An Ontology Design Pattern for Surface Water Features

  • Gaurav Sinha
  • David Mark
  • Dave Kolas
  • Dalia Varanka
  • Boleslo E. Romero
  • Chen-Chieh Feng
  • E. Lynn Usery
  • Joshua Liebermann
  • Alexandre Sorokine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8728)


Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.


Water Body Pour Point Stream Segment Semantic Interoperability Spatial Data Infrastructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett, B.: Application of Supervaluation Semantics to Vaguely Defined Spatial Concepts. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 108–123. Springer, Heidelberg (2001)Google Scholar
  2. 2.
    Bromhead, H.: Ethnogeographical Categories in English and Pitjantjatjara/Yankunytjatjara. Language Sciences 33, 58–75 (2011)CrossRefGoogle Scholar
  3. 3.
    Carral, D., Scheider, S., Janowicz, K., Vardeman, C., Krisnadhi, A.A., Hitzler, P.: An Ontology Design Pattern for Cartographic Map Scaling. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 76–93. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Cayley, A.: On Contour Lines and Slope Lines. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 18, 264–268 (1859)Google Scholar
  5. 5.
    Duce, S., Janowicz, K.: Microtheories for Spatial Data Infrastructures – Accounting for Diversity of Local Conceptualizations at a Global Level. In: Fabrikant, S.I., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds.) GIScience 2010. LNCS, vol. 6292, pp. 27–41. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Egenhofer, M., Mark, D.M.: Naïve Geography. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 1–15. Springer, Heidelberg (1995)Google Scholar
  7. 7.
    Feng, C.-C., Bittner, T., Flewelling, D.M.: Modeling Surface Hydrology Concepts with Endurance and Perdurance. In: Egenhofer, M., Freksa, C., Miller, H.J. (eds.) GIScience 2004. LNCS, vol. 3234, pp. 67–80. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Feng, C.-C., Sorokine, A.: Comparing English, Mandarin, and Russian Hydrographic and Terrain Categories. International Journal of Geographical Information Science (2013) (in press), doi: Scholar
  9. 9.
    Gangemi, A., Presutti, V.: Towards a Pattern Science for the Semantic Web. Semantic Web 1(1-2), 61–68 (2010)Google Scholar
  10. 10.
    Gibson, J.J.: The Ecological Approach to Visual Perception, Houghton Mifflin, USA (1979)Google Scholar
  11. 11.
    Gruninger, M., Fox, M.S.: The Role of Competency Questions in Enterprise Engineering. In: Proceedings of the IFIP WG5.7, Workshop on Benchmarking – Theory and Practice, pp. 212–221 (1994)Google Scholar
  12. 12.
    Hahmann, T., Brodaric, B.: The Void in Hydro Ontology. Frontiers in Artificial Intelligence and Applications: Formal Ontology in Information Systems 239, 45–58 (2012)Google Scholar
  13. 13.
    Hart, G., Dolbear, C., Goodwin, J., Feliciter, L.: Using Structured English to Represent a Topographic Hydrology Ontology. In: OWL Experiences and Directions Workshop (2007)Google Scholar
  14. 14.
    Hayes, P.: The Naïve Physics Manifesto. In: Michie, D. (ed.) Expert Systems in the Micro-Electronic Age, pp. 242–270. Edinburgh University Press (1979)Google Scholar
  15. 15.
    Hayes, P.: Naive Physics I: Ontology of Liquids. In: Hobbs, J., Moore, R. (eds.) Formal Theories of the Commonsense World, pp. 71–108. Ablex, Norwood (1985)Google Scholar
  16. 16.
    Horton, R.: Tradition and Modernity Revisited. In: Hollis, M., Lukes, S. (eds.) Rationality and Relativism, pp. 201–260. Basil Blackwell, Oxford (1982)Google Scholar
  17. 17.
    Hu, Y., Janowicz, K., Carral, D., Scheider, S., Kuhn, W., Berg-Cross, G., Hitzler, P., Dean, M., Kolas, D.: A Geo-Ontology Design Pattern for Semantic Trajectories. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 438–456. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Lakoff, G.: Women, Fire, and Dangerous Things: What Categories Reveal about the Mind. University of Chicago Press, Chicago (1987)CrossRefGoogle Scholar
  19. 19.
    Lakoff, G., Johnson, M.: Philosophy in the Flesh. University of Chicago Press, Chicago (1986)Google Scholar
  20. 20.
    Mark, D.M., Smith, B.: A Science of Topography: From Qualitative Ontology to Digital Representations. In: Bishop, M.P., Shroder, J.F. (eds.) Geographic Information Science and Mountain Geomorphology, pp. 75–100. Springer-Praxis, Chichester (2004)Google Scholar
  21. 21.
    Mark, D.M., Turk, A.G., Stea, D.: Progress on Yindjibarndi Ethnophysiography. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 1–19. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Mark, D.M., Turk, A.G.: Landscape Categories in Yindjibarndi: Ontology, Environment, and Language. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 28–45. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: WonderWeb Deliverable D18 Ontology Library (final) (2003), (last accessed May 15, 2014)
  24. 24.
    Masser, I.: Building European Spatial Data Infrastructures, 2nd edn. ESRI Press, Redlands (2010)Google Scholar
  25. 25.
    Maxwell, J.C.: On Hills and Dales. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 40, 421–427 (1870)Google Scholar
  26. 26.
    Montello, D., Freundschuh, S.: Cognition of Geographic Information. In: McMaster, R., Usery, L.E. (eds.) A Research Agenda for Geographic Information Science, pp. 61–91. CRC Press (2005)Google Scholar
  27. 27.
    Rana, S.S. (ed.): Topological Data Structures: An Introduction to Geographical Information Science. John Wiley & Sons, Ltd., Chichester (2004)Google Scholar
  28. 28.
    Santos, P., Bennett, B., Sakellariou, G.: Supervaluation Semantics for an Inland Water Feature Ontology. In: Proceedings of International Joint Conference on Artificial Intelligence, IJCAI 2005, pp. 564–569 (2005)Google Scholar
  29. 29.
    Sinha, G., Mark, D.M.: Toward a Foundational Ontology of the Landscape. In: Fabrikant, S.I., Reichenbacher, T., Kreveld, M., Schlieder, C. (eds.) GIScience 2010, Extended Abstracts, Zürich, Switzerland, September 14-17 (2010)Google Scholar
  30. 30.
    Sinha, G., Kolas, D., Mark, D.M., Romero, B.E., Usery, L.E., Berg-Cross, G., Padmanabhan, A.: Surface Network Ontology Design Patterns for Linked Topographic Data. Manuscript submitted to Semantic Web for reviewGoogle Scholar
  31. 31.
    Smith, B., Mark, D.M.: Geographic Categories: An Ontological Investigation. International Journal of Geographical Information Science 15 (7), 591–612 (2001)CrossRefGoogle Scholar
  32. 32.
    Taylor, M., Stokes, R.: Up the creek. What is Wrong with the Definition of a River in New South Wales? Environment and Planning Law Journal 22(3), 193–211 (2005)Google Scholar
  33. 33.
    Taylor, M.P., Stokes, R.: When is a River not a River? Consideration of the Legal Definition of a River for Geomorphologists Practising in New South Wales, Australia. Australian Geographer 36(2), 183–200 (2005)CrossRefGoogle Scholar
  34. 34.
    Wellen, C.C., Sieber, R.E.: Toward an Inclusive Semantic Interoperability: The Case of Cree Hydrographic Features. International Journal of Geographical Information Science 27(1), 168–191 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gaurav Sinha
    • 1
  • David Mark
    • 2
  • Dave Kolas
    • 3
  • Dalia Varanka
    • 4
  • Boleslo E. Romero
    • 5
  • Chen-Chieh Feng
    • 6
  • E. Lynn Usery
    • 4
  • Joshua Liebermann
    • 7
  • Alexandre Sorokine
    • 8
  1. 1.Department of GeographyOhio UniversityAthensUSA
  2. 2.Department of GeographyUniversity at BuffaloBuffaloUSA
  3. 3.Raytheon BBN TechnologiesColumbiaUSA
  4. 4.U.S. Geological SurveyRollaUSA
  5. 5.Department of GeographyUniversity of CaliforniaSanta BarbaraUSA
  6. 6.Department of GeographyNational University of SingaporeSingapore
  7. 7.Tumbling Walls LLCNewtonUSA
  8. 8.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations