Advertisement

Automatic Itinerary Reconstruction from Texts

  • Ludovic Moncla
  • Mauro Gaio
  • Sébastien Mustière
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8728)

Abstract

This paper proposes an approach for the reconstruction of itineraries extracted from narrative texts. This approach is divided into two main tasks. The first extracts geographical information with natural language processing. Its outputs are annotations of so called expanded entities and expressions of displacement or perception from hiking descriptions. In order to reconstruct a plausible footprint of an itinerary described in the text, the second task uses the outputs of the first task to compute a minimum spanning tree.

Keywords

Natural Language Processing Spatial Relation Minimum Span Tree False Recognition Computational Linguistics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frank, A.U., Mark, D.M.: Language issues for GIS. In: David, J., Maguire, M.F.G., Rhind, D.W. (eds.) Geographical Information Systems: Principles and Applications, pp. 147–163. Longman Scientific & Technical, Essex (1991)Google Scholar
  2. 2.
    Poibeau, T.: Extraction automatique d’information: du texte brut au web sémantique. In: Extraction Automatique D’information: Du Texte brut au web Sémantique. Hermès Lavoisier (2003)Google Scholar
  3. 3.
    Béchet, F., Sagot, B., Stern, R.: Coopération de méthodes statistiques et symboliques pour l’adaptation non-supervisée d’un système d’étiquetage en entités nommées. In: TALN 2011, Montpellier, France (2011)Google Scholar
  4. 4.
    Maurel, D., Friburger, N.: Finite-state transducer cascades to extract named entities in texts. Theoretical Computer Science 313, 93–104 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Leidner, J.L.: Toponym Resolution in Text: Annotation, Evaluation and Applications of Spatial Grounding of Place Names. Universal-Publishers (January 2008)Google Scholar
  6. 6.
    O’Keefe, J.: The spatial prepositions in english, vector grammar, and the cognitive map theory. In: Language and Space, pp. 277–316 (1996)Google Scholar
  7. 7.
    Bloom, P.: Language and space. MIT press (1999)Google Scholar
  8. 8.
    Vandeloise, C.: L’espace en français. Seuil, Paris (1986)Google Scholar
  9. 9.
    Borillo, A.: L’espace et son expression en français, l’essentiel. In: L’espace et son Expression en Français, L’essentiel. Orphrys (1998)Google Scholar
  10. 10.
    Talmy, L.: Lexicalization patterns: Semantic structure in lexical forms. In: Shopen, T. (ed.) Language Typology and Syntactic Description. Grammatical categories and the lexicon, vol. 3, pp. 57–149. Cambridge University Press, Cambridge (1985)Google Scholar
  11. 11.
    Talmy, L.: Toward a cognitive semantics. In: Toward a Cognitive Semantics. The MIT Press (2000)Google Scholar
  12. 12.
    Boons, J.P.: La notion sémantique de déplacement dans une classification syntaxique des verbes locatifs. Langue Française (76), 5–40 (1987)Google Scholar
  13. 13.
    Slobin, D.I.: Two ways to travel: Verbs of motion in english and spanish. In: Grammatical Constructions: Their Form and Meaning, pp. 195–219 (1996)Google Scholar
  14. 14.
    Aurnague, M.: How motion verbs are spatial: The spatial foundations of intransitive motion verbs in french. Lingvisticae Investigationes 34(1), 1–34 (2011)CrossRefGoogle Scholar
  15. 15.
    Hollenstein, L., Purves, R.: Exploring place through user-generated content: Using flickr todescribe city cores. Journal of Spatial Information Science (1) (2010)Google Scholar
  16. 16.
    Nguyen, V.T., Gaio, M., Moncla, L.: Topographic subtyping of place named entities: A linguistic approach. In: The 15th AGILE International Conference on Geographic Information Science. Louvain, Belgique (2013)Google Scholar
  17. 17.
    Smith, D.A., Mann, G.S.: Bootstrapping toponym classifiers. In: Proceedings of the HLT-NAACL 2003 Workshop on Analysis of geographic References, vol. 1, pp. 45–49. Association for Computational Linguistics, Stroudsburg (2003)CrossRefGoogle Scholar
  18. 18.
    Garbin, E., Mani, I.: Disambiguating toponyms in news. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, HLT 2005, pp. 363–370. Association for Computational Linguistics, Stroudsburg (2005)CrossRefGoogle Scholar
  19. 19.
    Buscaldi, D., Magnini, B.: Grounding toponyms in an italian local news corpus. In: Proceedings of the 6th Workshop on Geographic Information Retrieval, GIR 2010, pp. 15:1–15:5. ACM, New York (2010)Google Scholar
  20. 20.
    Roberts, K., Adrian Bejan, C., Harabagiu, S.: Toponym disambiguation using events. In: Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010), pp. 271–276 (2010)Google Scholar
  21. 21.
    Speriosu, M., Baldridge, J.: Text-driven toponym resolution using indirect supervision. In: Proc. 51st Annual Meeting of the Association for Computational Linguistics (ACL), pp. 1466–1476. Sofia, Bulgaria (2013)Google Scholar
  22. 22.
    Buscaldi, D.: Approaches to disambiguating toponyms. SIGSPATIAL Special 3(2), 16–19 (2011)CrossRefGoogle Scholar
  23. 23.
    Overell, S., Rüger, S.: Using co-occurrence models for placename disambiguation. International Journal of Geographical Information Science 22(3), 265–287Google Scholar
  24. 24.
    Derungs, C., Purves, R.S.: From text to landscape: locating, identifying and mapping the use of landscape features in a swiss alpine corpus. International Journal of Geographical Information Science 1–22Google Scholar
  25. 25.
    Hao, Q., Cai, R., Wang, C., Xiao, R., Yang, J.M., Pang, Y., Zhang, L.: Equip tourists with knowledge mined from travelogues. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 401–410. ACM, New York (2010)CrossRefGoogle Scholar
  26. 26.
    Zhang, X., Mitra, P., Klippel, A., MacEachren, A.: Automatic extraction of destinations, origins and route parts from human generated route directions. In: Fabrikant, S.I., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds.) GIScience 2010. LNCS, vol. 6292, pp. 279–294. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Breier, M.: The way is the Goal–Modelling of historical roads. In: 26th International Cartographic Conference (August 2013)Google Scholar
  28. 28.
    Lee, J.G., Han, J., Li, X.: Trajectory outlier detection: A partition-and-detect framework. In: Alonso, G., Blakeley, J.A., Chen, A.L.P. (eds.) ICDE, pp. 140–149. IEEE (2008)Google Scholar
  29. 29.
    Kim, J., Sridhara, V., Bohacek, S.: Realistic mobility simulation of urban mesh networks. Ad. Hoc. Networks 7(2), 411–430 (2009)CrossRefGoogle Scholar
  30. 30.
    Yuan, Y., Raubal, M.: Extracting dynamic urban mobility patterns from mobile phone data. In: Xiao, N., Kwan, M.-P., Goodchild, M.F., Shekhar, S. (eds.) GIScience 2012. LNCS, vol. 7478, pp. 354–367. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  31. 31.
    Loustau, P., Nodenot, T., Gaio, M.: Spatial decision support in the pedagogical area: Processing travel stories to discover itineraries hidden beneath the surface. In: AGILE Conf.Google Scholar
  32. 32.
    Constant, M.: Grammaires locales pour l’analyse automatique de textes: méthodes de construction et outils de gestion. PhD thesis, Université Paris-Est (2003)Google Scholar
  33. 33.
    Gross, M.: The Construction of Local Grammars. In: Schabès, E.R.Y. (ed.) Finite-State Language Processing, pp. 329–354. MIT Press (1997)Google Scholar
  34. 34.
    Borillo, A.: Quand les adverbiaux de localisation spatiale constituent des facteurs d’enchaînement spatio-temporel dans le discours. In: Information Temporelle, Procédures Et Ordre Discursif, Genève, pp. 123–138 (2004)Google Scholar
  35. 35.
    Gaio, M., Sallaberry, C., Nguyen, V.T.: Typage de noms toponymiques à des fins d’indexation géographique. TAL 53, 1–35 (2012)Google Scholar
  36. 36.
    Gaio, M., Sallaberry, C., Etcheverry, P., Marquesuzaà, C., Lesbegueries, J.: A global process to access documents’ contents from a geographical point of view. Journal of Visual Languages & Computing 19(1), 3–23 (2008)CrossRefGoogle Scholar
  37. 37.
    Egenhofer, M., Franzosa, R.: Point-set topological spatial relations. International Journal for Geographical Information Systems 5(2), 161–174 (1991)CrossRefGoogle Scholar
  38. 38.
    Frank, A.U.: Qualitative reasoning about distances and directions in geographic space. Journal of Visual Languages and Computing 3(4), 343–371 (1992)CrossRefGoogle Scholar
  39. 39.
    Borillo, A.: A propos de la localisation spatiale. Langue Française 86(1), 75–84 (1990)CrossRefGoogle Scholar
  40. 40.
    Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers 100(1), 68–86 (1971)CrossRefGoogle Scholar
  41. 41.
    Abdalla, A., Frank, A.U.: Combining trip and task planning: How to get from a to passport. In: Xiao, N., Kwan, M.-P., Goodchild, M.F., Shekhar, S. (eds.) GIScience 2012. LNCS, vol. 7478, pp. 1–14. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ludovic Moncla
    • 1
    • 2
  • Mauro Gaio
    • 1
  • Sébastien Mustière
    • 3
  1. 1.LIUPPAFrance
  2. 2.Computer Science and Systems Engineering DepartmentUniversidad de ZaragozaSpain
  3. 3.IGN, Laboratoire COGITUniversité Paris-EstParisFrance

Personalised recommendations