London, pp 381–403, Chapter 14Google Scholar
  42. Buschmann C, Langsdorf G, Lichtenthaler HK (2000) Imaging of the blue, green and red fluorescence emission of plants: an overview. Photosythetica 38:483–491CrossRefGoogle Scholar
  43. Buschmann C, Lichtenthaler HK (1988) Reflectance and chlorophyll fluorescence signatures in leaves. In: Lichtenthaler HK (ed) Application of chlorophyll fluorescence in photosynthesis research, stress physiology, hydrobiology and remote sensing. Proceedings first international chlorophyll fluorescence symposium. Bad Honnef F.R.G. Kluwer, Dordrecht, pp 325–332Google Scholar
  44. Calvin M (1955) Function of carotenoids in photosynthesis. Nature 176:1215CrossRefGoogle Scholar
  45. Claes H (1957) Biosynthese von Carotinoiden bei Chlоrella. 3. Untersuchungen über die lichtabhängige Synthese von α- und ß-Carotin und Xanthophyllen bei der Ghlorella-Mutante 5 520. Z Naturforsch 12:401–407CrossRefGoogle Scholar
  46. Claes H (1958) Biosynthese von Carotinoiden bei Chlorella. 4. Die Carotinsynthese einer Chlorophylls-Mutante bei anaerober Belichtung. Z Naturfosch 13:222–224Google Scholar
  47. Claes H (1961) Energieübertragung von angeregtem Chlorophyll auf C40-Polyene mit verschiedenen сhromophoren Gruppen. Z Naturforsch 16:445–454CrossRefGoogle Scholar
  48. Claes H, Nakayama TOM (1959a) Das photooxidative Ausbleichen von Chlorophyll in vitro in Gegenwart von Carotinen mit verschiedenen Chromophoren Gruppen. Z Naturforsch 14:746–747Google Scholar
  49. Claes H, Nakayama TOM (1959b) Isomerisation of poly-cis-carotene by chlorophyll in vivo and in vitro. Nature 183:1053PubMedCrossRefGoogle Scholar
  50. Cogdell RI (1978) Carotenoids in photosynthesis. In: Goodwin TW (ed) Biochemical functions of terpenoids in plants. Royal Society, London, pp 131–141Google Scholar
  51. Cohen-Bazire GW, Sistrom WR, Stanier RY (1957) Kinetic studies of pigment synthesis by nonsulphur purple bacteria. J Cell Comp Physiol 49:25–67CrossRefGoogle Scholar
  52. Cohen-Bazire GW, Stanier RY (1958) Specific inhibition of carotenoid synthesis in a photosynthetic bacterium and its physiological consequences. Nature 181:250–252PubMedCrossRefGoogle Scholar
  53. Costes C (1963a) Metabolisme de la luteine et de la violaxanthine dans leschloroplasts. Compt Rend Ac Sci gr 13 256:5656–5659Google Scholar
  54. Costes C (1963b) Incorporation de 14CO2 d’acetate-2-14C et de mevalonate-2-14C dans les carotenoides de la feuille adulte de tomate. Ann Physiol Veg 5:115–140Google Scholar
  55. Costes C (1965a) Metabolisme et role physiologique des carotenoides dans les feuilles vertes. Ann Physiol Veg 7:105–142Google Scholar
  56. Costes C (1968) Carotenoides et photosynthese: variations induites de la teneur on pigments dans des folioles excises de tomate. Ann Physiol Veg 10:171–197Google Scholar
  57. Costes C, Monties B (1977) Spectroscopic effects of reactions between electrophilic reagents and epoxycarotenoids violaxanthin and neoxanthin. Physiol Veget 15:667–678Google Scholar
  58. Cruz A, Lopez-Rivadulla M, Sanchez I et al (1993) Simultaneous determination of carboxyhemoglobin and total hemoglobin in carbon monoxide-intoxicated patients by use of third derivative spectrophotometry. Anal Lett A Lond 26:1087–1097CrossRefGoogle Scholar
  59. Dalterio RA, Hurtubise RJ (1984) Second derivative solid surface luminescence analysis of two component liquid chromatography fractions. Anal Chem (Wash A) 56:1183–1186CrossRefGoogle Scholar
  60. Davies BH (1976) Carotenoids. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments, 2nd edn. Academic, London, pp 65–66Google Scholar
  61. Dorough C, Calvin M (1951) The path of oxygen in photosynthesis. J Am Chem Soc 73:2362–2365CrossRefGoogle Scholar
  62. Doskoch JaE, Kovrizhkyn VV, Tarusov BN (1973) Effect of physicochemical factors on the intensity of ultra-weak fluorescence of plants. Biophysics (Biofizika).18:94–97Google Scholar
  63. Doskoch JaE, Parkhomenko AN, Tarusov BN (1971) Spontaneous and induced chemiluminescence of spores of thermophilic microorganisms in relation to their thermal stability. Mikrobiologia 40:849–857Google Scholar
  64. DuBridge LA, Barnes SW, Buck JH (1937) Proton-induced radioactivity in oxygen. Phys Rev 51(11):995–1011CrossRefGoogle Scholar
  65. DuBridge LA, Barnes SW, Buck JH, Strain CV (1938) Proton-induced radioactivities. Phys Rev 53:447–453CrossRefGoogle Scholar
  66. Dutton HI, Manning WM (1941) Evidence for carotenoid sensitized photosynthesis in the diatom Nitzschia closterium. Ann J Bot 28:516–526CrossRefGoogle Scholar
  67. Dutton HI, Manning WM, Dugger BM (1943) Chlorophyll fluorescence and energy transfer in the diatom Nitzschia closterium. J Phys Chem 47(4):308–313CrossRefGoogle Scholar
  68. Dymond EG (1924) On the measurement of the critical potentials of gases. Radiat Environ Biophys 32:357–365Google Scholar
  69. Egorova EA, Bukhov NG, Krendeleva TE, Rubin AB, Wiese K, Heber U (2001) Ways of the electron transfer from the photosystem 1 to the photosystem 2 in intact leaves. Vestnik (Herald) Bashkir Univ City Ufa 2:35‒37Google Scholar
  70. Engelhardt VA (1955) Resumes and prospects of application of radioactive isotopes in biochemistry. In: Proceeding of the session AN SSSR on peaceful application of atomic energy, 1–5 July 1955. Plenary meeting, Izd-vo AN SSSR, MoscowGoogle Scholar
  71. Feldman L, Lindstrom E (1964) The effect of carotenoid pigments on photooxidations of some photosynthetic bacteria. Biochim Biophys Acta 79:266–272PubMedCrossRefGoogle Scholar
  72. Fell AF (1979) The analysis of aromatic amino acids by second and fourth derivative UV-spectroscopy. J Pharm Pharmacol 31 Suppl:23pPubMedCrossRefGoogle Scholar
  73. Fell AF (1980) Present and future perspectives in derivative spectroscopy. UV Spectr Group Bull 8:5Google Scholar
  74. Fell AF, Jarvie DR, Stewart MJ (1981) Analysis for paraquat by second- and fourth-derivative spectroscopy. Clin Chem 27:288–292Google Scholar
  75. Fell AF, Smith G (1982) Higher derivative methods in ultraviolet-visible and infrared spectrophotometry. Anal Proc (Lond) 19:28–33Google Scholar
  76. Fleckenstein A (1961) Aktuelle Probleme der Muskelphysiologie und ihre Analyse mit Isotopen. In: Künstliche radioactive Isotope in physiologie Diagnostik II (Handbuch). Springer, Heidelberg, pp 179–228Google Scholar
  77. Fleckenstein A, Gerlach E, Janke I, Marmier P (1959) Die Bestimmung des Turnovers von ATP Kreatinphosphat und ortophosphat in lebenden Muskeln mittels H2O18. Z Naturwissensch 46:365CrossRefGoogle Scholar
  78. Fleckenstein A, Gerlach E, Janke I, Marmier P (1960) Die Inkorporation von markiertem Sauerstoff und Wasser in die ATP Kreatinphosphat und Ortophosphat intakter muskelnbei Ruhe, Tetanischer Reizung und Erholung. Pflügers Arch f gesamt Physiol Mensch Tiere 271:75–104CrossRefGoogle Scholar
  79. Fogelstrom-Fineman I, Holm-Hansen O, Tolbert BM, Calvin M (1957) A tracer study with O18 in photosynthesis by activation analysis. Int J Appl Radiat Isot 2:280–286PubMedCrossRefGoogle Scholar
  80. Foote CS (1968) Mechanism of photosensitized oxidation. Science 162:963–970PubMedCrossRefGoogle Scholar
  81. Foyer ChH, Dujardyn M, Lemoine Y (1990) Turnover of the xanthophylls cycle during photoinhibition and recovery. Curr Res Photosynth II:491–494, Baltscheffsky M (ed). Kluwer-Academic, DordrechtGoogle Scholar
  82. Frank S (1951) The relation between carotenoid and chlorophyll pigments in Avena coleoptiles. Arch Biochem Biophys 30:52–61Google Scholar
  83. Freifelder DM (1976) Physical biochemistry. W. H. Freeman, San FranciscoGoogle Scholar
  84. French CS (1962) Different forms of chlorophyll in plants (in Russian). Structure and function of photosynthetic apparatus. IL, Moscow, pp 82–90Google Scholar
  85. French CS, Church AB (1955) Derivative spectrophotometry: apparatus. Carnegie I Wash 54:162–165Google Scholar
  86. French CS, Church AB, Eppley RWA (1954) A derivative spectrophotometer. Carnegie I Wash 53:182–184Google Scholar
  87. Fujimori E, Livingston E (1956) Interaction of chlorophyll in its triplet state with oxygen and carotene. Nature 180:1036–1038CrossRefGoogle Scholar
  88. Fukuda M, Kunugi S (1982) Pressure dependence of thermolysin catalysis. Eur J Biochem 124:157–163CrossRefGoogle Scholar
  89. Gaponenko VN (1976) Influence of external factors on a metabolism of chlorophyll. Science and Technics PH, MinskGoogle Scholar
  90. García-Plazaola JI, Esteban R, Fernández-marín B, Kranner I et al (2012) Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model. Photosynth Res 113:89–103PubMedCrossRefGoogle Scholar
  91. García-Plazaola JI, Matsubara S, Osmond CB (2007) The lutein epoxide cycle in higher plants: its relationship to other xanthophylls cycles and possible functions. Funct Plant Biol 34:759–773CrossRefGoogle Scholar
  92. Gilmore AM (1997) Mechanistic aspects of xanthophylls cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99:197–209CrossRefGoogle Scholar
  93. Gilmore AM, Yamamoto HY (1992) Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP. Proc Natl Acad Sci U S A 89:1899–1903PubMedCentralPubMedCrossRefGoogle Scholar
  94. Gilmore AM, Yamamoto HY (1993) Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth Res 35:67–78PubMedCrossRefGoogle Scholar
  95. Goedheer JC (1957) Some properties of carotenoids in bacterial chromatophores. Carnegie Inst Wash YBK 57:300–303Google Scholar
  96. Goedheer JC (1959) Energy transfer between carotenoids and bacteriochlorophyll in chromatophores of purple bacteria. Biochim Biophys Acta 55:1–8CrossRefGoogle Scholar
  97. Goedheer JC (1969a) Energy transfer from carotenoids to chlorophyll in blue-green, red and green algae and greening bean leaves. Biochim Biophys Acta 172:252–265PubMedCrossRefGoogle Scholar
  98. Goedheer JC (1969b) Carotenoids in blue-green algae and red algae. In: Metzner H (ed) Progress in photosynthesis research, vol 2. International Union of Biological Sciences, Tübingen, pp 811–817Google Scholar
  99. Goedheer JC (1972) Fluorescence in relation to photosynthesis. Annu Rev Plant Physiol 23:87–112, Goettingen-HeidelbergCrossRefGoogle Scholar
  100. Goodwin TW (1955) Carotenoids. Annu Rev Biochem 24:497–522PubMedCrossRefGoogle Scholar
  101. Goodwin TW (1957) Carotenoids as photoreceptors in plants. In: Atti. 2-d Congr. Intern. Photobiol., Turin, Italy, pp 361–369Google Scholar
  102. Goodwin TW (1958a) Incorporation of 14CO2, 2-14C-acetate, 2-14C-mevalonic acid into β-carotene in etiolated maize seedlings. Biochem J 68:26P–27PCrossRefGoogle Scholar
  103. Goodwin TW (1958b) Studies in carotenogenesis. 25: The incorporation of 14CO2 , 2-14C-acetate, 2-14C-mevalonic acid into β-carotene by illuminated etiolated maize seedlings. Biochem J 70:612–617PubMedCentralPubMedCrossRefGoogle Scholar
  104. Goodwin TW (1959) The biosynthesis and function of carotenoids pigments. Adv Enzymol 21:268–295Google Scholar
  105. Goodwin TW (1961) Biosynthesis and function of carotenoids. Annu Rev Plant Physiol 12:219–244CrossRefGoogle Scholar
  106. Goodwin TW (1965) The biosynthesis of carotenoids. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic, London, pp 143–173, Chapter 5Google Scholar
  107. Goodwin TW (1969) Carotenoid biosynthesis in chloroplasts. In: Metzner H (ed) Progress in photosynthesis research, vol 2. International Union of Biological Sciences, Tübingen, pp 669–674Google Scholar
  108. Goodwin TW (1971a) Biosynthesis by chloroplasts. In: Gibbs M (ed) Structure and function of chloroplasts. Springer, Heidelberg, pp 215–276Google Scholar
  109. Goodwin TW (1971b) Biosynthesis. In: Isler O (ed) Carotenoids. Birkhäusler, Basel, pp 577–636CrossRefGoogle Scholar
  110. Goodwin TW (1980) The biochemistry of carotenoids. V.1. Plants. Chapman Hall, LondonCrossRefGoogle Scholar
  111. Goodwin TW, Williams RJ (1965a) A mechanism for the cyclization of an acyclic precursor to form beta-carotene. Biochem J 94:5–7CrossRefGoogle Scholar
  112. Goodwin TW, Williams RJ (1965b) A mechanism for the biosynthesis of α-carotene. Biochem J 97:28c–31cPubMedCentralPubMedCrossRefGoogle Scholar
  113. Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160CrossRefGoogle Scholar
  114. Govindjee (ed) (1975) Bioenergetics of photosynthesis, 2nd edn. Wiley, New YorkGoogle Scholar
  115. Govindjee, Papageorgiou G (1971) Chlorophyll fluorescence and photosynthesis fluorescence transients. In: Giese A (ed) Photophysiology, vol 6. Academic, New York, pp 2–40Google Scholar
  116. Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714PubMedCrossRefGoogle Scholar
  117. Griffits M, Sistrom WR, Cohen-Bazire G, Stanier RY (1955) Function of carotenoids in photosynthesis. Nature 176(4495):1211–1214CrossRefGoogle Scholar
  118. Griffits M, Stanier RY (1956) Some mutational changes in the photosynthetic pigment system of Rhodopseudomonas sphaeroides. J Gen Microbiol 14:698–715CrossRefGoogle Scholar
  119. Gross R, Bohme K, Wilhelm C (1998) The xanthophyll cycle of Mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin: consequences for the mechanism of enhanced non photochemical energy dissipation. Planta 205:613–621CrossRefGoogle Scholar
  120. Gross R, Pinto EA, Wilhelm C, Richter M (2006) The importance of a highly active and ΔpH regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. J Plant Physiol 163:1008–1021CrossRefGoogle Scholar
  121. Grouneva I, Jakob T, Wilhelm C, Gross R (2006) Influence of ascorbate and pH on activity of diatom xanthophylls cycle-enzyme diadinoxanthin de-epoxidase. Physiol Plant 126:205–211CrossRefGoogle Scholar
  122. Grouneva I, Jakob T, Wilhelm C, Gross R (2009) The regulation of xanthophylls cycle activity and of nonphotochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana. Biochim Biophys Acta 1787:929–938PubMedCrossRefGoogle Scholar
  123. Gruszecki WI (1995) Different aspects of protective activity of the xanthophyll cycle under stress conditions. Acta Physiol Plant 17:145–152Google Scholar
  124. Gulyaev BA, Litvin FF (1970) First and second derivatives of absorption spectrum of chlorophyll and of accompanying pigments in cells of higher plants and algae at 20 °C (in Russian). Biophysics (Biofizika) 15:670–680Google Scholar
  125. Gulyaev BA, Litvin FF, Vedeneev VA (1971) Expansion of complex spectral curves of biological objects in components with help of derived spectra (in Russian). NDVSH Biol Nauk (4):49–57Google Scholar
  126. Hager A (1955) Chloroplasten Farbstoffe, ihre Papierchromatographische Trennung und ihre Veränderungen durch Ausfaktoren. Zt Naturforsch 10:310–312Google Scholar
  127. Hager A (1957) Über den Einfluß klimatischer Faktoren auf den Blattfarbstoffgehalt höherer Pflanzen. Planta 49:524–560CrossRefGoogle Scholar
  128. Hager A (1966) Die Zusammenhänge zwischen lichtinduzierten Xanthophyll-Umwand-lungen und Hill-Reaktionen. Ber Dtsch Bot Ges Bd 79:94–107Google Scholar
  129. Hager A (1967a) Untersuchungen über die lichtinduzierten Xanthophyllumwandlungen an Chlorella und Spinacia. Planta 74:148–173PubMedCrossRefGoogle Scholar
  130. Hager A (1967b) Untersuchungen über die Rückreaktionen in Xanthophyll Cyclus bei Chlorella, Spinacia und Taxus. Planta 76:138–148PubMedCrossRefGoogle Scholar
  131. Hager A (1969) Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin → Zeaxanthin Umwandlung: Beziehungen zur Photophosphorylierung. Planta 89:224–243PubMedCrossRefGoogle Scholar
  132. Hager A (1975) Die reversiblen, lichtabhängigen Xanthophyllumwanglungen in Chloro-plasten. Ber Dtsch Bot Ges 88:27–44Google Scholar
  133. Hager A (1980) The reversible, light-induced conversions of xanthophylls in chloroplast. In: Czygan FCh (ed) Pigments in plants. G. Fischer, Stuttgart, pp 57–79Google Scholar
  134. Hager A, Holocher K (1994) Localization of the xanthophyll cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta 192:581–589CrossRefGoogle Scholar
  135. Hager A, Perz H (1970) Veränderung der Lichtabsorption eines Carotinoids im Enzym (De-epoxidation)-Substrat (Violaxanthin)-Komplex. Planta 93:314–322PubMedCrossRefGoogle Scholar
  136. Hager A, Stransky H (1970a) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. Arch Mikrobiol 71:68–83CrossRefGoogle Scholar
  137. Hager A, Stransky H (1970b) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. I. Arch Mikrobiol 71:132–163PubMedCrossRefGoogle Scholar
  138. Hager A, Stransky H (1970c) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. II. Arch Mikrobiol 73(N 1):S77–S89CrossRefGoogle Scholar
  139. Hagris LG, Howell JA, Sutton RE (1966) Ultraviolet and light absorption spectrometry. Anal Chem (Wash) 68:169R–183RGoogle Scholar
  140. Havaux M (1988) Effects of temperature on the transitions between state-1 and state-2 Intact maize leaves. Plant Physiol Biochem 26:245–251Google Scholar
  141. Havaux M, Bonfils J-P, Lutz C, Niyogi KK (2000) Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase. Plant Physiol 124:273–284PubMedCentralPubMedCrossRefGoogle Scholar
  142. Havaux M, Niyogi КК (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci U S A 96:8762–8767PubMedCentralPubMedCrossRefGoogle Scholar
  143. Havaux M, Strasser RJ, Greppin H (1991) A theoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation with photochemical and nonphotochemical events. Photosynth Res 27:41–55PubMedCrossRefGoogle Scholar
  144. Hellmann H (1994) Nutzen des UV VIS Derivative-Spektroskopie in der Wasseranalytik. Vom Wasser A 82:49–65Google Scholar
  145. Henckel PA (1954) Sur la résistance des plantes à la sécheresse et les moyens de la diagnostiquer et de l’augmenter. Essais de botanique 2:436–453, Editions de l’Académie des sci. de L’URSS. Moscow-LeningradGoogle Scholar
  146. Hieber AD, Bugos RC, Yamamoto HY (2000) Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase. Biochim Biophys Acta 1482:84–91PubMedCrossRefGoogle Scholar
  147. Hornyak WF, Lauritsen (1948) Energy levels of light nuclei. I. Rev Mod Phys 20(1):191–227CrossRefGoogle Scholar
  148. Hornyak WF, Lauritsen T, Morrison P et al (1950) Energy levels of light nuclei. III. Rev Mod Phys 22:291–372CrossRefGoogle Scholar
  149. Ichikawa T, Terada H (1977) Second derivative Spectrophotometry as an effective tool for examining phenylalanine residues in proteins. Biochim Biophys Acta 494:267–270PubMedCrossRefGoogle Scholar
  150. Ichikawa H, Terada H (1979) Estimation of state and amount of phenylalanine residues in proteins by second derivative spectrophotometry. Biochim Biophys Acta 580:120–128PubMedCrossRefGoogle Scholar
  151. Isler O (ed) (1971) Carotenoids. Birkhäusler, Basel-Stuttgart. Chem. Reihe 23, 932pGoogle Scholar
  152. Ivantsova LV (1969) The action of some inhibitors and metabolites on reactions of violaxanthin cycle. Abstract of thesis of PhD dissertation. BIN Academy of Sciences USSR, Leningrad, 24pGoogle Scholar
  153. Ivantsova LV (1971) The effect of some inhibitors and metabolites on violaxanthin cycle reactions. PhD dissertation. Biological Sciences Botanical Institute Academy of Sciences USSR, Leningrad, 24pGoogle Scholar
  154. Jensen SL, Cohen-Bazire G, Nakayama TOM, Stanier EY (1958) The path of carotenoid synthesis in a photosynthetic bacterium. Biochim Biophys Acta 29:477–499PubMedCrossRefGoogle Scholar
  155. Karnaukhov VN (1988) Biological functions of carotenoids. EA Burstein (ed) Nauka, Мoscow, 239 pGoogle Scholar
  156. Karnaukhov VN (1990) Carotenoids: recent progress, problems and prospects. Comp Biochem Physiol B 95:1–20PubMedCrossRefGoogle Scholar
  157. Karnaukhov VN (2000) Functions of carotenoids—object of biophysical researches. Biophysics (Biofizika) 45:364–384Google Scholar
  158. Karpinska J (2012) Basic principles and analytical application of derivative spectrophotometry, Chapter 13. In: Uddin J (ed) Macro to nano spectroscopy. INTECH, Rijeka, Croatia, pp 253–268, 448pGoogle Scholar
  159. Karrer P, Jucker E (1948) Carotinoide. Birkhauser, BaselCrossRefGoogle Scholar
  160. Kautsky H, Appel W, Amann H (1960) Chlorophyllfluoreszenz und Kohlensäure-assimilation. XIII. Die Fluoreszenzkurve und die Photochemie der Pflanze. Biochem Zt 332:277–292Google Scholar
  161. Kautsky H, Franck U (1943) Chlorophyllfluoreszenz und Kohlensäureassimilation. Biochem Zt 315:139–232Google Scholar
  162. Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlenstoffassimilation. Z Naturwissensch 19:964CrossRefGoogle Scholar
  163. Kautsky H, Hirsch A (1934) Das Fluoreszenzverhalten grüner Pflanzen. Biochem Z 274:422–434Google Scholar
  164. Kochetov YuB, Tarusov BN (1975) The effect of heavy metal salts on the ultraweak chemiluminescence of aquatic plants leaves. Biophysics (Biofizika) 20:537–539Google Scholar
  165. Kochetov YuB, Tarusov BN (1977) Chemiluminescence of plant tissue preserved in aldehydes and exposed to the salt of heavy metals. Biophysics (Biofizika) 22:872–875Google Scholar
  166. Konev SV, Volotovskii IV (1974) Fotobiologiya. Izd-vo BGU, Minsk, 348pGoogle Scholar
  167. Kornblatt JA, Kornblatt MJ, Clery C, Balny C (1999) The effects of pressure on the conformation of plasminogen. Eur J Biochem 265:120–126PubMedCrossRefGoogle Scholar
  168. Kornblatt JA, Kornblatt MJ, Hui Bon Hoa G (1995) Second derivative spectroscopy of enolase at high hydrostatic pressure: an approach to study of macromolecular interactions. Biochemistry 34:1218–1223PubMedCrossRefGoogle Scholar
  169. Koroleva OJa (1973) The influence of light and oxygen on violaxanthin cycle reactions in leaves of green plants. Abstract of thesis of PhD dissertation. BIN Academy of Sciences USSR, Leningrad, 23pGoogle Scholar
  170. Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plantarum 74:566–574CrossRefGoogle Scholar
  171. Krause GH, Somersalo S (1989) Fluorescence as a tool in photosynthesis research: application in studies of photoinhibition? Cold acclimation and freezing stress. Philos Trans R Soc Lond B 323:281–293CrossRefGoogle Scholar
  172. Krause GH, Weis E (1984) Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosynth Res 5:139–157PubMedCrossRefGoogle Scholar
  173. Krause GH, Weis E (1988) The photosynthetic apparatus and chlorophyll fluorescence: an introduction. In: Lichtenthaler HK (ed) Application of chlorophyll fluorescence in photosynthesis research, stress physiology, hydrobiology and remote sensing. Proceedings first international chlorophyll fluorescence symposium. Bad Honnef F.R.G. Kluwer, Dordrecht, pp 3–12Google Scholar
  174. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 43:313–349CrossRefGoogle Scholar
  175. Krinsky NI (1962) Light-induced changes in carotenoid pigments in Euglena gracilis. Fed Proc 21:92–95Google Scholar
  176. Krinsky NI (1964) Carotenoid de-epoxidation in algae. Photochemical transformation of antheraxanthin to zeaxanthin. Biochim Biophys Acta 88:487–491PubMedGoogle Scholar
  177. Krinsky NI (1966) The role of carotenoid pigments as protective agents in chloroplasts. In: Goodwin TW (ed) Biochemistry of chloroplasts, vol 1. Academic, London, pp 423–430Google Scholar
  178. Krinsky NI (1968) The protective function of carotenoid pigments. In: Giese A (ed) Photophysiology, vol 3. Academic, New York, pp 123–195CrossRefGoogle Scholar
  179. Krinsky NI (1971) Function. In: Isler O (ed) Carotenoids. Birkhauser, Basel, pp 669–716CrossRefGoogle Scholar
  180. Krinsky NI (1972) Evolution of carotenoid functions. In: Abstracts of communications 3rd international symposium on carotenoids other than vitamin A. Cluj, Romania, 4–7 Sept 1972, pp 71–72Google Scholar
  181. Krinsky NI (1979) Carotenoid protection against oxidation. Pure Appl Chem 51:649–660CrossRefGoogle Scholar
  182. Krinsky NI (1984) Biology and photobiology of singlet oxygen. In: Bors W et al (eds) Oxygen radicals in chemistry and biology. Gruyter, Berlin, pp 453–464Google Scholar
  183. Kucher AA, Poluektov NS, Mischenko VN, Aleksandrova NN (1983) Differentiating attachment for spectrophotometer Specord and its usage for the analysis of samarium and europium mixture. Zavodskaya Lab 49:11–13Google Scholar
  184. Kunugi S, Kitayaki M, Yanagi Y, Tanaka N, Lange R, Balny C (1997) The effect of high pressure on thermolysin. Eur J Biochem 248:567–574PubMedCrossRefGoogle Scholar
  185. Kvitko KV, Chunaev AS, Baranov AA, Saakov VS (1976) Tonkaya struktura spektrov pogloshcheniya mutantov s izmenennym pigmentnym sostavom u Scenedesmus obliguus (Tuerp) Krueger. Materialy nauch. simpoz. XI nauch.-koordinats. soveshch. po teme 1-184 SEV. Izd-vo Leningr. un-ta, Leningrad, pp 49–73Google Scholar
  186. Lang M, Lichtenthaler HK (1991) Changes in the blue-green and red fluorescence-emission spectra of beech leaves during the autumnal chlorophyll breakdown. J Plant Physiol 138:550–553CrossRefGoogle Scholar
  187. Lange R, Balny C (2002) UV-visible derivative spectroscopy under high pressure. Biochim Biophys Acta 1595:80–93PubMedCrossRefGoogle Scholar
  188. Lange R, Bec N, Frank J, Balny C (1996a) Pressure induced protein structural changes as sensed by 4th derivative UV spectroscope. In: Hayashi R, Balny C (eds) High pressure bioscience and biotechnology, vol 13, Progress in biotechnology series. Elsevier, Amsterdam, pp 135–140Google Scholar
  189. Lange R, Frank J, Saldana J-L, Balny C (1996b) Fourth derivative UV-spectroscopy of proteins under high pressure. I. Factors affecting the fourth derivative spectrum of aromatic amino acids. Eur Biophys J 24:277–283Google Scholar
  190. Latowski D, Burda K, Strzalka K (2000) A mathematical model describing kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin by the xanthophylls cycle enzyme violaxanthin de-epoxidase. J Theor Biol 206:507–514PubMedCrossRefGoogle Scholar
  191. Latowski D, Kruk J, Burda K, Skrzynecka-Jaskier M et al (2002) Kinetics of violaxanthin de-epoxidation by de-epoxidase, a xanthophylls cycle enzyme is regulated by membrane fluidity in model lipid bilayers. FEBS J 209(18):4656–4665CrossRefGoogle Scholar
  192. Lavorel J, Etienne AL (1977) In vivo chlorophyll fluorescence. In: Barber J (ed) Primary processes in photosynthesis. Elsevier, Amsterdam, pp 203–268Google Scholar
  193. Lee KH, Yamamoto HY (1968) Action spectra for light-induced de-epoxidation of xanthophylls in spinach leaf. Photochem Photobiol 7:101–107CrossRefGoogle Scholar
  194. Lemberg IK, Girshin AB, Gusinskii GM (1966) Definition of О 18 contents with the help of detecting γ quantums which are let out on reaction О18 (α, n γ) Ne21. Zavodskaja Lab 22:1499–1501Google Scholar
  195. Leontyev VG, Saakov VS (1989) Redistribution of water in tissues of rats under hyperbaric conditions. In: Proceedings conference SM Kirov Military Medical Academy. L. p 39Google Scholar
  196. Lichtenthaler HK (ed) (1988a) Application of chlorophyll fluorescence. Kluwer, DordrechtGoogle Scholar
  197. Lichtenthaler HK (1988b) In vivo chlorophyll fluorescence. In: Lichtenthaler HK (ed) Application of chlorophyll fluorescence. Kluwer, Dordrecht, pp 129–142Google Scholar
  198. Lichtenthaler HK (1989) Applications of remote sensing in agriculture. Butterworths, London, pp 285–305Google Scholar
  199. Lichtenthaler HK (1992) The Kautsky effect: 60 years of chlorophyll fluorescence induction kinetics. Photosynthetica 27:45–55Google Scholar
  200. Lichtenthaler HK (ed) (1996) Vegetation stress. Fischer, StuttgartGoogle Scholar
  201. Lichtenthaler HK (1998) The stress concept in plants: an introduction. Ann N Y Acad Sci 851:187–198PubMedCrossRefGoogle Scholar
  202. Lichtenthaler HK (2000) The plant prenyllipids, including carotenoids, chlorophylls and prenylquinones. In: Moore TS (ed) Lipid metabolism in plants, Library of Congress Cataloging-in-Publication Data. CRC, Ann Arbor, pp 427–470Google Scholar
  203. Lichtenthaler HK, Buschmann C (1984) Das Waldsterben aus botanischer Sicht. Braun, Karlsruhe, S. 87Google Scholar
  204. Lichtenthaler HK, Buschmann C, Rinderle U, Schmuck G (1986) Application of chlorophyll fluorescence in ecophysiology. Radiat Environ Biophys 25:297–308PubMedCrossRefGoogle Scholar
  205. Lichtenthaler HK, Rinderle UR (1988) The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit Rev Anal Chem 19(suppl 1):S29–S85, CRC, Baton RougeCrossRefGoogle Scholar
  206. Lichtenthaler HK, Schindler C (1992) Studies on the photoprotective function of zeaxanthin at high-light conditions. In: Murata N (ed) Research in photosynthesis, vol 4. Kluwer, Dordrecht, pp 517–520Google Scholar
  207. Lichtenthaler HK, Stober F, Buschmann C et al (1990) Laser-induced chlorophyll fluorescence and blue fluorescence of plants. In: International geoscience and remote sensing symposium, IGARSS 90, Washington, DC, vol III. University of Maryland, College Park, pp 1913–1918Google Scholar
  208. Litvin FF (1965) Modelling of system of aggregated forms of chlorophyll and coupled pigments in solutions, films and monomer layers (in Russian). Biokhimiya i biofizika fotosinteza. Nauka, Moscow, pp 96–125Google Scholar
  209. Litvin FF, Belyaeva OB, Gulyaev BA et al (1973a) System of chlorophyll native forms, its role in primary products of photosynthesis and development in process of plant leaves greening (in Russian). In: Shlyk AA (ed) Chlorophyll. Nauka i tekhnika, Minsk, pp 215–231Google Scholar
  210. Litvin FF, Belyaeva OB, Gulyaev BA, Sineshchekov VA (1973b) Organization of pigment system of photosynthetic organisms and its connection with primary photoprocesses (in Russian). Problemy biofotokhimii: Tr. MOIP. Nauka, Moscow, pp 132–147Google Scholar
  211. Litvin FF, Gulyaev BA (1969) Derivative spectrophotometry and mathematical analysis of absorption spectra in a plant cell (in Russian). NDVSh Biol Nauk 2:118–135Google Scholar
  212. Lundegardh H (1963a) Spectral changes of chloroplast pigments in relation to oxygen, light and substrates. Physiol Plantarum 16:442–453CrossRefGoogle Scholar
  213. Lundegardh H (1966) The role of carotenoids in the photosynthesis of green plants. Proc Natl Acad Sci U S A 55:1062–1065PubMedCentralPubMedCrossRefGoogle Scholar
  214. Lundegardh H (1967) Role of carotenoids in photosynthesis of green plants. Nature 216:981–985CrossRefGoogle Scholar
  215. Lynch VH, French CS (1956) The participation of β-carotene in photochemical reduction by chloroplasts. Carnegie Inst Wash YBK 55:250–251Google Scholar
  216. Mach H, Middaugh CR (1994) Simultaneous monitoring of the environment of tryptophan, tyrosine and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy. Anal Biochem 222:323–331PubMedCrossRefGoogle Scholar
  217. Marenko VA, Saakov VS (1973) Derivative spectrophotometry on the basis of an SF-10 recording spectrophotometer. Sov Plant Physiol 20:637–645Google Scholar
  218. Marenko VA, Saakov VS, Dorokhov BL, Shpotakovskii VS (1972) Experience of application recording spectrophotometer SF-10 for removal of the first and second derivatives spectra of absorption. News Akad Nauk MoldSSR Ser Biol Khim Sci 4:30–35Google Scholar
  219. Mark H, Goodman C (1955) Angular distribution of neutrons from O18(p,n)F18. Phys Rev 101:768–771CrossRefGoogle Scholar
  220. Marmier F, Gerlach E, Janke I, Fleckenstein A (1959) Aktivierungsanalyse des stabilen Sauerstoff-Isotope O18. Pflügers Arch f Gesamt Physiol Mensch Tiere 270:19–24CrossRefGoogle Scholar
  221. Maslova TG, Markovskaia EF (2012) Current views on the function of the violaxanthin cycle (development of ideas put forward by D.I. Sapozhnikov). Russ J Plant Physiol (Fiziologiya Rastenii) 59(3):434–441CrossRefGoogle Scholar
  222. Mathews MM (1963) Studies on the localization function and formation of the carotenoid pigments of a strain of Mycobacterium marinum. Photochem Photobiol 2:1–8CrossRefGoogle Scholar
  223. Mathews MM (1964a) The effect of low temperature on the localization function and formation of the carotenoids against photosensitization in Sarcina lutea. Photochem Photobiol 3:75–77CrossRefGoogle Scholar
  224. Mathews MM (1964b) Protective effect of β-carotene against lethal photosensitization by haematoporphyrin. Nature 203:1092PubMedCrossRefGoogle Scholar
  225. Mathews MM, Krinsky NI (1965) The relationship between carotenoid pigments and resistance to radiation in non-photosynthetic bacteria. Photochem Photobiol 4:813–817PubMedCrossRefGoogle Scholar
  226. Mathews-Roth MM, Krinsky NI (1970) Failure of conjugated actaene carotenoids to protect a mutant of Sarcina lutea against lethal photosensitization. Photochem Photobiol 11:555–557PubMedCrossRefGoogle Scholar
  227. Mathews MM, Sistrom WR (1959) The function of carotenoid pigments in non-photosynthetic bacteria. Nature 184:1892–1893PubMedCrossRefGoogle Scholar
  228. Mathews MM, Sistrom WR (1960) The function of the carotenoid pigments of Sarcina lutea. Arch Microbiol 35:139–146Google Scholar
  229. Mathews-Roth MM, Wilson T, Fujimori EI (1974) Carotenoid chromophore length and protection against photosensitization. Photochem Photobiol 19:217–227PubMedCrossRefGoogle Scholar
  230. Mathis P (1969) Triplet-triplet energy transfer from chlorophyll a to carotenoids in solution and in chloroplasts. In: Metzner H (ed) Progress in photosynthesis research, vol 2. International Union of Biological Sciences, Tübingen, pp 818–822Google Scholar
  231. Mathis P, Butler WL, Satoh K (1979) Carotenoid triplet state and chlorophyll fluorescence quenching in chloroplasts and subchloroplasts particles. Photochem Photobiol 30:603–614CrossRefGoogle Scholar
  232. Matskevitch YuA, Panov AA, Saakov VS (1994) Regulation of Na-K-ATP-ase activity in unnucleated rodent erythrocytes by intracellular modulators. In: Abstracts international conference on environmental physiology and metabolism. Deutsch. Zoolog. Gesellsch., Fridrichroda, Thuering., p 29Google Scholar
  233. Meister A (1966a) Ein registrierendes Spectrophotometer zur Aufzeichung der Extintion, ihrer 1. und 2. Ableitung nach der Wellenlänge. Experiment Techn d Physik 14:168–173Google Scholar
  234. Meister A (1966b) Zur Untersuchung der verschiedenen Formen von Chlorophyll in der lebenden Pflanzen durch Anwendung der Derivativ-Spektrophotomerie. Kulturpflanze 14:235–255CrossRefGoogle Scholar
  235. Meister A, Brecht E, Jank H-W (1982) Zerlegung von Spektren in ihre Komponenten. II Spektrenzerlegung mit dem FORTRAN-Programm RESO. Kulturpflanze 30:141–154CrossRefGoogle Scholar
  236. Meister A, Maslova TG (1968) Zur Bestimmung der Lichtinduzierten Absorptions-änderungen durch Messung der 2. Ableitung der Extintion. Photosynthetica 2:261–267Google Scholar
  237. Mishchenko VT, Poluektov NS, Perfilev VA, Aleksandrova NN (1987) Primenenie proizvodnoi spektroskopii v analize biologicheski aktivnykh veshchestv. Spektroskopicheskie metody issledovaniya v fiziologii i biokhimii. Nauka, Leningrad, pp 72–75Google Scholar
  238. Mohammed GH, Binder WD, Gilles SL (1995) Chlorophyll fluorescence: a review of its practical forestry applications and instrumentation. Scand J Forest Res 10:383–410CrossRefGoogle Scholar
  239. Monson RK, Stidham MA, Williams GJ, Edwards GE, Uribe EG (1982) Temperature dependence of photosynthesis in Agropyron smithii Rydb. 1. Factors affecting net CO2 uptake in intact leaves and contribution from ribulose-1,5-bisphosphate carboxylase measured in vivo and in vitro. Plant Physiol 69:921–928PubMedCentralPubMedCrossRefGoogle Scholar
  240. Moralev SN, Rozengart EV (2007) Comparative enzymology of cholinesterases. International University Line, La JollaGoogle Scholar
  241. Morton RA (1975) Biochemical spectroscopy. Adam Hilger, BristolGoogle Scholar
  242. Moster JB, Quackenbush FW (1952a) The carotenoids of corn seedlings from three corn hybrids. Arch Biochem Biophys 38:297–303PubMedCrossRefGoogle Scholar
  243. Moster JB, Quackenbush FW (1952b) The effects of temperature and light on corn seedlings. Arch Biochem Biophys 38:297–303PubMedCrossRefGoogle Scholar
  244. Mozhaev VV, Hermans K, Frank J, Masson P, Balny C (1996) High pressure effects on protein structure and function. Proteins 24:81–91PubMedCrossRefGoogle Scholar
  245. Nazarenko NA, Poluektov NS, Mishchenko VT et al (1982) Fine structure of absorption spectra of gadolinium ions in solutions of chloride and of some complexes. Dokl Akad Nauk SSSR 266:399–402Google Scholar
  246. Natochin YuV, Monin YuG, Gonchrevskaya OA, Saakov VS (1985) Role of Ca2+ and Co2+ dependent protein conformation of blood whey rats in its osmolality regulation. Dokl Akad Nauk USSR 282:236–239Google Scholar
  247. Niyogi KK (1999) Photoprotection revisited. Annu Rev Plant Physiol Mol Biol 50:333–359CrossRefGoogle Scholar
  248. Niyogi KK, Bjorkman O, Grossman AR (1997a) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci U S A 94:14162–14167PubMedCentralPubMedCrossRefGoogle Scholar
  249. Niyogi KK, Bjorkman O, Grossman AR (1997b) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9:1369–1380PubMedCentralPubMedCrossRefGoogle Scholar
  250. Niyogi KK, Grossman AR, Bjorkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134PubMedCentralPubMedCrossRefGoogle Scholar
  251. Niyogi KK, Shih C, Pogson RJ, Dellapena D, Bjorkman O (2001) Photoprotection in zeaxanthin and lutein-deficient double mutant Arabidopsis. Photosynth Res 67:139–145PubMedCrossRefGoogle Scholar
  252. Ojeda CB, Rojas FS (2004) Recent development in derivative ultraviolet visible absorption spectrophotometry. Anal Chim Acta 518:1–24CrossRefGoogle Scholar
  253. Ojeda CB, Rojas FS, Pavon Cano JM (1995) Recent developments in derivative ultraviolet-visible absorption spectrophotometry. Talanta (Oxford) 42:1195–1214CrossRefGoogle Scholar
  254. Ozolina IА, Mochalkin АI (1975) About a protective role of carotenoid pigments in a plant. Izvestia Akad Nauk SSSR Ser Biol 3:387–392Google Scholar
  255. Panov AA, Saakov VS (1995) Specificity of water-salt balance of rats under The raised (increased) pressure of various respiratory mixes. Dokl Akad Nauk 340:423–426PubMedGoogle Scholar
  256. Panov AA, Saakov VS, Sokolova MM (1989) Influence of the increased pressure of gas environment on the contents of proteins and osmotic properties of blood plasma at rats. In: Proc. Kirov Conf. Milit. Med. Akad., pp 53–54Google Scholar
  257. Panov АА, Sokolova ММ, Saakov VS (1994a) The contents of ions K+ and Na+ in blood and tissues of rats after influence hyperbaric conditions and preliminary loading. Dokl Akad Nauk 336:127–129PubMedGoogle Scholar
  258. Panov AA, Sokolova MM, Saakov VS (1994b) Influence of physical loading on water-salt exchange of rats after stay in hyperbaric conditions. Dokl Akad Nauk 337:128–130PubMedGoogle Scholar
  259. Papageorgiou G (1975) Chlorophyll fluorescence: an intrinsic probe of photosynthesis. In: Govindjee (ed) Bioenergetics of photosynthesis. Academic, New York, pp 320–371Google Scholar
  260. Paramonova LI (1984) Research of photobiochemical properties fucoxanthin. Dissertation PhD, AN Bach Institute of Biochemistry, MoscowGoogle Scholar
  261. Perelygin VV, Tarusov BN (1966) Flash ultra weak radiation during damage of living tissue. Biophysics (Biofizika) 11:539–541Google Scholar
  262. Perfil’ev VA, Mishchenko VT, Poluektov NS (1985) Usage of derivative spectrophotometry for study and analysis of substances in solutions of complex compositions (review) (in Russian). Zhurn Analit Khim 40:1349–1363Google Scholar
  263. Peterman EJ, Gradinaru CC, Calkoen F, Borst JC (1997) Xanthophylls in light-harvesting complex II of higher plants: light harvesting and triplet quenching. Biochemistry 36:12208–12215PubMedCrossRefGoogle Scholar
  264. Pfündel E, Bilger W (1994) Regulation and possible function of the violaxanthin cycle. Photosynth Res 42:89–109PubMedCrossRefGoogle Scholar
  265. Popov GA, Tarusov BN (1964) Kinetics of chemi-luminescence during decomposition of hydrogen peroxide with water-salt animal liver extracts (in Russian). Biophysics (Biofizika) 9:528–529Google Scholar
  266. Popova OF, Sapozhnikov DI (1973) Action of light of various intensity on reaction of violaxanthin cycle in turning green seedlings of corn. Sov Plant Physiol 20:628–631Google Scholar
  267. Porter J, Anderson DC (1967) Biosynthesis of carotenes. Precursor to form carotene. Biochem J 94:5–7Google Scholar
  268. Ragone R, Colonna G, Balestrieri C, Servillo L et al (1984) Determination of tyrosine exposure in proteins by second derivative spectroscope. Biochemistry 23:1871–1875PubMedCrossRefGoogle Scholar
  269. Randall SA, Andersen RA (1986) Antheraxanthin, a light harvesting carotenoid found in a chromophyte alga. Plant Physiol 80:583–587CrossRefGoogle Scholar
  270. Rau W (1988) Functions of carotenoids other than in photosynthesis. In: Goodwin T (ed) Plant pigments. Academic, London, pp 231–255Google Scholar
  271. Rojas FS, Ojeda BC (2009) Recent development ultraviolet visible absorption spectrophotometry: 2004–2008. Anal Chim Acta 635:22–44Google Scholar
  272. Rozengart EV (2012) From a metabolism to comparative biochemistry of toxic organophosphorus compounds. Zhur Evol Biochem Physiol 48:1–7CrossRefGoogle Scholar
  273. Ruben S, Randall M, Kamen M, Hyde L (1941) Heavy oxygen-O18 as a tracer in the study of photosynthesis. J Am Chem Soc 63(3):877–879CrossRefGoogle Scholar
  274. Rubin AB (ed) (1974) Modern methods of investigation of photobiological processes (in Russian). Izd-vo Mosk. un-ta, Moscow, p 160Google Scholar
  275. Rubin AB (ed) (1975) Biophysics of photosynthesis (in Russian). Izd-vo Mosk. un-ta, MoscowGoogle Scholar
  276. Rubin AB (2000) Biophysics, 2nd edn. Vol 1 Theoretical biophysics (1999), Vol 2 Biophysics of cellular processes (2000). Publishing House of Moscow University, MoscowGoogle Scholar
  277. Rubin AB (2004) Biophysics, 3rd edn. Vol 1 Theoretical biophysics (2004), Vol 2 Biophysics of cellular processes (2004). Publishing House of Moscow University, MoscowGoogle Scholar
  278. Rubin BA, Gavrilenko VF (1977) Biochemistry and physiology of photosynthesis (in Russian). Izd-vo Mosk. un-ta, Moscow, p 325Google Scholar
  279. Saakov SG Sr (ed) (1948/1949) Vortrag und Diskussion. Die Situation in der biologischen Wissenschaft. Verlag Kultur u. Fortschrift GmbH, Berlin, 456 SGoogle Scholar
  280. Saakov VS (1959) The comparative characteristic of gasometric and radiometric methods of estimation of photosynthesis. Vestnik Leningrad Un-ta Ser Biol 21:42–50Google Scholar
  281. Saakov VS (1960) Some questions of a technique of manometrical definition of photosynthesis of leaves of ground plants. Bull Leningrad Univ Ser 4 Biol 21:33–41Google Scholar
  282. Saakov VS (1961) Einige methodische Probleme der manometrischen Bestimmung der Photosynthese an Blättern von Landpflanzen. Sowjetwiss Naturwissenschaft Beitrage 9:953–962Google Scholar
  283. Saakov VS (1963a) To mechanism of the light reaction of xanthophylls in chloroplasts suspension (in Russian). Botan Zhurn 48:888–891Google Scholar
  284. Saakov VS (1963b) Mechanism of violaxanthin conversion during light reaction of chloroplast (in Russian). Doklady Acad Sci USSR 198:1412–1414Google Scholar
  285. Saakov VS (1963c) Assessment of effectivenesses of chromatographical method of xanthophylls separation on paper with help of the C14 isotope (in Russian). Biophysics (Biofizika) 8:123Google Scholar
  286. Saakov VS (1963d) The characteristic of light reaction of xanthophylls. Dissertation PhD in Biol. Sci. Botan. Inst. VL Komarov Russ. Acad. Sci., Leningrad, pp 1–138Google Scholar
  287. Saakov VS (1964) Role of carotenoids in mechanism of oxygen transfer in photosynthesis (in Russian). Doklady Akad Nauk SSSR 155:1212–1215Google Scholar
  288. Saakov VS (1965a) Metabolism of violaxanthin-C-14 in leaf and its role in photosynthetic reactions (in Russian). Doklady Akad Nauk SSSR 165:230–233Google Scholar
  289. Saakov VS (1965b) On the possible role of xanthophylls in oxygen transfer during photosynthesis (in Russian). Sov Physiol Rasten 12:377–385Google Scholar
  290. Saakov VS (1966) Carbon Isotope C-14 applied to study of lutein exchange (in Russian). Doklady Akad Nauk SSSR 170:460–463Google Scholar
  291. Saakov VS (1967) Mechanism of the interconversions of exogenous carotenoids-C14 in Chlorella (in Russian). Doklady Akad Nauk SSSR 174:978–981Google Scholar
  292. Saakov VS (1971a) Action of ATP, Inhibitors and photophosphorylation uncouplers on xanthophyll transformation in leaf (in Russian). Doklady Akad Nauk SSSR 198:966–969Google Scholar
  293. Saakov VS (1971b) Correlation between light-induced xanthophyll conversions and electron transport chain of photosynthesis (in Russian). Sov Physiologiya rastenii 18:1088–1097Google Scholar
  294. Saakov VS (1971c) Relation between xanthophylls deepoxidation reaction and electron transport chain of photosynthesis (in Russian). Doklady Akad Nauk SSSR 201:1257–1260Google Scholar
  295. Saakov VS (1971d) The electron transport chain of photosynthesis and xanthophylls reactions in leaf. In: Biochemistry and biophysics of photosynthesis. SIFIBR SO AN SSSR, Irkutsk, pp 15–20Google Scholar
  296. Saakov VS (1976) Investigation of centres of harmful (damage) influences at chloroplasts membranes by means of molecular spectroscopy. Bull Appl Bot Genet Plant Breed (Leningrad) 57:17–34Google Scholar
  297. Saakov VS (1990a) Redox conversions of carotenoids in a green cell. Dissertation, Prof. in biol. sc. Institute of Biophysics and Physiology of Plants. AN Tadzh SSR, Dushanbe, pp 1–55Google Scholar
  298. Saakov VS (1990b) Die Anwendung der Lumineszenz, der Ableitungen der Spektrophotometrie und der photoakustischen Spektroskopie zur Charakterisierung von Schaeden in Chlorophyll-Protein Komplex der Chloroplasten. Colloq Pflanzenphysiolog der Humboldt-Universitaet zu Berlin 14:163–170Google Scholar
  299. Saakov VS (1991) On the conjugation of interconversions of xanthophylls with energy activity of chloroplast (in Russian). Doklady Akad Nauk SSSR 316:764–767Google Scholar
  300. Saakov VS, Baranov AA, Hoffmann P (1978a) Pigmentphysiologischen Untersuchungen mit Hilfe der Derivativ-Spektrophotometrie. Studia Biophys 70:129–142Google Scholar
  301. Saakov VS, Baranov AA, Hoffman P (1978b) Derivativ-spektroskopische Charakteristik des Pigmentphysiologischen Zustandes des Phothosyntheseapparates unter besonderer Beruecksichtigung der Temperatur. Studia Biophys 70:163–173Google Scholar
  302. Saakov VS, Dorokhov BL, Shiryaeva GA (1973) Second derivative of difference absorption spectra on example of chlorophyll a and b and of blood pigment (in Russian). Izv AN MoldSSR Ser Biol Khim Nauki 2:73–82Google Scholar
  303. Saakov VS, Drapkin VZ, Krivchenko AI, Rozengart EV et al. (2010) Derivative spectrophotometry and spectroscopy ESR for solving ecological and biological problems. SPb, Technolit, 408 pGoogle Scholar
  304. Saakov VS, Drapkin VZ, Krivchenko AI, Rozengart EV, Bogachev EV, Knyazev MN (2013) Derivative spectrophotometry and electron spin resonance (ESR) spectroscopy for ecological and biological questions. Springer, Heidelberg, 357 pCrossRefGoogle Scholar
  305. Saakov VS, Konovalov IN (1966) About carotenoid functions in photosynthesis (in Russian). Trudy Botan Ssadov AN KazSSR, Alma-Ata 9:81–98Google Scholar
  306. Saakov VS, Lavrova EA, Maksimovich AA, Poliakov VN, Smirnov MV, Natochin YuV (1987) Change of a physico-chemical state of proteins and concentration whey’s ions of blood Oncorhynchus gorbuscha during its migration from sea in the river. Report presented at the first all-union symposium on the ecology, physiology and biochemistry of fishes, 17–19 Nov 1987, Rostov Great - Yaroslavl, pp 171–172Google Scholar
  307. Saakov VS, Lemberg IKh, Nazarova GD et al (1969) Application of activating analysis for research of reactions of xanthophylls oxygen metabolism (in Russian). Inform Bull SIFIBR SO AN SSSR 5:57–58Google Scholar
  308. Saakov VS, Lemberg IKh, Nazarova GD et al (1970a) About oxygen exchange between water and xanthophylls (in Russian). Doklady Akad Nauk SSSR 193:713–715Google Scholar
  309. Saakov VS, Leontjev VG (1988) Untersuchungen über molekularspektrophotometrische Reaktion des pflanzlichen Photosyntheseapparates auf Streßbedingungen. Colloq Pflanzenphysiol d Humboldt-Univer zu Berlin 12:143–156Google Scholar
  310. Saakov VS, Leontjev VG, Sokolova MM et al (1986) Mechanisms of hyperbaric factors action under the circumstances of hyperbaric environments on an organism. In: Proceedings third all-USSR conference on underwater (subwater) physiology and medicine, 12–14 May, LeningradGoogle Scholar
  311. Saakov VS, Nasarova GD (1970a) Markierungsexperimente zur Umwandlung des Antheraxanthins in vivo. Studia Biophys 20:65–72Google Scholar
  312. Saakov VS, Nazarova GD, Myl’nikova EV, Alekseeva NR (1970b) Exchange between oxygen fund of xanthophylls and water oxygen under light influence on plant (in Russian). Mineral’noe pitanie rastenii i fotosintez. Irkutsk, SIFIBR SO AN SSSR, pp 217–227Google Scholar
  313. Saakov VS, Pronkin AA (1994) The influence of gamma radiation (57 Co) upon the change of aromatic amino acids, albumins and globulin derivatives spectra. In: Abstr. 9th ISBC conf. “calorimetry and thermodynamics of biological processes”. International Society for Biological Calorimetry, Berlin, p 33Google Scholar
  314. Saakov VS, Saidov AS (1965) Some methodical questions of production of highly active preparations of xanthophylls. Uzbek Biolog J 4:5–9Google Scholar
  315. Saakov VS, Shiryaev AV (2000) To evolution of hypothesis on location of damage influences of environmental factors in green leaf: the after-effect of gamma-irradiation on energetic of chloroplasts (in Russian). Doklady Akad Nauk 371:280–285Google Scholar
  316. Saakov VS, Shiryaeva GA (1967) To a question about methodology of paper chromatography of carotene carotenoids (in Russian). Trudy Komarov Botan Inst Akad Nauk SSSR L Ser 4 Eksperiment Botan 18:151–165Google Scholar
  317. Saakov VS, Shpotakovskii VS (1973) The method of derivative spectrophotometry in study of structure of photosynthesizing apparatus (in Russian). In: Methods of complex study of photosynthesis. VIR im N I Vavilova L 2:280–295Google Scholar
  318. Sadykov AS, Rozengart EV, Abduvakhabov AA et al (1976) Cholinesterase. active center and action mechanisms. PH FAN Uzbek. SSR, TashkentGoogle Scholar
  319. Sager R, Zalokar M (1958) Pigments and photosynthesis in a carotenoid-deficient mutant of Chlamydomonas. Nature 182:98–100PubMedCrossRefGoogle Scholar
  320. Sapozhnikov DI (1969) Transformation of xanthophylls in chloroplasts. In: Metzner H (ed) Progress in photosynthesis research, vol 2. International Union of Biological Sciences, Tübingen, pp 694–700Google Scholar
  321. Sapozhnikov DI (1973a) Investigation of the violaxanthin cycle. Pure Appl Chem 35:47–62PubMedCrossRefGoogle Scholar
  322. Sapozhnikov DI (1973b) Investigation of the violaxanthin cycle. In: Proceedings of the third international symposium on carotenoids other than vitamin A; Cluj, Romania. Butterworths, London, pp 47–62 [quote оn Schubert H et al (1994) J Biol Chem 268(10):7267–7272]Google Scholar
  323. Sapozhnikov DI, Alkhazov DG, Eidel’man ZM et al (1961) Inclusion of O 18 from heavy-oxygen water into violaxanthin under light influence on plants (in Russian). Botan Zhurn 46:673–676Google Scholar
  324. Sapozhnikov DI, Alkhazov DG, Eidel’man ZM et al (1964) About xanthophylls participation in the photosynthetic oxygen transfer (in Russian). Doklady Akad Nauk SSSR 154:974–977Google Scholar
  325. Sapozhnikov DI, Alkhazov DG, Eidelman ZM, Bazhanova NV, Lemberg IKh, Maslova TG, Girshin AB, Popova IA, Saakov VS, Popova OF, Shiryaeva GA (1967a) Incorporation of O 18 from heavy oxygen water in violaxanthene under the effect of light on plants. Translated by Shewchuck (University of California Lawrence Radiation Laboratory, Berkeley) from Botan Zhur 1961. 46:673–676. In: Radioisotopes in the biological sciences. An annotated bibliography of selected literature. Compiled by Helen L. Ward. Division of Technical Information, US [Atomic Energy Commision of U.S.A. N 20000912 060] [TID- 3585, Ref. 877, p. 83 (UCRL-Trans-737), See Ward HL]Google Scholar
  326. Sapozhnikov DI, Bazhanova NV (1958) To characterization of xanthophylls light reaction in isolated chloroplasts (in Russian). Dokldy Akad Nauk SSSR 120:1141–1144Google Scholar
  327. Sapozhnikov DI, Krasovskaya TA, Maevskaya AA (1957) Change of ratio of main carotenoids in plastids of green leaves under light influence (in Russian). Doklady Akad Nauk SSSR 113:465–467Google Scholar
  328. Sapozhnikov DI, Krasovskaya TA, Maevskaya AN (1959a) Change of state of main carotenoids in green leaves under light influence (in Russian). Problems of photosynthesis. Acad Sci USSR, Moscow, pp 170–174Google Scholar
  329. Sapozhnikov DI, Kutyurin VM, Maslova TG et al (1967b) About an oxygen exchange of xanthophylls in connection with their role during. Dokl Akad Nauk SSSR 113:465–467Google Scholar
  330. Sapozhnikov DI, Maslova TG, Bazhanova NV, Popova OF (1965a) To a question about kinetics of O 18 inclusions from heavy oxygen waters in a molecule of violaxanthin. (in Russian). Biophysics (Biofizika) 10:349–351Google Scholar
  331. Sapozhnikov DI, Maslova TG, Bazhanova NV, Popova OF (1965b) To a question about kinetics of О 18 inclusions from heavy oxygen waters in a molecule of violaxanthin (in Russian). Dokl Acad Nauk Tadzhik SSR 8(12):40–43Google Scholar
  332. Sapozhnikov DI, Mayevskaya AN, Krasovskaya-Antropova TA et al (1959b) Influence of anaerobiosis on turnover (change) of basic carotenoids of green leaf. Biokhimiia 24:39–41Google Scholar
  333. Sapozhnikov DI, Saakov VS (1962) Application of violaxanthin-C14 for estimation the light reaction of xanthophylls transformation. Dokl Akad Nauk SSSR 147:1487–1488Google Scholar
  334. Sassenscheid K, Klocke U, Tacke M (1998) Neue Perspektiwen in der Verbrennungs und Prozessmesstechnik: UV-Derivative-Spektroskopie. Gefahrstoffe Reinigung der Luft A 58:361–366Google Scholar
  335. Schenk GO, Diner B, Mathis P, Satoh K (1982) Flash induced carotenoid radical cation formation in PS-II. Biochim Biophys Acta 680:216–227CrossRefGoogle Scholar
  336. Schreiber U (1983) Chlorophyll fluorescence yield changes as a tool in plant physiology I. The measuring system. Photosynth Res 4:361–373CrossRefGoogle Scholar
  337. Schreiber U (1986) Detection of rapid induction kinetics with a new type of high frequency modulated chlorophyll fluorometer. Photosynth Res 9:261–272PubMedCrossRefGoogle Scholar
  338. Schreiber U (1994) New emitter-detector cuvette assembly for measuring modulated chlorophyll fluorescence of highly diluted suspensions in conjunction with the standard PAM fluorometer. Z Naturforsch 49c:646–656Google Scholar
  339. Schreiber U (1997) Chlorophyll fluorescence energy conversion: simple introductory experiments with the TEACHING-PAM chlorophyll fluorimeter. Heinz Walz, Effeltrich, GermanyGoogle Scholar
  340. Schreiber U, Armond PA (1978) Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. Biochim Biophys Acta 502:138–151PubMedCrossRefGoogle Scholar
  341. Schreiber U, Bery JA (1977) Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta 136:233–238PubMedCrossRefGoogle Scholar
  342. Schreiber U, Bilger W (1987) Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. In: Tenhungen JD, Catarino FM, Lange OL, Oeschel WC (eds) Plant responses to stress: functional analysis in Mediterranean ecosystems, vol 15, NATO ASI subseries G: Ecological sciences. Springer, New York, pp 27–53CrossRefGoogle Scholar
  343. Schreiber U, Bilger W (1993) Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. Prog Bot 54:151–173, Springer, BerlinGoogle Scholar
  344. Schreiber U, Bilger W, Hormann H, Neubauer C (1997) Chlorophyll fluorescence as a diagnostic tool: basics and some aspects of practical relevance. In: Raghavendra AS (ed) Photosynthesis: a comprehensive treatise. Cambridge University Press, Cambridge, pp 320–336Google Scholar
  345. Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vitro photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis, vol 100, Ecological studies. Springer, Berlin, pp 49–70Google Scholar
  346. Schreiber U, Colbow K, Vidaver W (1975) Temperature-jump chlorophyll fluorescence induction in plants. Z Naturforsch 30:689–690Google Scholar
  347. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical fluorescence quenching with a new type of modulation fluorescence. Photosynth Res 10:51–62PubMedCrossRefGoogle Scholar
  348. Schubert H, Kroon BMA, Matthijs HC (1994) In vivo manipulation of the xanthophylls cycle and the role of zeaxanthin in protection against photodamage in the green alga Chlorella pyrenoidosa. J Biol Chem 269(10):7267–7272PubMedGoogle Scholar
  349. Schulz H, Brecht E, Machold O (1990) The chlorophyll of pine (Pinus sylvestris L.) as influenced by SO2-incubation. J Plant Physiol 136(3):300–305CrossRefGoogle Scholar
  350. Semikhatova OA, Chulanovskaja MV (1965) Manometrical methods of studying respiration and photosynthesis of plants. Science, Moscow-LeningradGoogle Scholar
  351. Semikhatova OA, Saakov VS (1962) The investigation of the temperature after-effect on intensity of Polygonum sachalinense photosynthesis. Proc Komarov Bot Inst Аcad Sci USSR Ser 4 Exp Bot 15:25–42Google Scholar
  352. Shlyk AA (1971) Determination of chlorophylls and carotenoids in green leaves (in Russian). In: Biochemical methods in plant physiology. Nauka, Moscow, pp 154–170Google Scholar
  353. Shneour EA (1961) A study of light-catalysed oxygen transport in photosynthesis. University of California Radiation Laboratory Report UCRL-9900Google Scholar
  354. Shneour EA (1962a) The source of oxygen in Rhodopseudomonas sphaeroides carotenoid pigment conversion. Biochim Biophys Acta 65:510–511PubMedCrossRefGoogle Scholar
  355. Shneour EA (1962b) Carotenoid pigment conversion in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 62:534–540PubMedCrossRefGoogle Scholar
  356. Shneour EA, Calvin M (1962) Isotopic oxygen incorporation in xanthophylls of Spinaceae oleraceae quantosomes. Nature 196:439–441CrossRefGoogle Scholar
  357. Siefermann D (1971) Über den Zusammenhang von Xanthophyllcyclus und Photosynthese bei Lemna gibba L. Diss. zur Erlangung des Grades eines Doktors der Naturwissenschaften dem Fachbereich Biologie der Eberhard-Karls-Universität zu Tübingen, pp 1–83Google Scholar
  358. Siefermann-Harms D (1977) The xanthophylls cycle in higher plants. In: Tevini M, Lichtenthaler HK (eds) Lipids and lipid polymers in higher plants. Springer, Berlin, pp 218–230CrossRefGoogle Scholar
  359. Siefermann D, Yamamoto HY (1974) Light-induced deepoxidation of violaxanthin in lettuce chloroplasts. III. Reaction kinetics and effect of light intensity on deepoxidase activity and substrate availability. Biochem Biophys Acta 357:144–150PubMedGoogle Scholar
  360. Siefermann D, Yamamoto H (1975a) Light-induced de-epoxidation of violaxanthin in lettuce chloroplasts. The effects of electron-transport conditions on violaxanthin availability. Biochim Biophys Acta 387:149–158PubMedCrossRefGoogle Scholar
  361. Siefermann D, Yamamoto HY (1975b) Properties of NADPH and oxygen-dependent zeaxanthin epoxidation in isolated chloroplasts. Arch Biochem Biophys 171:70–77PubMedCrossRefGoogle Scholar
  362. Siefermann D, Yamamoto HY (1975c) NADPH and oxygen-dependent epoxidation of zeaxanthin. Biochim Biophys Res Commun 62:456–458CrossRefGoogle Scholar
  363. Simpson DJ (1988) Low temperature absorption spectroscopy of barley mutants. Gaussian deconvolution and fourth derivative analysis. Carlsberg Res Commun 53:343–356CrossRefGoogle Scholar
  364. Sistrom WR, Griffits M, Stanier RY (1956) A note on the porphyrins excreted by the blue-green mutant Rhodopseudomonas sphaeroides. J Cell Comp Physiol 48:459–472CrossRefGoogle Scholar
  365. Skujins S (1986) Instruments of work. Varian AG No UV-31 (Pts 1 and 2). P 1:1-33; 2: 1-52Google Scholar
  366. Snel JFH, van Kooten (eds) (1990) The use of chlorophyll fluorescence and other noninvasive spectroscopic techniques in plant stress physiology. Photosynth Res (Special Issue) 25(3):146–332Google Scholar
  367. Snell AH (1937) A new radioactive isotope of fluorine. Phys Rev 51:16–18Google Scholar
  368. Sokolova MM, Panov AA, Saakov VS, Leont’ev VG (1992) Change in osmolality, concentration of monovalent cations and blood protein structure in extreme circumstances. Doklady Akad Nauk SSSR 327:277–280Google Scholar
  369. Sokolova MM, Pushkarev YuP, Maslennikova LS, Saakov VS et al (1991) The age-related characteristics of changes in osmotic and ionic homeostasis in spontaneously hypertensive rats. Physiolog zhurn SSSR im I M Sechenova 77:47–54Google Scholar
  370. Soloni FG, Cunningham MT, Amazon K (1986) Plasma hemoglobin determination by recording derivative spectrophotometry. Am J Clin Pathol A 85:342–347Google Scholar
  371. Spitsyn PK, L’vov ON (1985) Derivative spectrophotometry of rare-earth elements (in Russian). Zhurn Analit Khim 40:1241–1248Google Scholar
  372. Stanier R (1960) Carotenoid pigments: problem of synthesis and function. Harvey Lect 1958–1959 54:219–255, Academic, New YorkGoogle Scholar
  373. Stanier R, Cohen-Bazire GW (1957) The role of light in microbial world: some facts and speculations. In: Microbial ecology: symposium of the Society for General Microbiology, held at the Royal Institute. Cambridge University Press, London, pp 56–89Google Scholar
  374. Stober F, Lichtenthaler HK (1992) Changes of the laser-induced blue, green and red fluorescence signatures during greening of etiolated leaves of wheat. J Plant Physiol 140:673–680CrossRefGoogle Scholar
  375. Stober F, Lichtenthaler HK (1993) Studies on the constancy of the blue and green fluorescence yield during the chlorophyll fluorescence induction kinetics (Kautsky effect). Radiat Environ Biophys 32:357–365PubMedCrossRefGoogle Scholar
  376. Stober F, Lang M, Lichtenthaler HK (1994) Blue green and red fluorescence emission signatures of green, etiolated and white leaves. Remote Sens Environ 47:65–71CrossRefGoogle Scholar
  377. Strain HH (1949) Functions and properties of chloroplast pigments. In: Frank J, Loomis WE (eds) Photosynthesis of green plants. Iowa State College Press, Ames, pp 133–178Google Scholar
  378. Stransky H, Hager A (1970a) Das Carotenoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. Arch Mikrobiol 71:164–190PubMedCrossRefGoogle Scholar
  379. Stransky H, Hager A (1970b) Das Carotenoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. IV Cyanophyceae und Rhodophyceae. Arch Mikrobiol 72:84–96PubMedCrossRefGoogle Scholar
  380. Stransky H, Hager A (1970c) Das Carotenoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. VI Chemosystematische Betrachtung. Arch Mikrobiol 73:315–323PubMedCrossRefGoogle Scholar
  381. Strasser RJ (1973) Induction phenomena in green plants when the photosynthetic apparatus starts to work. Arch Int Physiol Biochem 81:935–941Google Scholar
  382. Strasser RJ (1986) Laser-induced fluorescence of plants and its application in environmental research. Proc Int Geosci Rem Sens Symp (IGRASS) 3:1581–1584, ESA Publ. Division, NoordwijkGoogle Scholar
  383. Strasser RJ, Govindjee (1992) On the O-J-I-P fluorescence transient in leaves and D1 mutants of Chlamydomonas reinhardtii. Research in photosynthesis (N. Murata ed.), vol 2. Kluwer Acadaemic, Dordrecht, pp 29–32Google Scholar
  384. Strehler DL, Arnold W (1951) Light production by green plants. J Gen Physiol 34:809–820PubMedCentralPubMedCrossRefGoogle Scholar
  385. Talanova-Sher TYu (2004) Photosynthetic apparatus of plants upon influence of unfavorable factors. PhD Dissertation. Biological Sciences, Petrozavodsk, 155pGoogle Scholar
  386. Talsky G (1983) Higher-order derivative spectrophotometry in analytical chemistry. Int J Envirion Anal Chem 14:81–91CrossRefGoogle Scholar
  387. Talsky G (1994) Derivative spectrophotometry: low and higher order. VCH Verlaggesellschaft GmbH, Weinheim, 228pGoogle Scholar
  388. Tarusov BN (1966) On the 70th anniversary of the Laureate of the Nobel Prize of Academician Nikolai Nikolaevich Semenov. The influence of N N Semenov and his school on the development of radiation biophysics. Radiobiologiia 6:161–165PubMedGoogle Scholar
  389. Tarusov BN, Polivoda AI, Zhuravlev AI (1962) Ultraweak spontaneous luminescence in animal tissue. Tsitologiia 4:696–699PubMedGoogle Scholar
  390. Tenhunen JD, Catarino FM, Lange WC, Oechel WC (eds) (1987) Plant response to stress: functional analysis in Mediterranean ecosystems, vol 15, NATO ASI subseries G: Ecological sciences. Springer, New YorkGoogle Scholar
  391. Trebst A (1963) Zur Hemmung photosynthetische Reaktionen in isolierten Chloroplasten durch Salicylaldoxim. Z Naturforsch 18:817–821Google Scholar
  392. Trebst A (1966) Zum Mechanismus der Photosynthese. Arbeits-gemeinschaft f Forschung Land NRh-Westf 171:27–53, Westdeutsch, Koln-OpladenGoogle Scholar
  393. Trebst A, Pistorius E (1965) Zum Mechanismus der photosynthetischen Electronentransportes in isolierten Chloroplasten. II. Substituirte p-Phenyilendiamine als Electronendonatoren. Z Naturforsch 20:143–147Google Scholar
  394. Udovenko GV (1976) The plant metabolism during adaptation to soil salinity. Bull Appl Bot Genet Plant Breed (Leningrad) 57:3–16Google Scholar
  395. van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25(3):147–150PubMedCrossRefGoogle Scholar
  396. Vartapetian BB (1963) Water relation of plants in experiments with heavy isotope O 18. In: Proceedings symposium on water stress in plants, p 72Google Scholar
  397. Vartapetian BB, Dmitrovsky AA, Lemberg IH (1967) A new approach in the study of mechanism of carotene conversion to vitamin A by activation of O 18 in the nuclear reaction O 18 (α,)N21. In: Abstracts 7th international congress of biochemistry, Tokyo, 19–25 Aug 1967. The Science Council of Japan, Tokyo, p 815Google Scholar
  398. Vartapetian BB (1970) Molecular oxygen and water in cells metabolism. Nauka, MoscowGoogle Scholar
  399. Vinogradov AP (1962) Isotopes of oxygen and photosynthesis. Timiryazev Reading Acad. Sci. USSR, Moscow, 145pGoogle Scholar
  400. Vinogradov AP, Teys RV (1941) Isotope content of oxygen of various origin (oxygen of photosynthesis, air, CO2 and H2O (in Russian). Dokl Akad Nauk 33:497–501Google Scholar
  401. Vinogradov AP, Teys RV (1947) New detection of isotopic composition of photosynthesis (in Russian). Dokl Akad Nauk USSSR 56:57–58Google Scholar
  402. Vladimirov YuA, Litvin FF (1960) Comments to reports. Bull Acad Sci Sov Soc Repub 5:101Google Scholar
  403. Voznesenskii VL (1960) Comparative characteristics and theoretical bases of research methods for study plants photosynthesis. IPhR RAN, MoscowGoogle Scholar
  404. Voznesenskii VL, Semikhatova OA, Saakov VS (1959) Experimental verification on the radiometric method of evaluation of the rate of photosynthesis intensity. Sov Plant Physiol 6:380–384Google Scholar
  405. Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349CrossRefGoogle Scholar
  406. Whittigham CP (1965) Function in Photosynthesis. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic, London, pp 357–380, Chapter 13Google Scholar
  407. Williams JH, Britton G, Goodwin TW (1967) The biosynthesis of cyclic carotenes. Biochem J 105:99–105PubMedCentralPubMedCrossRefGoogle Scholar
  408. Williams BL, Willson K (eds) (1975) Principles and techniques of practical biochemistry. Edward Arnold, LondonGoogle Scholar
  409. Wollin KM (1990) Derivativespektroskopie V. Ordnung zur Bestimmung von Chlorophyll a und Phaeophytin a. I. Grundlagen des Verfahrens; Kalibrierung und Bestimmung des Säurequotienten von Chlorophyll a. Acta Hydrochimica et Hydrobiologica 18:289–296CrossRefGoogle Scholar
  410. Yamamoto HY, Bangham AD (1978) Carotenoid organization in membranes. Thermal transition and spectral properties of carotenoid containing liposomes. Biochim Biophys Acta 507:119–127PubMedCrossRefGoogle Scholar
  411. Yamamoto HY, Chang JL, Aihara MS (1967) Light-induced interconversion of violaxanthin and zeaxanthin in New Zealand spinach-leaf segments. Biochim Biophys Acta 141:342–347PubMedCrossRefGoogle Scholar
  412. Yamamoto HY, Chichester CO (1965) Dark incorporation of O 18 into antheraxanthin by bean leaf. Biochim Biophys Acta 109:303–305PubMedCrossRefGoogle Scholar
  413. Yamamoto HY, Chichester CO, Nakayama TOM (1962a) Biosynthetic origin of origin in the leaf xanthophylls. Arch Biochem Biophys 96(3):645–649PubMedCrossRefGoogle Scholar
  414. Yamamoto HY, Chichester CO, Nakayama TOM (1962b) Xanthophylls and Hill reaction. Photochem Photobiol 1:53–57CrossRefGoogle Scholar
  415. Yamamoto HY, Higashi RM (1978) Violaxanthin de-epoxidase. Lipid composition and substrate specificity. Arch Biochem Biophys 190:514–522PubMedCrossRefGoogle Scholar
  416. Yamamoto HY, Nakayama TOM, Chichester CO (1962c) Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys 97:168–173PubMedCrossRefGoogle Scholar
  417. Yamamoto HY, Takeguchi CA (1971) Concepts on the role of epoxy carotenoids in plants. In: Proceedings 2nd international congress on photosynthesis research, vol 1, Stresa, Italy, 24–26 June 1971, pp 621–627Google Scholar
  418. Zakarian AE, Tarusov BN (1966) Inhibition of chemiluminescence of the blood plasma in malignant growth (in Russian). Biophysics (Biofizika) 11(5):919–921Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Vladimir S. Saakov
    • 1
  • Alexander I. Krivchenko
    • 2
  • Eugene V. Rozengart
    • 2
  • Irina G. Danilova
    • 3
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of ScienceSaint PetersburgRussia
  2. 2.Inst. of Evolutionary Physiology and Biochem.Russian Academy of ScienceSaint PetersburgRussia
  3. 3.Morbid Anatomy LaboratoryResearch Institute of Medical PrimatologySochi (Adler)Russia

Personalised recommendations