Introduction. Development of the Methodological Base, Disputes, and Conclusions
Chapter
- 487 Downloads
Abstract
In the period of writing our previous books and this present monograph, a group of authors was formed, every one of whom has worked hard for the development of modern methodological approaches in different areas of physical and chemical biology. This has led to a productive working symbiosis of representatives of physiological and physical schools and experts in the field of organic chemistry and the biochemistry of pigments and also in the field of computer data processing.
Keywords
Electron Spin Resonance Epoxy Group Carotenoid Biosynthesis Foreign Work Back Reaction
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- Ajzenberg-Selove F, Lauritsen T (1959) Energy levels of light nuclei VI. Nucl Phys 10:340Google Scholar
- Akhmetzyanov IM, Zhin’ KP, Zinkin VI, Leushina AI (1994) Criteria of ecological safety. The St.-Petersburg centre of science, 31.05.–2.06.1993. Spb.: Poligraf, p 123Google Scholar
- Aleinikov IM (1974) The role of carotenoids during the photosynthesis process: Avtoref. dissertation. PhD biol. nauk. Kiev.Google Scholar
- Aleksandrova NN, Mishchenko VT, Poluektov NS, Kucher AA (1982) The derivative spectrophotometry in studying of complex formation of ions of f-elements. Complex of Pr3+ formation with ethylene diamine tetra acetic acid. Dokl AN USSR Ser B (9):23–36Google Scholar
- Aliev DA, Gusejnova IM, Sulejmanov SJ, Zulfugarov IS (2001) Light-induced biogenesis of chlorophyll-protein complexes in developing wheat thylakoids. Biochemistry 66:610–615Google Scholar
- Almela L, Garcia AL, Navarro S (1983) Application of derivative spectroscopy to the quantitative-determination of chlorophylls and related pigments. 2. Simultaneous determination of pheophytins-a and pheophytins-b. Photosynthetica 17:216–222Google Scholar
- Anderson JM, Blass U, Calvin M (1960) Biosynthesis and possible relations among the carotenoids and between chlorophyll a and b. In: Allen MB (ed) Comparative biochemistry of photoreactive systems. Academic, New York, pp 215–226Google Scholar
- Anderson JM, Krinsky NI (1972) Protective action of carotenoid pigments against photodynamic damage to liposomes. Photochem Photobiol 18(3):403–408Google Scholar
- Anderson IC, Robertson DS (1960) Role of carotenoids in protecting chlorophyll from photodestruction. Plant Physiol 35:531–534PubMedCentralPubMedCrossRefGoogle Scholar
- Babushkin AA, Bazhulin PA, Korolev FA, Levshin VS (1974) Methods of the spectral analysis. PH Moskow University, Moscow, p 510Google Scholar
- Balny C, Lange R (1999) Optical spectroscopic techniques in high pressure bioscience. In: Winter W, Jonas J (eds) High pressure molecular science, NATO Science series. Kluwer Academic, Dordrecht, pp 405–422CrossRefGoogle Scholar
- Balny C, Saldana JL, Dahan N (1984) High pressure stopped-flow spectrometry at low temperatures. Anal Biochem 139:178–179PubMedCrossRefGoogle Scholar
- Balny C, Saldana JL, Dahan N (1987) High pressure stopped-flow spectrometry at subzero temperatures. Anal Biochem 163:309–315PubMedCrossRefGoogle Scholar
- Balny C, Saldana JL, Lange R, Kornblatt MJ, Kornblatt JA (1996) UV Vis biochemical spectroscopy under high pressure. In: von Rohr PhR, Trepp Ch (eds) High pressure chemical engineering. Elsevier, Amsterdam, pp 553–558Google Scholar
- Bamji MS, Krinsky NI (1965) Carotenoid de-epoxidation in algae. Enzymatic conversion of antheraxanthin to zeaxanthin. J Biol Chem 240:467–470PubMedGoogle Scholar
- Barber J (ed) (1979) Primary processes of photosynthesis. Top Photosynth 2:1979. 3. Elsevier, AmsterdamGoogle Scholar
- Barber MS, Malkin S, Telfer A (1989) The origin of chlorophyll fluorescence in vivo and its quenching by the photosystem II reaction centre. Philos Trans R Soc Lond Ser B 323:227–239CrossRefGoogle Scholar
- Barnes SW, DuBridge LA, Wiig EC et al (1937) Proton-induced radioactivity of heavy nuclei. Phys Rev 51:777–778CrossRefGoogle Scholar
- Baroli J, Do AD, Yamane T, Niyogi KK (2003) Zeaxanthin accumulation in the absence of a functional xanthophylls cycle protects Chlamydomonas reinhardtii from photooxidative stress. Plant Cell 15:992–1008PubMedCentralPubMedCrossRefGoogle Scholar
- Bazhanova NV, Maslova TG, Popova IA et al (1964) Pigments of plastids of green plants and methods of their research. Sapozhnikov DI (ed) Nauka, Moscow-Leningrad (in Russian)Google Scholar
- Bazhanova NV, Sapozhnikov DI (1963) To characterization of the dark reaction of xanthophylls interconversion. Doklady Akad Nauk SSSR 151:1219–1221Google Scholar
- Bilger W, Björkmam O (1980) Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Annu Rev Plant Physiol 31:491–543CrossRefGoogle Scholar
- Bilger W, Björkmam O (1990) Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185PubMedCrossRefGoogle Scholar
- Bilger W, Björkman O, Thayer SS (1989) Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophylls cycle components in cotton leaves. Plant Physiol 91:542–551PubMedCentralPubMedCrossRefGoogle Scholar
- Bilger W, Schreiber U (1986) Energy-dependent quenching of dark level chlorophyll fluorescence in intact leaves. Photosynth Res 10:303–308PubMedCrossRefGoogle Scholar
- Bilger W, Schreiber U (1990) Chlorophyll luminescence as an indicator of stretch-Induced damage to the photosynthetic apparatus. Effects of heat-stress in isolated chloroplasts. Photosynth Res 25:161–171PubMedCrossRefGoogle Scholar
- Bilger W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102:425–432CrossRefGoogle Scholar
- Blaser IP, Boehm F, Marmier P et al (1949) Fonction d′excitation dela reaction O 18(p, n)F 18. Helvet Phys Acta 22(6):598–599Google Scholar
- Blaser IP, Boehm F, Marmier P et al (1951) Fonctions d′excitation (p, n) (III) elements layers. Helvet Phys Acta 24:465–482Google Scholar
- Blaser IP, Marmier P, Sempert M (1952) Anregungsfunktion der Kernreaktion N 14(p, α)C 11. Helvet Phys Acta 25(5):442–444Google Scholar
- Blass U, Anderson JM, Calvin M (1959) Biosynthesis and possible functional relationships among the carotenoids and between chlorophyll a and chlorophyll b. Plant Physiol 34:329–333PubMedCentralPubMedCrossRefGoogle Scholar
- Blinks LR (1954) The photosynthetic function of pigments other than chlorophyll. Annu Rev Plant Physiol 5:93–114CrossRefGoogle Scholar
- Bolhar-Nordenkampf HR, Long SP, Öquist C et al (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field. a review of current instrumentation. Funct Ecol 3:497–514CrossRefGoogle Scholar
- Borisov AYu (1974) To a question on the mechanism of protective action of carotenoids. Doklady Acad.Sci. 215:1240–1242 (in Russian)Google Scholar
- Brestkin АP, Moralev SN, Rozengart EV, Epstein LM (1997) Cholinesterases of terraneous animals and hydrobionts. PH TINRO-Centre, VladivostokGoogle Scholar
- Britton G (1985) Biochemistry of natural pigments. Cambridge University Press, CambridgeGoogle Scholar
- Brooks MD, Niyogi KK (2011) Use of pulse-amplitude modulated chlorophyll fluorimeter to study the efficiency of photosynthesis in Arabidopsis plants. Methods Mol Biol 775:299–310PubMedCrossRefGoogle Scholar
- Buch K, Stransky H, Hager A (1995) FAD is a further essential cofactor of the NAD(P)H and O2-dependent zeaxanthin-epoxidase. FEBS Lett 376:45–48PubMedCrossRefGoogle Scholar
- Bugos RC, Yamamoto HY (1996) Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli. Proc Natl Acad Sci U S A 93:6320–6325PubMedCentralPubMedCrossRefGoogle Scholar
- Bungard RA, Ruban AV, Hibberd JM, Press MC et al (1999) Unusual carotenoid composition and a new type of xanthophylls cycles in plants. Proc Natl Acad Sci U S A 96:1135–1139PubMedCentralPubMedCrossRefGoogle Scholar
- Burnet JH (1965) Functions of carotenoids other than in photosynthesis. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic, London, pp 381–403, Chapter 14Google Scholar
- Buschmann C, Langsdorf G, Lichtenthaler HK (2000) Imaging of the blue, green and red fluorescence emission of plants: an overview. Photosythetica 38:483–491CrossRefGoogle Scholar
- Buschmann C, Lichtenthaler HK (1988) Reflectance and chlorophyll fluorescence signatures in leaves. In: Lichtenthaler HK (ed) Application of chlorophyll fluorescence in photosynthesis research, stress physiology, hydrobiology and remote sensing. Proceedings first international chlorophyll fluorescence symposium. Bad Honnef F.R.G. Kluwer, Dordrecht, pp 325–332Google Scholar
- Calvin M (1955) Function of carotenoids in photosynthesis. Nature 176:1215CrossRefGoogle Scholar
- Claes H (1957) Biosynthese von Carotinoiden bei Chlоrella. 3. Untersuchungen über die lichtabhängige Synthese von α- und ß-Carotin und Xanthophyllen bei der Ghlorella-Mutante 5 520. Z Naturforsch 12:401–407CrossRefGoogle Scholar
- Claes H (1958) Biosynthese von Carotinoiden bei Chlorella. 4. Die Carotinsynthese einer Chlorophylls-Mutante bei anaerober Belichtung. Z Naturfosch 13:222–224Google Scholar
- Claes H (1961) Energieübertragung von angeregtem Chlorophyll auf C40-Polyene mit verschiedenen сhromophoren Gruppen. Z Naturforsch 16:445–454CrossRefGoogle Scholar
- Claes H, Nakayama TOM (1959a) Das photooxidative Ausbleichen von Chlorophyll in vitro in Gegenwart von Carotinen mit verschiedenen Chromophoren Gruppen. Z Naturforsch 14:746–747Google Scholar
- Claes H, Nakayama TOM (1959b) Isomerisation of poly-cis-carotene by chlorophyll in vivo and in vitro. Nature 183:1053PubMedCrossRefGoogle Scholar
- Cogdell RI (1978) Carotenoids in photosynthesis. In: Goodwin TW (ed) Biochemical functions of terpenoids in plants. Royal Society, London, pp 131–141Google Scholar
- Cohen-Bazire GW, Sistrom WR, Stanier RY (1957) Kinetic studies of pigment synthesis by nonsulphur purple bacteria. J Cell Comp Physiol 49:25–67CrossRefGoogle Scholar
- Cohen-Bazire GW, Stanier RY (1958) Specific inhibition of carotenoid synthesis in a photosynthetic bacterium and its physiological consequences. Nature 181:250–252PubMedCrossRefGoogle Scholar
- Costes C (1963a) Metabolisme de la luteine et de la violaxanthine dans leschloroplasts. Compt Rend Ac Sci gr 13 256:5656–5659Google Scholar
- Costes C (1963b) Incorporation de 14CO2 d’acetate-2-14C et de mevalonate-2-14C dans les carotenoides de la feuille adulte de tomate. Ann Physiol Veg 5:115–140Google Scholar
- Costes C (1965a) Metabolisme et role physiologique des carotenoides dans les feuilles vertes. Ann Physiol Veg 7:105–142Google Scholar
- Costes C (1968) Carotenoides et photosynthese: variations induites de la teneur on pigments dans des folioles excises de tomate. Ann Physiol Veg 10:171–197Google Scholar
- Costes C, Monties B (1977) Spectroscopic effects of reactions between electrophilic reagents and epoxycarotenoids violaxanthin and neoxanthin. Physiol Veget 15:667–678Google Scholar
- Cruz A, Lopez-Rivadulla M, Sanchez I et al (1993) Simultaneous determination of carboxyhemoglobin and total hemoglobin in carbon monoxide-intoxicated patients by use of third derivative spectrophotometry. Anal Lett A Lond 26:1087–1097CrossRefGoogle Scholar
- Dalterio RA, Hurtubise RJ (1984) Second derivative solid surface luminescence analysis of two component liquid chromatography fractions. Anal Chem (Wash A) 56:1183–1186CrossRefGoogle Scholar
- Davies BH (1976) Carotenoids. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments, 2nd edn. Academic, London, pp 65–66Google Scholar
- Dorough C, Calvin M (1951) The path of oxygen in photosynthesis. J Am Chem Soc 73:2362–2365CrossRefGoogle Scholar
- Doskoch JaE, Kovrizhkyn VV, Tarusov BN (1973) Effect of physicochemical factors on the intensity of ultra-weak fluorescence of plants. Biophysics (Biofizika).18:94–97Google Scholar
- Doskoch JaE, Parkhomenko AN, Tarusov BN (1971) Spontaneous and induced chemiluminescence of spores of thermophilic microorganisms in relation to their thermal stability. Mikrobiologia 40:849–857Google Scholar
- DuBridge LA, Barnes SW, Buck JH (1937) Proton-induced radioactivity in oxygen. Phys Rev 51(11):995–1011CrossRefGoogle Scholar
- DuBridge LA, Barnes SW, Buck JH, Strain CV (1938) Proton-induced radioactivities. Phys Rev 53:447–453CrossRefGoogle Scholar
- Dutton HI, Manning WM (1941) Evidence for carotenoid sensitized photosynthesis in the diatom Nitzschia closterium. Ann J Bot 28:516–526CrossRefGoogle Scholar
- Dutton HI, Manning WM, Dugger BM (1943) Chlorophyll fluorescence and energy transfer in the diatom Nitzschia closterium. J Phys Chem 47(4):308–313CrossRefGoogle Scholar
- Dymond EG (1924) On the measurement of the critical potentials of gases. Radiat Environ Biophys 32:357–365Google Scholar
- Egorova EA, Bukhov NG, Krendeleva TE, Rubin AB, Wiese K, Heber U (2001) Ways of the electron transfer from the photosystem 1 to the photosystem 2 in intact leaves. Vestnik (Herald) Bashkir Univ City Ufa 2:35‒37Google Scholar
- Engelhardt VA (1955) Resumes and prospects of application of radioactive isotopes in biochemistry. In: Proceeding of the session AN SSSR on peaceful application of atomic energy, 1–5 July 1955. Plenary meeting, Izd-vo AN SSSR, MoscowGoogle Scholar
- Feldman L, Lindstrom E (1964) The effect of carotenoid pigments on photooxidations of some photosynthetic bacteria. Biochim Biophys Acta 79:266–272PubMedCrossRefGoogle Scholar
- Fell AF (1979) The analysis of aromatic amino acids by second and fourth derivative UV-spectroscopy. J Pharm Pharmacol 31 Suppl:23pPubMedCrossRefGoogle Scholar
- Fell AF (1980) Present and future perspectives in derivative spectroscopy. UV Spectr Group Bull 8:5Google Scholar
- Fell AF, Jarvie DR, Stewart MJ (1981) Analysis for paraquat by second- and fourth-derivative spectroscopy. Clin Chem 27:288–292Google Scholar
- Fell AF, Smith G (1982) Higher derivative methods in ultraviolet-visible and infrared spectrophotometry. Anal Proc (Lond) 19:28–33Google Scholar
- Fleckenstein A (1961) Aktuelle Probleme der Muskelphysiologie und ihre Analyse mit Isotopen. In: Künstliche radioactive Isotope in physiologie Diagnostik II (Handbuch). Springer, Heidelberg, pp 179–228Google Scholar
- Fleckenstein A, Gerlach E, Janke I, Marmier P (1959) Die Bestimmung des Turnovers von ATP Kreatinphosphat und ortophosphat in lebenden Muskeln mittels H2O18. Z Naturwissensch 46:365CrossRefGoogle Scholar
- Fleckenstein A, Gerlach E, Janke I, Marmier P (1960) Die Inkorporation von markiertem Sauerstoff und Wasser in die ATP Kreatinphosphat und Ortophosphat intakter muskelnbei Ruhe, Tetanischer Reizung und Erholung. Pflügers Arch f gesamt Physiol Mensch Tiere 271:75–104CrossRefGoogle Scholar
- Fogelstrom-Fineman I, Holm-Hansen O, Tolbert BM, Calvin M (1957) A tracer study with O18 in photosynthesis by activation analysis. Int J Appl Radiat Isot 2:280–286PubMedCrossRefGoogle Scholar
- Foote CS (1968) Mechanism of photosensitized oxidation. Science 162:963–970PubMedCrossRefGoogle Scholar
- Foyer ChH, Dujardyn M, Lemoine Y (1990) Turnover of the xanthophylls cycle during photoinhibition and recovery. Curr Res Photosynth II:491–494, Baltscheffsky M (ed). Kluwer-Academic, DordrechtGoogle Scholar
- Frank S (1951) The relation between carotenoid and chlorophyll pigments in Avena coleoptiles. Arch Biochem Biophys 30:52–61Google Scholar
- Freifelder DM (1976) Physical biochemistry. W. H. Freeman, San FranciscoGoogle Scholar
- French CS (1962) Different forms of chlorophyll in plants (in Russian). Structure and function of photosynthetic apparatus. IL, Moscow, pp 82–90Google Scholar
- French CS, Church AB (1955) Derivative spectrophotometry: apparatus. Carnegie I Wash 54:162–165Google Scholar
- French CS, Church AB, Eppley RWA (1954) A derivative spectrophotometer. Carnegie I Wash 53:182–184Google Scholar
- Fujimori E, Livingston E (1956) Interaction of chlorophyll in its triplet state with oxygen and carotene. Nature 180:1036–1038CrossRefGoogle Scholar
- Fukuda M, Kunugi S (1982) Pressure dependence of thermolysin catalysis. Eur J Biochem 124:157–163CrossRefGoogle Scholar
- Gaponenko VN (1976) Influence of external factors on a metabolism of chlorophyll. Science and Technics PH, MinskGoogle Scholar
- García-Plazaola JI, Esteban R, Fernández-marín B, Kranner I et al (2012) Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model. Photosynth Res 113:89–103PubMedCrossRefGoogle Scholar
- García-Plazaola JI, Matsubara S, Osmond CB (2007) The lutein epoxide cycle in higher plants: its relationship to other xanthophylls cycles and possible functions. Funct Plant Biol 34:759–773CrossRefGoogle Scholar
- Gilmore AM (1997) Mechanistic aspects of xanthophylls cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99:197–209CrossRefGoogle Scholar
- Gilmore AM, Yamamoto HY (1992) Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP. Proc Natl Acad Sci U S A 89:1899–1903PubMedCentralPubMedCrossRefGoogle Scholar
- Gilmore AM, Yamamoto HY (1993) Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth Res 35:67–78PubMedCrossRefGoogle Scholar
- Goedheer JC (1957) Some properties of carotenoids in bacterial chromatophores. Carnegie Inst Wash YBK 57:300–303Google Scholar
- Goedheer JC (1959) Energy transfer between carotenoids and bacteriochlorophyll in chromatophores of purple bacteria. Biochim Biophys Acta 55:1–8CrossRefGoogle Scholar
- Goedheer JC (1969a) Energy transfer from carotenoids to chlorophyll in blue-green, red and green algae and greening bean leaves. Biochim Biophys Acta 172:252–265PubMedCrossRefGoogle Scholar
- Goedheer JC (1969b) Carotenoids in blue-green algae and red algae. In: Metzner H (ed) Progress in photosynthesis research, vol 2. International Union of Biological Sciences, Tübingen, pp 811–817Google Scholar
- Goedheer JC (1972) Fluorescence in relation to photosynthesis. Annu Rev Plant Physiol 23:87–112, Goettingen-HeidelbergCrossRefGoogle Scholar
- Goodwin TW (1955) Carotenoids. Annu Rev Biochem 24:497–522PubMedCrossRefGoogle Scholar
- Goodwin TW (1957) Carotenoids as photoreceptors in plants. In: Atti. 2-d Congr. Intern. Photobiol., Turin, Italy, pp 361–369Google Scholar
- Goodwin TW (1958a) Incorporation of 14CO2, 2-14C-acetate, 2-14C-mevalonic acid into β-carotene in etiolated maize seedlings. Biochem J 68:26P–27PCrossRefGoogle Scholar
- Goodwin TW (1958b) Studies in carotenogenesis. 25: The incorporation of 14CO2 , 2-14C-acetate, 2-14C-mevalonic acid into β-carotene by illuminated etiolated maize seedlings. Biochem J 70:612–617PubMedCentralPubMedCrossRefGoogle Scholar
- Goodwin TW (1959) The biosynthesis and function of carotenoids pigments. Adv Enzymol 21:268–295Google Scholar
- Goodwin TW (1961) Biosynthesis and function of carotenoids. Annu Rev Plant Physiol 12:219–244CrossRefGoogle Scholar
- Goodwin TW (1965) The biosynthesis of carotenoids. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic, London, pp 143–173, Chapter 5Google Scholar
- Goodwin TW (1969) Carotenoid biosynthesis in chloroplasts. In: Metzner H (ed) Progress in photosynthesis research, vol 2. International Union of Biological Sciences, Tübingen, pp 669–674Google Scholar
- Goodwin TW (1971a) Biosynthesis by chloroplasts. In: Gibbs M (ed) Structure and function of chloroplasts. Springer, Heidelberg, pp 215–276Google Scholar
- Goodwin TW (1971b) Biosynthesis. In: Isler O (ed) Carotenoids. Birkhäusler, Basel, pp 577–636CrossRefGoogle Scholar
- Goodwin TW (1980) The biochemistry of carotenoids. V.1. Plants. Chapman Hall, LondonCrossRefGoogle Scholar
- Goodwin TW, Williams RJ (1965a) A mechanism for the cyclization of an acyclic precursor to form beta-carotene. Biochem J 94:5–7CrossRefGoogle Scholar
- Goodwin TW, Williams RJ (1965b) A mechanism for the biosynthesis of α-carotene. Biochem J 97:28c–31cPubMedCentralPubMedCrossRefGoogle Scholar
- Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160CrossRefGoogle Scholar
- Govindjee (ed) (1975) Bioenergetics of photosynthesis, 2nd edn. Wiley, New YorkGoogle Scholar
- Govindjee, Papageorgiou G (1971) Chlorophyll fluorescence and photosynthesis fluorescence transients. In: Giese A (ed) Photophysiology, vol 6. Academic, New York, pp 2–40Google Scholar
- Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714PubMedCrossRefGoogle Scholar
- Griffits M, Sistrom WR, Cohen-Bazire G, Stanier RY (1955) Function of carotenoids in photosynthesis. Nature 176(4495):1211–1214CrossRefGoogle Scholar
- Griffits M, Stanier RY (1956) Some mutational changes in the photosynthetic pigment system of Rhodopseudomonas sphaeroides. J Gen Microbiol 14:698–715CrossRefGoogle Scholar
- Gross R, Bohme K, Wilhelm C (1998) The xanthophyll cycle of Mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin: consequences for the mechanism of enhanced non photochemical energy dissipation. Planta 205:613–621CrossRefGoogle Scholar
- Gross R, Pinto EA, Wilhelm C, Richter M (2006) The importance of a highly active and ΔpH regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. J Plant Physiol 163:1008–1021CrossRefGoogle Scholar
- Grouneva I, Jakob T, Wilhelm C, Gross R (2006) Influence of ascorbate and pH on activity of diatom xanthophylls cycle-enzyme diadinoxanthin de-epoxidase. Physiol Plant 126:205–211CrossRefGoogle Scholar
- Grouneva I, Jakob T, Wilhelm C, Gross R (2009) The regulation of xanthophylls cycle activity and of nonphotochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana. Biochim Biophys Acta 1787:929–938PubMedCrossRefGoogle Scholar
- Gruszecki WI (1995) Different aspects of protective activity of the xanthophyll cycle under stress conditions. Acta Physiol Plant 17:145–152Google Scholar
- Gulyaev BA, Litvin FF (1970) First and second derivatives of absorption spectrum of chlorophyll and of accompanying pigments in cells of higher plants and algae at 20 °C (in Russian). Biophysics (Biofizika) 15:670–680Google Scholar
- Gulyaev BA, Litvin FF, Vedeneev VA (1971) Expansion of complex spectral curves of biological objects in components with help of derived spectra (in Russian). NDVSH Biol Nauk (4):49–57Google Scholar
- Hager A (1955) Chloroplasten Farbstoffe, ihre Papierchromatographische Trennung und ihre Veränderungen durch Ausfaktoren. Zt Naturforsch 10:310–312Google Scholar
- Hager A (1957) Über den Einfluß klimatischer Faktoren auf den Blattfarbstoffgehalt höherer Pflanzen. Planta 49:524–560CrossRefGoogle Scholar
- Hager A (1966) Die Zusammenhänge zwischen lichtinduzierten Xanthophyll-Umwand-lungen und Hill-Reaktionen. Ber Dtsch Bot Ges Bd 79:94–107Google Scholar
- Hager A (1967a) Untersuchungen über die lichtinduzierten Xanthophyllumwandlungen an Chlorella und Spinacia. Planta 74:148–173PubMedCrossRefGoogle Scholar
- Hager A (1967b) Untersuchungen über die Rückreaktionen in Xanthophyll Cyclus bei Chlorella, Spinacia und Taxus. Planta 76:138–148PubMedCrossRefGoogle Scholar
- Hager A (1969) Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin → Zeaxanthin Umwandlung: Beziehungen zur Photophosphorylierung. Planta 89:224–243PubMedCrossRefGoogle Scholar
- Hager A (1975) Die reversiblen, lichtabhängigen Xanthophyllumwanglungen in Chloro-plasten. Ber Dtsch Bot Ges 88:27–44Google Scholar
- Hager A (1980) The reversible, light-induced conversions of xanthophylls in chloroplast. In: Czygan FCh (ed) Pigments in plants. G. Fischer, Stuttgart, pp 57–79Google Scholar
- Hager A, Holocher K (1994) Localization of the xanthophyll cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta 192:581–589CrossRefGoogle Scholar
- Hager A, Perz H (1970) Veränderung der Lichtabsorption eines Carotinoids im Enzym (De-epoxidation)-Substrat (Violaxanthin)-Komplex. Planta 93:314–322PubMedCrossRefGoogle Scholar
- Hager A, Stransky H (1970a) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. Arch Mikrobiol 71:68–83CrossRefGoogle Scholar
- Hager A, Stransky H (1970b) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. I. Arch Mikrobiol 71:132–163PubMedCrossRefGoogle Scholar
- Hager A, Stransky H (1970c) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. II. Arch Mikrobiol 73(N 1):S77–S89CrossRefGoogle Scholar
- Hagris LG, Howell JA, Sutton RE (1966) Ultraviolet and light absorption spectrometry. Anal Chem (Wash) 68:169R–183RGoogle Scholar
- Havaux M (1988) Effects of temperature on the transitions between state-1 and state-2 Intact maize leaves. Plant Physiol Biochem 26:245–251Google Scholar
- Havaux M, Bonfils J-P, Lutz C, Niyogi KK (2000) Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase. Plant Physiol 124:273–284PubMedCentralPubMedCrossRefGoogle Scholar
- Havaux M, Niyogi КК (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci U S A 96:8762–8767PubMedCentralPubMedCrossRefGoogle Scholar
- Havaux M, Strasser RJ, Greppin H (1991) A theoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation with photochemical and nonphotochemical events. Photosynth Res 27:41–55PubMedCrossRefGoogle Scholar
- Hellmann H (1994) Nutzen des UV VIS Derivative-Spektroskopie in der Wasseranalytik. Vom Wasser A 82:49–65Google Scholar
- Henckel PA (1954) Sur la résistance des plantes à la sécheresse et les moyens de la diagnostiquer et de l’augmenter. Essais de botanique 2:436–453, Editions de l’Académie des sci. de L’URSS. Moscow-LeningradGoogle Scholar
- Hieber AD, Bugos RC, Yamamoto HY (2000) Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase. Biochim Biophys Acta 1482:84–91PubMedCrossRefGoogle Scholar
- Hornyak WF, Lauritsen (1948) Energy levels of light nuclei. I. Rev Mod Phys 20(1):191–227CrossRefGoogle Scholar
- Hornyak WF, Lauritsen T, Morrison P et al (1950) Energy levels of light nuclei. III. Rev Mod Phys 22:291–372CrossRefGoogle Scholar
- Ichikawa T, Terada H (1977) Second derivative Spectrophotometry as an effective tool for examining phenylalanine residues in proteins. Biochim Biophys Acta 494:267–270PubMedCrossRefGoogle Scholar
- Ichikawa H, Terada H (1979) Estimation of state and amount of phenylalanine residues in proteins by second derivative spectrophotometry. Biochim Biophys Acta 580:120–128PubMedCrossRefGoogle Scholar
- Isler O (ed) (1971) Carotenoids. Birkhäusler, Basel-Stuttgart. Chem. Reihe 23, 932pGoogle Scholar
- Ivantsova LV (1969) The action of some inhibitors and metabolites on reactions of violaxanthin cycle. Abstract of thesis of PhD dissertation. BIN Academy of Sciences USSR, Leningrad, 24pGoogle Scholar
- Ivantsova LV (1971) The effect of some inhibitors and metabolites on violaxanthin cycle reactions. PhD dissertation. Biological Sciences Botanical Institute Academy of Sciences USSR, Leningrad, 24pGoogle Scholar
- Jensen SL, Cohen-Bazire G, Nakayama TOM, Stanier EY (1958) The path of carotenoid synthesis in a photosynthetic bacterium. Biochim Biophys Acta 29:477–499PubMedCrossRefGoogle Scholar
- Karnaukhov VN (1988) Biological functions of carotenoids. EA Burstein (ed) Nauka, Мoscow, 239 pGoogle Scholar
- Karnaukhov VN (1990) Carotenoids: recent progress, problems and prospects. Comp Biochem Physiol B 95:1–20PubMedCrossRefGoogle Scholar
- Karnaukhov VN (2000) Functions of carotenoids—object of biophysical researches. Biophysics (Biofizika) 45:364–384Google Scholar
- Karpinska J (2012) Basic principles and analytical application of derivative spectrophotometry, Chapter 13. In: Uddin J (ed) Macro to nano spectroscopy. INTECH, Rijeka, Croatia, pp 253–268, 448pGoogle Scholar
- Karrer P, Jucker E (1948) Carotinoide. Birkhauser, BaselCrossRefGoogle Scholar
- Kautsky H, Appel W, Amann H (1960) Chlorophyllfluoreszenz und Kohlensäure-assimilation. XIII. Die Fluoreszenzkurve und die Photochemie der Pflanze. Biochem Zt 332:277–292Google Scholar
- Kautsky H, Franck U (1943) Chlorophyllfluoreszenz und Kohlensäureassimilation. Biochem Zt 315:139–232Google Scholar
- Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlenstoffassimilation. Z Naturwissensch 19:964CrossRefGoogle Scholar
- Kautsky H, Hirsch A (1934) Das Fluoreszenzverhalten grüner Pflanzen. Biochem Z 274:422–434Google Scholar
- Kochetov YuB, Tarusov BN (1975) The effect of heavy metal salts on the ultraweak chemiluminescence of aquatic plants leaves. Biophysics (Biofizika) 20:537–539Google Scholar
- Kochetov YuB, Tarusov BN (1977) Chemiluminescence of plant tissue preserved in aldehydes and exposed to the salt of heavy metals. Biophysics (Biofizika) 22:872–875Google Scholar
- Konev SV, Volotovskii IV (1974) Fotobiologiya. Izd-vo BGU, Minsk, 348pGoogle Scholar
- Kornblatt JA, Kornblatt MJ, Clery C, Balny C (1999) The effects of pressure on the conformation of plasminogen. Eur J Biochem 265:120–126PubMedCrossRefGoogle Scholar
- Kornblatt JA, Kornblatt MJ, Hui Bon Hoa G (1995) Second derivative spectroscopy of enolase at high hydrostatic pressure: an approach to study of macromolecular interactions. Biochemistry 34:1218–1223PubMedCrossRefGoogle Scholar
- Koroleva OJa (1973) The influence of light and oxygen on violaxanthin cycle reactions in leaves of green plants. Abstract of thesis of PhD dissertation. BIN Academy of Sciences USSR, Leningrad, 23pGoogle Scholar
- Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plantarum 74:566–574CrossRefGoogle Scholar
- Krause GH, Somersalo S (1989) Fluorescence as a tool in photosynthesis research: application in studies of photoinhibition? Cold acclimation and freezing stress. Philos Trans R Soc Lond B 323:281–293CrossRefGoogle Scholar
- Krause GH, Weis E (1984) Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosynth Res 5:139–157PubMedCrossRefGoogle Scholar
- Krause GH, Weis E (1988) The photosynthetic apparatus and chlorophyll fluorescence: an introduction. In: Lichtenthaler HK (ed) Application of chlorophyll fluorescence in photosynthesis research, stress physiology, hydrobiology and remote sensing. Proceedings first international chlorophyll fluorescence symposium. Bad Honnef F.R.G. Kluwer, Dordrecht, pp 3–12Google Scholar
- Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 43:313–349CrossRefGoogle Scholar
- Krinsky NI (1962) Light-induced changes in carotenoid pigments in Euglena gracilis. Fed Proc 21:92–95Google Scholar
- Krinsky NI (1964) Carotenoid de-epoxidation in algae. Photochemical transformation of antheraxanthin to zeaxanthin. Biochim Biophys Acta 88:487–491PubMedGoogle Scholar
- Krinsky NI (1966) The role of carotenoid pigments as protective agents in chloroplasts. In: Goodwin TW (ed) Biochemistry of chloroplasts, vol 1. Academic, London, pp 423–430Google Scholar
- Krinsky NI (1968) The protective function of carotenoid pigments. In: Giese A (ed) Photophysiology, vol 3. Academic, New York, pp 123–195CrossRefGoogle Scholar
- Krinsky NI (1971) Function. In: Isler O (ed) Carotenoids. Birkhauser, Basel, pp 669–716CrossRefGoogle Scholar
- Krinsky NI (1972) Evolution of carotenoid functions. In: Abstracts of communications 3rd international symposium on carotenoids other than vitamin A. Cluj, Romania, 4–7 Sept 1972, pp 71–72Google Scholar
- Krinsky NI (1979) Carotenoid protection against oxidation. Pure Appl Chem 51:649–660CrossRefGoogle Scholar
- Krinsky NI (1984) Biology and photobiology of singlet oxygen. In: Bors W et al (eds) Oxygen radicals in chemistry and biology. Gruyter, Berlin, pp 453–464Google Scholar
- Kucher AA, Poluektov NS, Mischenko VN, Aleksandrova NN (1983) Differentiating attachment for spectrophotometer Specord and its usage for the analysis of samarium and europium mixture. Zavodskaya Lab 49:11–13Google Scholar
- Kunugi S, Kitayaki M, Yanagi Y, Tanaka N, Lange R, Balny C (1997) The effect of high pressure on thermolysin. Eur J Biochem 248:567–574PubMedCrossRefGoogle Scholar
- Kvitko KV, Chunaev AS, Baranov AA, Saakov VS (1976) Tonkaya struktura spektrov pogloshcheniya mutantov s izmenennym pigmentnym sostavom u Scenedesmus obliguus (Tuerp) Krueger. Materialy nauch. simpoz. XI nauch.-koordinats. soveshch. po teme 1-184 SEV. Izd-vo Leningr. un-ta, Leningrad, pp 49–73Google Scholar
- Lang M, Lichtenthaler HK (1991) Changes in the blue-green and red fluorescence-emission spectra of beech leaves during the autumnal chlorophyll breakdown. J Plant Physiol 138:550–553CrossRefGoogle Scholar
- Lange R, Balny C (2002) UV-visible derivative spectroscopy under high pressure. Biochim Biophys Acta 1595:80–93PubMedCrossRefGoogle Scholar
- Lange R, Bec N, Frank J, Balny C (1996a) Pressure induced protein structural changes as sensed by 4th derivative UV spectroscope. In: Hayashi R, Balny C (eds) High pressure bioscience and biotechnology, vol 13, Progress in biotechnology series. Elsevier, Amsterdam, pp 135–140Google Scholar
- Lange R, Frank J, Saldana J-L, Balny C (1996b) Fourth derivative UV-spectroscopy of proteins under high pressure. I. Factors affecting the fourth derivative spectrum of aromatic amino acids. Eur Biophys J 24:277–283Google Scholar
- Latowski D, Burda K, Strzalka K (2000) A mathematical model describing kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin by the xanthophylls cycle enzyme violaxanthin de-epoxidase. J Theor Biol 206:507–514PubMedCrossRefGoogle Scholar
- Latowski D, Kruk J, Burda K, Skrzynecka-Jaskier M et al (2002) Kinetics of violaxanthin de-epoxidation by de-epoxidase, a xanthophylls cycle enzyme is regulated by membrane fluidity in model lipid bilayers. FEBS J 209(18):4656–4665CrossRefGoogle Scholar
- Lavorel J, Etienne AL (1977) In vivo chlorophyll fluorescence. In: Barber J (ed) Primary processes in photosynthesis. Elsevier, Amsterdam, pp 203–268Google Scholar
- Lee KH, Yamamoto HY (1968) Action spectra for light-induced de-epoxidation of xanthophylls in spinach leaf. Photochem Photobiol 7:101–107CrossRefGoogle Scholar
- Lemberg IK, Girshin AB, Gusinskii GM (1966) Definition of О 18 contents with the help of detecting γ quantums which are let out on reaction О18 (α, n γ) Ne21. Zavodskaja Lab 22:1499–1501Google Scholar
- Leontyev VG, Saakov VS (1989) Redistribution of water in tissues of rats under hyperbaric conditions. In: Proceedings conference SM Kirov Military Medical Academy. L. p 39Google Scholar
- Lichtenthaler HK (ed) (1988a) Application of chlorophyll fluorescence. Kluwer, DordrechtGoogle Scholar
- Lichtenthaler HK (1988b) In vivo chlorophyll fluorescence. In: Lichtenthaler HK (ed) Application of chlorophyll fluorescence. Kluwer, Dordrecht, pp 129–142Google Scholar
- Lichtenthaler HK (1989) Applications of remote sensing in agriculture. Butterworths, London, pp 285–305Google Scholar
- Lichtenthaler HK (1992) The Kautsky effect: 60 years of chlorophyll fluorescence induction kinetics. Photosynthetica 27:45–55Google Scholar
- Lichtenthaler HK (ed) (1996) Vegetation stress. Fischer, StuttgartGoogle Scholar
- Lichtenthaler HK (1998) The stress concept in plants: an introduction. Ann N Y Acad Sci 851:187–198PubMedCrossRefGoogle Scholar
- Lichtenthaler HK (2000) The plant prenyllipids, including carotenoids, chlorophylls and prenylquinones. In: Moore TS (ed) Lipid metabolism in plants, Library of Congress Cataloging-in-Publication Data. CRC, Ann Arbor, pp 427–470Google Scholar
- Lichtenthaler HK, Buschmann C (1984) Das Waldsterben aus botanischer Sicht. Braun, Karlsruhe, S. 87Google Scholar
- Lichtenthaler HK, Buschmann C, Rinderle U, Schmuck G (1986) Application of chlorophyll fluorescence in ecophysiology. Radiat Environ Biophys 25:297–308PubMedCrossRefGoogle Scholar
- Lichtenthaler HK, Rinderle UR (1988) The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit Rev Anal Chem 19(suppl 1):S29–S85, CRC, Baton RougeCrossRefGoogle Scholar
- Lichtenthaler HK, Schindler C (1992) Studies on the photoprotective function of zeaxanthin at high-light conditions. In: Murata N (ed) Research in photosynthesis, vol 4. Kluwer, Dordrecht, pp 517–520Google Scholar
- Lichtenthaler HK, Stober F, Buschmann C et al (1990) Laser-induced chlorophyll fluorescence and blue fluorescence of plants. In: International geoscience and remote sensing symposium, IGARSS 90, Washington, DC, vol III. University of Maryland, College Park, pp 1913–1918Google Scholar
- Litvin FF (1965) Modelling of system of aggregated forms of chlorophyll and coupled pigments in solutions, films and monomer layers (in Russian). Biokhimiya i biofizika fotosinteza. Nauka, Moscow, pp 96–125Google Scholar
- Litvin FF, Belyaeva OB, Gulyaev BA et al (1973a) System of chlorophyll native forms, its role in primary products of photosynthesis and development in process of plant leaves greening (in Russian). In: Shlyk AA (ed) Chlorophyll. Nauka i tekhnika, Minsk, pp 215–231Google Scholar
- Litvin FF, Belyaeva OB, Gulyaev BA, Sineshchekov VA (1973b) Organization of pigment system of photosynthetic organisms and its connection with primary photoprocesses (in Russian). Problemy biofotokhimii: Tr. MOIP. Nauka, Moscow, pp 132–147Google Scholar
- Litvin FF, Gulyaev BA (1969) Derivative spectrophotometry and mathematical analysis of absorption spectra in a plant cell (in Russian). NDVSh Biol Nauk 2:118–135Google Scholar
- Lundegardh H (1963a) Spectral changes of chloroplast pigments in relation to oxygen, light and substrates. Physiol Plantarum 16:442–453CrossRefGoogle Scholar
- Lundegardh H (1966) The role of carotenoids in the photosynthesis of green plants. Proc Natl Acad Sci U S A 55:1062–1065PubMedCentralPubMedCrossRefGoogle Scholar
- Lundegardh H (1967) Role of carotenoids in photosynthesis of green plants. Nature 216:981–985CrossRefGoogle Scholar
- Lynch VH, French CS (1956) The participation of β-carotene in photochemical reduction by chloroplasts. Carnegie Inst Wash YBK 55:250–251Google Scholar
- Mach H, Middaugh CR (1994) Simultaneous monitoring of the environment of tryptophan, tyrosine and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy. Anal Biochem 222:323–331PubMedCrossRefGoogle Scholar
- Marenko VA, Saakov VS (1973) Derivative spectrophotometry on the basis of an SF-10 recording spectrophotometer. Sov Plant Physiol 20:637–645Google Scholar
- Marenko VA, Saakov VS, Dorokhov BL, Shpotakovskii VS (1972) Experience of application recording spectrophotometer SF-10 for removal of the first and second derivatives spectra of absorption. News Akad Nauk MoldSSR Ser Biol Khim Sci 4:30–35Google Scholar
- Mark H, Goodman C (1955) Angular distribution of neutrons from O18(p,n)F18. Phys Rev 101:768–771CrossRefGoogle Scholar
- Marmier F, Gerlach E, Janke I, Fleckenstein A (1959) Aktivierungsanalyse des stabilen Sauerstoff-Isotope O18. Pflügers Arch f Gesamt Physiol Mensch Tiere 270:19–24CrossRefGoogle Scholar
- Maslova TG, Markovskaia EF (2012) Current views on the function of the violaxanthin cycle (development of ideas put forward by D.I. Sapozhnikov). Russ J Plant Physiol (Fiziologiya Rastenii) 59(3):434–441CrossRefGoogle Scholar
- Mathews MM (1963) Studies on the localization function and formation of the carotenoid pigments of a strain of Mycobacterium marinum. Photochem Photobiol 2:1–8CrossRefGoogle Scholar
- Mathews MM (1964a) The effect of low temperature on the localization function and formation of the carotenoids against photosensitization in Sarcina lutea. Photochem Photobiol 3:75–77CrossRefGoogle Scholar
- Mathews MM (1964b) Protective effect of β-carotene against lethal photosensitization by haematoporphyrin. Nature 203:1092PubMedCrossRefGoogle Scholar
- Mathews MM, Krinsky NI (1965) The relationship between carotenoid pigments and resistance to radiation in non-photosynthetic bacteria. Photochem Photobiol 4:813–817PubMedCrossRefGoogle Scholar
- Mathews-Roth MM, Krinsky NI (1970) Failure of conjugated actaene carotenoids to protect a mutant of Sarcina lutea against lethal photosensitization. Photochem Photobiol 11:555–557PubMedCrossRefGoogle Scholar
- Mathews MM, Sistrom WR (1959) The function of carotenoid pigments in non-photosynthetic bacteria. Nature 184:1892–1893PubMedCrossRefGoogle Scholar
- Mathews MM, Sistrom WR (1960) The function of the carotenoid pigments of Sarcina lutea. Arch Microbiol 35:139–146Google Scholar
- Mathews-Roth MM, Wilson T, Fujimori EI (1974) Carotenoid chromophore length and protection against photosensitization. Photochem Photobiol 19:217–227PubMedCrossRefGoogle Scholar
- Mathis P (1969) Triplet-triplet energy transfer from chlorophyll a to carotenoids in solution and in chloroplasts. In: Metzner H (ed) Progress in photosynthesis research, vol 2. International Union of Biological Sciences, Tübingen, pp 818–822Google Scholar
- Mathis P, Butler WL, Satoh K (1979) Carotenoid triplet state and chlorophyll fluorescence quenching in chloroplasts and subchloroplasts particles. Photochem Photobiol 30:603–614CrossRefGoogle Scholar
- Matskevitch YuA, Panov AA, Saakov VS (1994) Regulation of Na-K-ATP-ase activity in unnucleated rodent erythrocytes by intracellular modulators. In: Abstracts international conference on environmental physiology and metabolism. Deutsch. Zoolog. Gesellsch., Fridrichroda, Thuering., p 29Google Scholar
- Meister A (1966a) Ein registrierendes Spectrophotometer zur Aufzeichung der Extintion, ihrer 1. und 2. Ableitung nach der Wellenlänge. Experiment Techn d Physik 14:168–173Google Scholar
- Meister A (1966b) Zur Untersuchung der verschiedenen Formen von Chlorophyll in der lebenden Pflanzen durch Anwendung der Derivativ-Spektrophotomerie. Kulturpflanze 14:235–255CrossRefGoogle Scholar
- Meister A, Brecht E, Jank H-W (1982) Zerlegung von Spektren in ihre Komponenten. II Spektrenzerlegung mit dem FORTRAN-Programm RESO. Kulturpflanze 30:141–154CrossRefGoogle Scholar
- Meister A, Maslova TG (1968) Zur Bestimmung der Lichtinduzierten Absorptions-änderungen durch Messung der 2. Ableitung der Extintion. Photosynthetica 2:261–267Google Scholar
- Mishchenko VT, Poluektov NS, Perfilev VA, Aleksandrova NN (1987) Primenenie proizvodnoi spektroskopii v analize biologicheski aktivnykh veshchestv. Spektroskopicheskie metody issledovaniya v fiziologii i biokhimii. Nauka, Leningrad, pp 72–75Google Scholar
- Mohammed GH, Binder WD, Gilles SL (1995) Chlorophyll fluorescence: a review of its practical forestry applications and instrumentation. Scand J Forest Res 10:383–410CrossRefGoogle Scholar
- Monson RK, Stidham MA, Williams GJ, Edwards GE, Uribe EG (1982) Temperature dependence of photosynthesis in Agropyron smithii Rydb. 1. Factors affecting net CO2 uptake in intact leaves and contribution from ribulose-1,5-bisphosphate carboxylase measured in vivo and in vitro. Plant Physiol 69:921–928PubMedCentralPubMedCrossRefGoogle Scholar
- Moralev SN, Rozengart EV (2007) Comparative enzymology of cholinesterases. International University Line, La JollaGoogle Scholar
- Morton RA (1975) Biochemical spectroscopy. Adam Hilger, BristolGoogle Scholar
- Moster JB, Quackenbush FW (1952a) The carotenoids of corn seedlings from three corn hybrids. Arch Biochem Biophys 38:297–303PubMedCrossRefGoogle Scholar
- Moster JB, Quackenbush FW (1952b) The effects of temperature and light on corn seedlings. Arch Biochem Biophys 38:297–303PubMedCrossRefGoogle Scholar
- Mozhaev VV, Hermans K, Frank J, Masson P, Balny C (1996) High pressure effects on protein structure and function. Proteins 24:81–91PubMedCrossRefGoogle Scholar
- Nazarenko NA, Poluektov NS, Mishchenko VT et al (1982) Fine structure of absorption spectra of gadolinium ions in solutions of chloride and of some complexes. Dokl Akad Nauk SSSR 266:399–402Google Scholar
- Natochin YuV, Monin YuG, Gonchrevskaya OA, Saakov VS (1985) Role of Ca2+ and Co2+ dependent protein conformation of blood whey rats in its osmolality regulation. Dokl Akad Nauk USSR 282:236–239Google Scholar
- Niyogi KK (1999) Photoprotection revisited. Annu Rev Plant Physiol Mol Biol 50:333–359CrossRefGoogle Scholar
- Niyogi KK, Bjorkman O, Grossman AR (1997a) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci U S A 94:14162–14167PubMedCentralPubMedCrossRefGoogle Scholar
- Niyogi KK, Bjorkman O, Grossman AR (1997b) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9:1369–1380PubMedCentralPubMedCrossRefGoogle Scholar
- Niyogi KK, Grossman AR, Bjorkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134PubMedCentralPubMedCrossRefGoogle Scholar
- Niyogi KK, Shih C, Pogson RJ, Dellapena D, Bjorkman O (2001) Photoprotection in zeaxanthin and lutein-deficient double mutant Arabidopsis. Photosynth Res 67:139–145PubMedCrossRefGoogle Scholar
- Ojeda CB, Rojas FS (2004) Recent development in derivative ultraviolet visible absorption spectrophotometry. Anal Chim Acta 518:1–24CrossRefGoogle Scholar
- Ojeda CB, Rojas FS, Pavon Cano JM (1995) Recent developments in derivative ultraviolet-visible absorption spectrophotometry. Talanta (Oxford) 42:1195–1214CrossRefGoogle Scholar
- Ozolina IА, Mochalkin АI (1975) About a protective role of carotenoid pigments in a plant. Izvestia Akad Nauk SSSR Ser Biol 3:387–392Google Scholar
- Panov AA, Saakov VS (1995) Specificity of water-salt balance of rats under The raised (increased) pressure of various respiratory mixes. Dokl Akad Nauk 340:423–426PubMedGoogle Scholar
- Panov AA, Saakov VS, Sokolova MM (1989) Influence of the increased pressure of gas environment on the contents of proteins and osmotic properties of blood plasma at rats. In: Proc. Kirov Conf. Milit. Med. Akad., pp 53–54Google Scholar
- Panov АА, Sokolova ММ, Saakov VS (1994a) The contents of ions K+ and Na+ in blood and tissues of rats after influence hyperbaric conditions and preliminary loading. Dokl Akad Nauk 336:127–129PubMedGoogle Scholar
- Panov AA, Sokolova MM, Saakov VS (1994b) Influence of physical loading on water-salt exchange of rats after stay in hyperbaric conditions. Dokl Akad Nauk 337:128–130PubMedGoogle Scholar
- Papageorgiou G (1975) Chlorophyll fluorescence: an intrinsic probe of photosynthesis. In: Govindjee (ed) Bioenergetics of photosynthesis. Academic, New York, pp 320–371Google Scholar
- Paramonova LI (1984) Research of photobiochemical properties fucoxanthin. Dissertation PhD, AN Bach Institute of Biochemistry, MoscowGoogle Scholar
- Perelygin VV, Tarusov BN (1966) Flash ultra weak radiation during damage of living tissue. Biophysics (Biofizika) 11:539–541Google Scholar
- Perfil’ev VA, Mishchenko VT, Poluektov NS (1985) Usage of derivative spectrophotometry for study and analysis of substances in solutions of complex compositions (review) (in Russian). Zhurn Analit Khim 40:1349–1363Google Scholar
- Peterman EJ, Gradinaru CC, Calkoen F, Borst JC (1997) Xanthophylls in light-harvesting complex II of higher plants: light harvesting and triplet quenching. Biochemistry 36:12208–12215PubMedCrossRefGoogle Scholar
- Pfündel E, Bilger W (1994) Regulation and possible function of the violaxanthin cycle. Photosynth Res 42:89–109PubMedCrossRefGoogle Scholar
- Popov GA, Tarusov BN (1964) Kinetics of chemi-luminescence during decomposition of hydrogen peroxide with water-salt animal liver extracts (in Russian). Biophysics (Biofizika) 9:528–529Google Scholar
- Popova OF, Sapozhnikov DI (1973) Action of light of various intensity on reaction of violaxanthin cycle in turning green seedlings of corn. Sov Plant Physiol 20:628–631Google Scholar
- Porter J, Anderson DC (1967) Biosynthesis of carotenes. Precursor to form carotene. Biochem J 94:5–7Google Scholar
- Ragone R, Colonna G, Balestrieri C, Servillo L et al (1984) Determination of tyrosine exposure in proteins by second derivative spectroscope. Biochemistry 23:1871–1875PubMedCrossRefGoogle Scholar
- Randall SA, Andersen RA (1986) Antheraxanthin, a light harvesting carotenoid found in a chromophyte alga. Plant Physiol 80:583–587CrossRefGoogle Scholar
- Rau W (1988) Functions of carotenoids other than in photosynthesis. In: Goodwin T (ed) Plant pigments. Academic, London, pp 231–255Google Scholar
- Rojas FS, Ojeda BC (2009) Recent development ultraviolet visible absorption spectrophotometry: 2004–2008. Anal Chim Acta 635:22–44Google Scholar
- Rozengart EV (2012) From a metabolism to comparative biochemistry of toxic organophosphorus compounds. Zhur Evol Biochem Physiol 48:1–7CrossRefGoogle Scholar
- Ruben S, Randall M, Kamen M, Hyde L (1941) Heavy oxygen-O18 as a tracer in the study of photosynthesis. J Am Chem Soc 63(3):877–879CrossRefGoogle Scholar
- Rubin AB (ed) (1974) Modern methods of investigation of photobiological processes (in Russian). Izd-vo Mosk. un-ta, Moscow, p 160Google Scholar
- Rubin AB (ed) (1975) Biophysics of photosynthesis (in Russian). Izd-vo Mosk. un-ta, MoscowGoogle Scholar
- Rubin AB (2000) Biophysics, 2nd edn. Vol 1 Theoretical biophysics (1999), Vol 2 Biophysics of cellular processes (2000). Publishing House of Moscow University, MoscowGoogle Scholar
- Rubin AB (2004) Biophysics, 3rd edn. Vol 1 Theoretical biophysics (2004), Vol 2 Biophysics of cellular processes (2004). Publishing House of Moscow University, MoscowGoogle Scholar
- Rubin BA, Gavrilenko VF (1977) Biochemistry and physiology of photosynthesis (in Russian). Izd-vo Mosk. un-ta, Moscow, p 325Google Scholar
- Saakov SG Sr (ed) (1948/1949) Vortrag und Diskussion. Die Situation in der biologischen Wissenschaft. Verlag Kultur u. Fortschrift GmbH, Berlin, 456 SGoogle Scholar
- Saakov VS (1959) The comparative characteristic of gasometric and radiometric methods of estimation of photosynthesis. Vestnik Leningrad Un-ta Ser Biol 21:42–50Google Scholar
- Saakov VS (1960) Some questions of a technique of manometrical definition of photosynthesis of leaves of ground plants. Bull Leningrad Univ Ser 4 Biol 21:33–41Google Scholar
- Saakov VS (1961) Einige methodische Probleme der manometrischen Bestimmung der Photosynthese an Blättern von Landpflanzen. Sowjetwiss Naturwissenschaft Beitrage 9:953–962Google Scholar
- Saakov VS (1963a) To mechanism of the light reaction of xanthophylls in chloroplasts suspension (in Russian). Botan Zhurn 48:888–891Google Scholar
- Saakov VS (1963b) Mechanism of violaxanthin conversion during light reaction of chloroplast (in Russian). Doklady Acad Sci USSR 198:1412–1414Google Scholar
- Saakov VS (1963c) Assessment of effectivenesses of chromatographical method of xanthophylls separation on paper with help of the C14 isotope (in Russian). Biophysics (Biofizika) 8:123Google Scholar
- Saakov VS (1963d) The characteristic of light reaction of xanthophylls. Dissertation PhD in Biol. Sci. Botan. Inst. VL Komarov Russ. Acad. Sci., Leningrad, pp 1–138Google Scholar
- Saakov VS (1964) Role of carotenoids in mechanism of oxygen transfer in photosynthesis (in Russian). Doklady Akad Nauk SSSR 155:1212–1215Google Scholar
- Saakov VS (1965a) Metabolism of violaxanthin-C-14 in leaf and its role in photosynthetic reactions (in Russian). Doklady Akad Nauk SSSR 165:230–233Google Scholar
- Saakov VS (1965b) On the possible role of xanthophylls in oxygen transfer during photosynthesis (in Russian). Sov Physiol Rasten 12:377–385Google Scholar
- Saakov VS (1966) Carbon Isotope C-14 applied to study of lutein exchange (in Russian). Doklady Akad Nauk SSSR 170:460–463Google Scholar
- Saakov VS (1967) Mechanism of the interconversions of exogenous carotenoids-C14 in Chlorella (in Russian). Doklady Akad Nauk SSSR 174:978–981Google Scholar
- Saakov VS (1971a) Action of ATP, Inhibitors and photophosphorylation uncouplers on xanthophyll transformation in leaf (in Russian). Doklady Akad Nauk SSSR 198:966–969Google Scholar
- Saakov VS (1971b) Correlation between light-induced xanthophyll conversions and electron transport chain of photosynthesis (in Russian). Sov Physiologiya rastenii 18:1088–1097Google Scholar
- Saakov VS (1971c) Relation between xanthophylls deepoxidation reaction and electron transport chain of photosynthesis (in Russian). Doklady Akad Nauk SSSR 201:1257–1260Google Scholar
- Saakov VS (1971d) The electron transport chain of photosynthesis and xanthophylls reactions in leaf. In: Biochemistry and biophysics of photosynthesis. SIFIBR SO AN SSSR, Irkutsk, pp 15–20Google Scholar
- Saakov VS (1976) Investigation of centres of harmful (damage) influences at chloroplasts membranes by means of molecular spectroscopy. Bull Appl Bot Genet Plant Breed (Leningrad) 57:17–34Google Scholar
- Saakov VS (1990a) Redox conversions of carotenoids in a green cell. Dissertation, Prof. in biol. sc. Institute of Biophysics and Physiology of Plants. AN Tadzh SSR, Dushanbe, pp 1–55Google Scholar
- Saakov VS (1990b) Die Anwendung der Lumineszenz, der Ableitungen der Spektrophotometrie und der photoakustischen Spektroskopie zur Charakterisierung von Schaeden in Chlorophyll-Protein Komplex der Chloroplasten. Colloq Pflanzenphysiolog der Humboldt-Universitaet zu Berlin 14:163–170Google Scholar
- Saakov VS (1991) On the conjugation of interconversions of xanthophylls with energy activity of chloroplast (in Russian). Doklady Akad Nauk SSSR 316:764–767Google Scholar
- Saakov VS, Baranov AA, Hoffmann P (1978a) Pigmentphysiologischen Untersuchungen mit Hilfe der Derivativ-Spektrophotometrie. Studia Biophys 70:129–142Google Scholar
- Saakov VS, Baranov AA, Hoffman P (1978b) Derivativ-spektroskopische Charakteristik des Pigmentphysiologischen Zustandes des Phothosyntheseapparates unter besonderer Beruecksichtigung der Temperatur. Studia Biophys 70:163–173Google Scholar
- Saakov VS, Dorokhov BL, Shiryaeva GA (1973) Second derivative of difference absorption spectra on example of chlorophyll a and b and of blood pigment (in Russian). Izv AN MoldSSR Ser Biol Khim Nauki 2:73–82Google Scholar
- Saakov VS, Drapkin VZ, Krivchenko AI, Rozengart EV et al. (2010) Derivative spectrophotometry and spectroscopy ESR for solving ecological and biological problems. SPb, Technolit, 408 pGoogle Scholar
- Saakov VS, Drapkin VZ, Krivchenko AI, Rozengart EV, Bogachev EV, Knyazev MN (2013) Derivative spectrophotometry and electron spin resonance (ESR) spectroscopy for ecological and biological questions. Springer, Heidelberg, 357 pCrossRefGoogle Scholar
- Saakov VS, Konovalov IN (1966) About carotenoid functions in photosynthesis (in Russian). Trudy Botan Ssadov AN KazSSR, Alma-Ata 9:81–98Google Scholar
- Saakov VS, Lavrova EA, Maksimovich AA, Poliakov VN, Smirnov MV, Natochin YuV (1987) Change of a physico-chemical state of proteins and concentration whey’s ions of blood Oncorhynchus gorbuscha during its migration from sea in the river. Report presented at the first all-union symposium on the ecology, physiology and biochemistry of fishes, 17–19 Nov 1987, Rostov Great - Yaroslavl, pp 171–172Google Scholar
- Saakov VS, Lemberg IKh, Nazarova GD et al (1969) Application of activating analysis for research of reactions of xanthophylls oxygen metabolism (in Russian). Inform Bull SIFIBR SO AN SSSR 5:57–58Google Scholar
- Saakov VS, Lemberg IKh, Nazarova GD et al (1970a) About oxygen exchange between water and xanthophylls (in Russian). Doklady Akad Nauk SSSR 193:713–715Google Scholar
- Saakov VS, Leontjev VG (1988) Untersuchungen über molekularspektrophotometrische Reaktion des pflanzlichen Photosyntheseapparates auf Streßbedingungen. Colloq Pflanzenphysiol d Humboldt-Univer zu Berlin 12:143–156Google Scholar
- Saakov VS, Leontjev VG, Sokolova MM et al (1986) Mechanisms of hyperbaric factors action under the circumstances of hyperbaric environments on an organism. In: Proceedings third all-USSR conference on underwater (subwater) physiology and medicine, 12–14 May, LeningradGoogle Scholar
- Saakov VS, Nasarova GD (1970a) Markierungsexperimente zur Umwandlung des Antheraxanthins in vivo. Studia Biophys 20:65–72Google Scholar
- Saakov VS, Nazarova GD, Myl’nikova EV, Alekseeva NR (1970b) Exchange between oxygen fund of xanthophylls and water oxygen under light influence on plant (in Russian). Mineral’noe pitanie rastenii i fotosintez. Irkutsk, SIFIBR SO AN SSSR, pp 217–227Google Scholar
- Saakov VS, Pronkin AA (1994) The influence of gamma radiation (57 Co) upon the change of aromatic amino acids, albumins and globulin derivatives spectra. In: Abstr. 9th ISBC conf. “calorimetry and thermodynamics of biological processes”. International Society for Biological Calorimetry, Berlin, p 33Google Scholar
- Saakov VS, Saidov AS (1965) Some methodical questions of production of highly active preparations of xanthophylls. Uzbek Biolog J 4:5–9Google Scholar
- Saakov VS, Shiryaev AV (2000) To evolution of hypothesis on location of damage influences of environmental factors in green leaf: the after-effect of gamma-irradiation on energetic of chloroplasts (in Russian). Doklady Akad Nauk 371:280–285Google Scholar
- Saakov VS, Shiryaeva GA (1967) To a question about methodology of paper chromatography of carotene carotenoids (in Russian). Trudy Komarov Botan Inst Akad Nauk SSSR L Ser 4 Eksperiment Botan 18:151–165Google Scholar
- Saakov VS, Shpotakovskii VS (1973) The method of derivative spectrophotometry in study of structure of photosynthesizing apparatus (in Russian). In: Methods of complex study of photosynthesis. VIR im N I Vavilova L 2:280–295Google Scholar
- Sadykov AS, Rozengart EV, Abduvakhabov AA et al (1976) Cholinesterase. active center and action mechanisms. PH FAN Uzbek. SSR, TashkentGoogle Scholar
- Sager R, Zalokar M (1958) Pigments and photosynthesis in a carotenoid-deficient mutant of Chlamydomonas. Nature 182:98–100PubMedCrossRefGoogle Scholar
- Sapozhnikov DI (1969) Transformation of xanthophylls in chloroplasts. In: Metzner H (ed) Progress in photosynthesis research, vol 2. International Union of Biological Sciences, Tübingen, pp 694–700Google Scholar
- Sapozhnikov DI (1973a) Investigation of the violaxanthin cycle. Pure Appl Chem 35:47–62PubMedCrossRefGoogle Scholar
- Sapozhnikov DI (1973b) Investigation of the violaxanthin cycle. In: Proceedings of the third international symposium on carotenoids other than vitamin A; Cluj, Romania. Butterworths, London, pp 47–62 [quote оn Schubert H et al (1994) J Biol Chem 268(10):7267–7272]Google Scholar
- Sapozhnikov DI, Alkhazov DG, Eidel’man ZM et al (1961) Inclusion of O 18 from heavy-oxygen water into violaxanthin under light influence on plants (in Russian). Botan Zhurn 46:673–676Google Scholar
- Sapozhnikov DI, Alkhazov DG, Eidel’man ZM et al (1964) About xanthophylls participation in the photosynthetic oxygen transfer (in Russian). Doklady Akad Nauk SSSR 154:974–977Google Scholar
- Sapozhnikov DI, Alkhazov DG, Eidelman ZM, Bazhanova NV, Lemberg IKh, Maslova TG, Girshin AB, Popova IA, Saakov VS, Popova OF, Shiryaeva GA (1967a) Incorporation of O 18 from heavy oxygen water in violaxanthene under the effect of light on plants. Translated by Shewchuck (University of California Lawrence Radiation Laboratory, Berkeley) from Botan Zhur 1961. 46:673–676. In: Radioisotopes in the biological sciences. An annotated bibliography of selected literature. Compiled by Helen L. Ward. Division of Technical Information, US [Atomic Energy Commision of U.S.A. N 20000912 060] [TID- 3585, Ref. 877, p. 83 (UCRL-Trans-737), See Ward HL]Google Scholar
- Sapozhnikov DI, Bazhanova NV (1958) To characterization of xanthophylls light reaction in isolated chloroplasts (in Russian). Dokldy Akad Nauk SSSR 120:1141–1144Google Scholar
- Sapozhnikov DI, Krasovskaya TA, Maevskaya AA (1957) Change of ratio of main carotenoids in plastids of green leaves under light influence (in Russian). Doklady Akad Nauk SSSR 113:465–467Google Scholar
- Sapozhnikov DI, Krasovskaya TA, Maevskaya AN (1959a) Change of state of main carotenoids in green leaves under light influence (in Russian). Problems of photosynthesis. Acad Sci USSR, Moscow, pp 170–174Google Scholar
- Sapozhnikov DI, Kutyurin VM, Maslova TG et al (1967b) About an oxygen exchange of xanthophylls in connection with their role during. Dokl Akad Nauk SSSR 113:465–467Google Scholar
- Sapozhnikov DI, Maslova TG, Bazhanova NV, Popova OF (1965a) To a question about kinetics of O 18 inclusions from heavy oxygen waters in a molecule of violaxanthin. (in Russian). Biophysics (Biofizika) 10:349–351Google Scholar
- Sapozhnikov DI, Maslova TG, Bazhanova NV, Popova OF (1965b) To a question about kinetics of О 18 inclusions from heavy oxygen waters in a molecule of violaxanthin (in Russian). Dokl Acad Nauk Tadzhik SSR 8(12):40–43Google Scholar
- Sapozhnikov DI, Mayevskaya AN, Krasovskaya-Antropova TA et al (1959b) Influence of anaerobiosis on turnover (change) of basic carotenoids of green leaf. Biokhimiia 24:39–41Google Scholar
- Sapozhnikov DI, Saakov VS (1962) Application of violaxanthin-C14 for estimation the light reaction of xanthophylls transformation. Dokl Akad Nauk SSSR 147:1487–1488Google Scholar
- Sassenscheid K, Klocke U, Tacke M (1998) Neue Perspektiwen in der Verbrennungs und Prozessmesstechnik: UV-Derivative-Spektroskopie. Gefahrstoffe Reinigung der Luft A 58:361–366Google Scholar
- Schenk GO, Diner B, Mathis P, Satoh K (1982) Flash induced carotenoid radical cation formation in PS-II. Biochim Biophys Acta 680:216–227CrossRefGoogle Scholar
- Schreiber U (1983) Chlorophyll fluorescence yield changes as a tool in plant physiology I. The measuring system. Photosynth Res 4:361–373CrossRefGoogle Scholar
- Schreiber U (1986) Detection of rapid induction kinetics with a new type of high frequency modulated chlorophyll fluorometer. Photosynth Res 9:261–272PubMedCrossRefGoogle Scholar
- Schreiber U (1994) New emitter-detector cuvette assembly for measuring modulated chlorophyll fluorescence of highly diluted suspensions in conjunction with the standard PAM fluorometer. Z Naturforsch 49c:646–656Google Scholar
- Schreiber U (1997) Chlorophyll fluorescence energy conversion: simple introductory experiments with the TEACHING-PAM chlorophyll fluorimeter. Heinz Walz, Effeltrich, GermanyGoogle Scholar
- Schreiber U, Armond PA (1978) Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. Biochim Biophys Acta 502:138–151PubMedCrossRefGoogle Scholar
- Schreiber U, Bery JA (1977) Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta 136:233–238PubMedCrossRefGoogle Scholar
- Schreiber U, Bilger W (1987) Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. In: Tenhungen JD, Catarino FM, Lange OL, Oeschel WC (eds) Plant responses to stress: functional analysis in Mediterranean ecosystems, vol 15, NATO ASI subseries G: Ecological sciences. Springer, New York, pp 27–53CrossRefGoogle Scholar
- Schreiber U, Bilger W (1993) Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. Prog Bot 54:151–173, Springer, BerlinGoogle Scholar
- Schreiber U, Bilger W, Hormann H, Neubauer C (1997) Chlorophyll fluorescence as a diagnostic tool: basics and some aspects of practical relevance. In: Raghavendra AS (ed) Photosynthesis: a comprehensive treatise. Cambridge University Press, Cambridge, pp 320–336Google Scholar
- Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vitro photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis, vol 100, Ecological studies. Springer, Berlin, pp 49–70Google Scholar
- Schreiber U, Colbow K, Vidaver W (1975) Temperature-jump chlorophyll fluorescence induction in plants. Z Naturforsch 30:689–690Google Scholar
- Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical fluorescence quenching with a new type of modulation fluorescence. Photosynth Res 10:51–62PubMedCrossRefGoogle Scholar
- Schubert H, Kroon BMA, Matthijs HC (1994) In vivo manipulation of the xanthophylls cycle and the role of zeaxanthin in protection against photodamage in the green alga Chlorella pyrenoidosa. J Biol Chem 269(10):7267–7272PubMedGoogle Scholar
- Schulz H, Brecht E, Machold O (1990) The chlorophyll of pine (Pinus sylvestris L.) as influenced by SO2-incubation. J Plant Physiol 136(3):300–305CrossRefGoogle Scholar
- Semikhatova OA, Chulanovskaja MV (1965) Manometrical methods of studying respiration and photosynthesis of plants. Science, Moscow-LeningradGoogle Scholar
- Semikhatova OA, Saakov VS (1962) The investigation of the temperature after-effect on intensity of Polygonum sachalinense photosynthesis. Proc Komarov Bot Inst Аcad Sci USSR Ser 4 Exp Bot 15:25–42Google Scholar
- Shlyk AA (1971) Determination of chlorophylls and carotenoids in green leaves (in Russian). In: Biochemical methods in plant physiology. Nauka, Moscow, pp 154–170Google Scholar
- Shneour EA (1961) A study of light-catalysed oxygen transport in photosynthesis. University of California Radiation Laboratory Report UCRL-9900Google Scholar
- Shneour EA (1962a) The source of oxygen in Rhodopseudomonas sphaeroides carotenoid pigment conversion. Biochim Biophys Acta 65:510–511PubMedCrossRefGoogle Scholar
- Shneour EA (1962b) Carotenoid pigment conversion in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 62:534–540PubMedCrossRefGoogle Scholar
- Shneour EA, Calvin M (1962) Isotopic oxygen incorporation in xanthophylls of Spinaceae oleraceae quantosomes. Nature 196:439–441CrossRefGoogle Scholar
- Siefermann D (1971) Über den Zusammenhang von Xanthophyllcyclus und Photosynthese bei Lemna gibba L. Diss. zur Erlangung des Grades eines Doktors der Naturwissenschaften dem Fachbereich Biologie der Eberhard-Karls-Universität zu Tübingen, pp 1–83Google Scholar
- Siefermann-Harms D (1977) The xanthophylls cycle in higher plants. In: Tevini M, Lichtenthaler HK (eds) Lipids and lipid polymers in higher plants. Springer, Berlin, pp 218–230CrossRefGoogle Scholar
- Siefermann D, Yamamoto HY (1974) Light-induced deepoxidation of violaxanthin in lettuce chloroplasts. III. Reaction kinetics and effect of light intensity on deepoxidase activity and substrate availability. Biochem Biophys Acta 357:144–150PubMedGoogle Scholar
- Siefermann D, Yamamoto H (1975a) Light-induced de-epoxidation of violaxanthin in lettuce chloroplasts. The effects of electron-transport conditions on violaxanthin availability. Biochim Biophys Acta 387:149–158PubMedCrossRefGoogle Scholar
- Siefermann D, Yamamoto HY (1975b) Properties of NADPH and oxygen-dependent zeaxanthin epoxidation in isolated chloroplasts. Arch Biochem Biophys 171:70–77PubMedCrossRefGoogle Scholar
- Siefermann D, Yamamoto HY (1975c) NADPH and oxygen-dependent epoxidation of zeaxanthin. Biochim Biophys Res Commun 62:456–458CrossRefGoogle Scholar
- Simpson DJ (1988) Low temperature absorption spectroscopy of barley mutants. Gaussian deconvolution and fourth derivative analysis. Carlsberg Res Commun 53:343–356CrossRefGoogle Scholar
- Sistrom WR, Griffits M, Stanier RY (1956) A note on the porphyrins excreted by the blue-green mutant Rhodopseudomonas sphaeroides. J Cell Comp Physiol 48:459–472CrossRefGoogle Scholar
- Skujins S (1986) Instruments of work. Varian AG No UV-31 (Pts 1 and 2). P 1:1-33; 2: 1-52Google Scholar
- Snel JFH, van Kooten (eds) (1990) The use of chlorophyll fluorescence and other noninvasive spectroscopic techniques in plant stress physiology. Photosynth Res (Special Issue) 25(3):146–332Google Scholar
- Snell AH (1937) A new radioactive isotope of fluorine. Phys Rev 51:16–18Google Scholar
- Sokolova MM, Panov AA, Saakov VS, Leont’ev VG (1992) Change in osmolality, concentration of monovalent cations and blood protein structure in extreme circumstances. Doklady Akad Nauk SSSR 327:277–280Google Scholar
- Sokolova MM, Pushkarev YuP, Maslennikova LS, Saakov VS et al (1991) The age-related characteristics of changes in osmotic and ionic homeostasis in spontaneously hypertensive rats. Physiolog zhurn SSSR im I M Sechenova 77:47–54Google Scholar
- Soloni FG, Cunningham MT, Amazon K (1986) Plasma hemoglobin determination by recording derivative spectrophotometry. Am J Clin Pathol A 85:342–347Google Scholar
- Spitsyn PK, L’vov ON (1985) Derivative spectrophotometry of rare-earth elements (in Russian). Zhurn Analit Khim 40:1241–1248Google Scholar
- Stanier R (1960) Carotenoid pigments: problem of synthesis and function. Harvey Lect 1958–1959 54:219–255, Academic, New YorkGoogle Scholar
- Stanier R, Cohen-Bazire GW (1957) The role of light in microbial world: some facts and speculations. In: Microbial ecology: symposium of the Society for General Microbiology, held at the Royal Institute. Cambridge University Press, London, pp 56–89Google Scholar
- Stober F, Lichtenthaler HK (1992) Changes of the laser-induced blue, green and red fluorescence signatures during greening of etiolated leaves of wheat. J Plant Physiol 140:673–680CrossRefGoogle Scholar
- Stober F, Lichtenthaler HK (1993) Studies on the constancy of the blue and green fluorescence yield during the chlorophyll fluorescence induction kinetics (Kautsky effect). Radiat Environ Biophys 32:357–365PubMedCrossRefGoogle Scholar
- Stober F, Lang M, Lichtenthaler HK (1994) Blue green and red fluorescence emission signatures of green, etiolated and white leaves. Remote Sens Environ 47:65–71CrossRefGoogle Scholar
- Strain HH (1949) Functions and properties of chloroplast pigments. In: Frank J, Loomis WE (eds) Photosynthesis of green plants. Iowa State College Press, Ames, pp 133–178Google Scholar
- Stransky H, Hager A (1970a) Das Carotenoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. Arch Mikrobiol 71:164–190PubMedCrossRefGoogle Scholar
- Stransky H, Hager A (1970b) Das Carotenoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. IV Cyanophyceae und Rhodophyceae. Arch Mikrobiol 72:84–96PubMedCrossRefGoogle Scholar
- Stransky H, Hager A (1970c) Das Carotenoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. VI Chemosystematische Betrachtung. Arch Mikrobiol 73:315–323PubMedCrossRefGoogle Scholar
- Strasser RJ (1973) Induction phenomena in green plants when the photosynthetic apparatus starts to work. Arch Int Physiol Biochem 81:935–941Google Scholar
- Strasser RJ (1986) Laser-induced fluorescence of plants and its application in environmental research. Proc Int Geosci Rem Sens Symp (IGRASS) 3:1581–1584, ESA Publ. Division, NoordwijkGoogle Scholar
- Strasser RJ, Govindjee (1992) On the O-J-I-P fluorescence transient in leaves and D1 mutants of Chlamydomonas reinhardtii. Research in photosynthesis (N. Murata ed.), vol 2. Kluwer Acadaemic, Dordrecht, pp 29–32Google Scholar
- Strehler DL, Arnold W (1951) Light production by green plants. J Gen Physiol 34:809–820PubMedCentralPubMedCrossRefGoogle Scholar
- Talanova-Sher TYu (2004) Photosynthetic apparatus of plants upon influence of unfavorable factors. PhD Dissertation. Biological Sciences, Petrozavodsk, 155pGoogle Scholar
- Talsky G (1983) Higher-order derivative spectrophotometry in analytical chemistry. Int J Envirion Anal Chem 14:81–91CrossRefGoogle Scholar
- Talsky G (1994) Derivative spectrophotometry: low and higher order. VCH Verlaggesellschaft GmbH, Weinheim, 228pGoogle Scholar
- Tarusov BN (1966) On the 70th anniversary of the Laureate of the Nobel Prize of Academician Nikolai Nikolaevich Semenov. The influence of N N Semenov and his school on the development of radiation biophysics. Radiobiologiia 6:161–165PubMedGoogle Scholar
- Tarusov BN, Polivoda AI, Zhuravlev AI (1962) Ultraweak spontaneous luminescence in animal tissue. Tsitologiia 4:696–699PubMedGoogle Scholar
- Tenhunen JD, Catarino FM, Lange WC, Oechel WC (eds) (1987) Plant response to stress: functional analysis in Mediterranean ecosystems, vol 15, NATO ASI subseries G: Ecological sciences. Springer, New YorkGoogle Scholar
- Trebst A (1963) Zur Hemmung photosynthetische Reaktionen in isolierten Chloroplasten durch Salicylaldoxim. Z Naturforsch 18:817–821Google Scholar
- Trebst A (1966) Zum Mechanismus der Photosynthese. Arbeits-gemeinschaft f Forschung Land NRh-Westf 171:27–53, Westdeutsch, Koln-OpladenGoogle Scholar
- Trebst A, Pistorius E (1965) Zum Mechanismus der photosynthetischen Electronentransportes in isolierten Chloroplasten. II. Substituirte p-Phenyilendiamine als Electronendonatoren. Z Naturforsch 20:143–147Google Scholar
- Udovenko GV (1976) The plant metabolism during adaptation to soil salinity. Bull Appl Bot Genet Plant Breed (Leningrad) 57:3–16Google Scholar
- van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25(3):147–150PubMedCrossRefGoogle Scholar
- Vartapetian BB (1963) Water relation of plants in experiments with heavy isotope O 18. In: Proceedings symposium on water stress in plants, p 72Google Scholar
- Vartapetian BB, Dmitrovsky AA, Lemberg IH (1967) A new approach in the study of mechanism of carotene conversion to vitamin A by activation of O 18 in the nuclear reaction O 18 (α,nγ)N21. In: Abstracts 7th international congress of biochemistry, Tokyo, 19–25 Aug 1967. The Science Council of Japan, Tokyo, p 815Google Scholar
- Vartapetian BB (1970) Molecular oxygen and water in cells metabolism. Nauka, MoscowGoogle Scholar
- Vinogradov AP (1962) Isotopes of oxygen and photosynthesis. Timiryazev Reading Acad. Sci. USSR, Moscow, 145pGoogle Scholar
- Vinogradov AP, Teys RV (1941) Isotope content of oxygen of various origin (oxygen of photosynthesis, air, CO2 and H2O (in Russian). Dokl Akad Nauk 33:497–501Google Scholar
- Vinogradov AP, Teys RV (1947) New detection of isotopic composition of photosynthesis (in Russian). Dokl Akad Nauk USSSR 56:57–58Google Scholar
- Vladimirov YuA, Litvin FF (1960) Comments to reports. Bull Acad Sci Sov Soc Repub 5:101Google Scholar
- Voznesenskii VL (1960) Comparative characteristics and theoretical bases of research methods for study plants photosynthesis. IPhR RAN, MoscowGoogle Scholar
- Voznesenskii VL, Semikhatova OA, Saakov VS (1959) Experimental verification on the radiometric method of evaluation of the rate of photosynthesis intensity. Sov Plant Physiol 6:380–384Google Scholar
- Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349CrossRefGoogle Scholar
- Whittigham CP (1965) Function in Photosynthesis. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic, London, pp 357–380, Chapter 13Google Scholar
- Williams JH, Britton G, Goodwin TW (1967) The biosynthesis of cyclic carotenes. Biochem J 105:99–105PubMedCentralPubMedCrossRefGoogle Scholar
- Williams BL, Willson K (eds) (1975) Principles and techniques of practical biochemistry. Edward Arnold, LondonGoogle Scholar
- Wollin KM (1990) Derivativespektroskopie V. Ordnung zur Bestimmung von Chlorophyll a und Phaeophytin a. I. Grundlagen des Verfahrens; Kalibrierung und Bestimmung des Säurequotienten von Chlorophyll a. Acta Hydrochimica et Hydrobiologica 18:289–296CrossRefGoogle Scholar
- Yamamoto HY, Bangham AD (1978) Carotenoid organization in membranes. Thermal transition and spectral properties of carotenoid containing liposomes. Biochim Biophys Acta 507:119–127PubMedCrossRefGoogle Scholar
- Yamamoto HY, Chang JL, Aihara MS (1967) Light-induced interconversion of violaxanthin and zeaxanthin in New Zealand spinach-leaf segments. Biochim Biophys Acta 141:342–347PubMedCrossRefGoogle Scholar
- Yamamoto HY, Chichester CO (1965) Dark incorporation of O 18 into antheraxanthin by bean leaf. Biochim Biophys Acta 109:303–305PubMedCrossRefGoogle Scholar
- Yamamoto HY, Chichester CO, Nakayama TOM (1962a) Biosynthetic origin of origin in the leaf xanthophylls. Arch Biochem Biophys 96(3):645–649PubMedCrossRefGoogle Scholar
- Yamamoto HY, Chichester CO, Nakayama TOM (1962b) Xanthophylls and Hill reaction. Photochem Photobiol 1:53–57CrossRefGoogle Scholar
- Yamamoto HY, Higashi RM (1978) Violaxanthin de-epoxidase. Lipid composition and substrate specificity. Arch Biochem Biophys 190:514–522PubMedCrossRefGoogle Scholar
- Yamamoto HY, Nakayama TOM, Chichester CO (1962c) Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys 97:168–173PubMedCrossRefGoogle Scholar
- Yamamoto HY, Takeguchi CA (1971) Concepts on the role of epoxy carotenoids in plants. In: Proceedings 2nd international congress on photosynthesis research, vol 1, Stresa, Italy, 24–26 June 1971, pp 621–627Google Scholar
- Zakarian AE, Tarusov BN (1966) Inhibition of chemiluminescence of the blood plasma in malignant growth (in Russian). Biophysics (Biofizika) 11(5):919–921Google Scholar
Copyright information
© Springer International Publishing Switzerland 2015