Skip to main content

Spatial Graphs Cost and Efficiency: Exploring Edges Competition by MCMC

  • Conference paper
Geographic Information Science (GIScience 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8728))

Included in the following conference series:

  • 1743 Accesses

Abstract

Recent models for spatial networks have been built by determining graphs minimizing some functional F composed by two antagonist quantities. Although these quantities might differ from a model to another, methods used to solve these problems generally make use of simulated annealing or operations research methods, limiting themselves to the study of a single minimum and ignoring other close-to-optimal alternatives. This contribution considers the arguably promising framework where the functional F is composed by a graph cost and a graph efficiency, and the space of all possible graphs on n spatially fixed nodes is explored by MCMC. Covariance between edges occupancy can be derived from this exploration, revealing the presence of cooperative and competition regimes, further enlightening the nature of the alternatives to the locally optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldous, D.: Optimal spatial transportation networks where link-costs are sub linear in link-capacity. arXiv (0803.2037v2) (2008)

    Google Scholar 

  2. Aldous, D., Shunn, J.: Connected spatial networks over random points and a route-length statistic. arXiv (1003.3700) (2010)

    Google Scholar 

  3. Barthélemy, M.: Spatial networks. arXiv (1010.0302v2) (2010)

    Google Scholar 

  4. Berg, J., Lassig, M.: Correlated random networks. Physics Review Letters 89, 228701 (2002)

    Article  Google Scholar 

  5. Brede, M.: Coordinated and uncoordinated optimization of networks. Physical Review E 81, 066104 (2010)

    Google Scholar 

  6. Courtat, T., Gloaguen, C., Douady, S.: Mathematics and morphogenesis of the city: A geometrical approach. Physical Review E (2010)

    Google Scholar 

  7. Crucitti, P., Latora, V., Marchiori, M.: A topological analysis of the italian electric power grid. Physica A 228, 92–97 (2004)

    Article  MathSciNet  Google Scholar 

  8. Gendron, B., Crainic, T., Frangioni, A.: Multicommodity capacited network design. Springer, Berlin (1999)

    Google Scholar 

  9. Gastner, M., Newman, M.: The spatial structure of networks. European Physical Journal B 49, 247–252 (2006)

    Article  Google Scholar 

  10. Mathias, N., Gopal, V.: Small-worlds: How and why. Physical Review E 63, 021117 (2001)

    Google Scholar 

  11. Valverde, S., Cancho, R.F., Sol, R.V.: Scale-free networks from optimal design. Europhysics Letters 60, 512–517 (2002)

    Article  Google Scholar 

  12. Yang, H., Bell, M.: Models and algorithms for road network design: A review and some new developments. Transport Reviews 18(3), 256–278 (1998)

    Article  Google Scholar 

  13. Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC for machine learning. Machine Learning 50, 5–43 (2003)

    Article  MATH  Google Scholar 

  14. Carter, C., Kohn, R.: On Gibbs sampling for state space models. Biometrika 81(3), 541–553 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ferenberg, A., Swendsen, R.: New monte carlo technique for studying phase transitions. Physical Review Letters 61, 2635 (1988)

    Article  Google Scholar 

  16. Hastings, W.: Monte carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MATH  Google Scholar 

  17. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, R.: Equations of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087–1092 (1953)

    Article  Google Scholar 

  18. Newman, M., Barkema, G.: Monte Carlo methods in statistical physics. Oxford University Press (1999)

    Google Scholar 

  19. Ising, E.: Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik A Hadrons and Nuclei (1925)

    Google Scholar 

  20. Hajek, B.: Cooling schedules for optimal annealing. Mathematics of Operations Research 13(2), 311–329 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. van Laarhoven, P.J.M., Simulated, E.A.: annealing: Theory and applications. Mathematics and Its Application 37, 7–15 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Guex, G. (2014). Spatial Graphs Cost and Efficiency: Exploring Edges Competition by MCMC. In: Duckham, M., Pebesma, E., Stewart, K., Frank, A.U. (eds) Geographic Information Science. GIScience 2014. Lecture Notes in Computer Science, vol 8728. Springer, Cham. https://doi.org/10.1007/978-3-319-11593-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11593-1_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11592-4

  • Online ISBN: 978-3-319-11593-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics