Skip to main content

Assessment of Motor Function in Rodents: Behavioral Models Sharing Simplicity and Multifaceted Applicability

Part 2: The Catalepsy Test

  • Chapter
Rodent Model as Tools in Ethical Biomedical Research

Abstract

According to the classical review by Sanberg et al. (1988), experimental catalepsy is defined as “a failure of laboratory animals to correct an externally imposed posture”. Indeed, as stated by these authors, if a normal animal is placed in an unusual posture, it will change its position in a matter of seconds. Conversely, a cataleptic animal will remain in this position for a long period of time (i.e., for several minutes or more).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abílio VC, Freitas FM, Dolnikoff MS, Castrucci AML, Frussa-Filho R. Effects of continuous exposure to light on behavioral dopaminergic supersensitivity. Biol Psychiatry. 1999;45:1622–9.

    Article  PubMed  Google Scholar 

  • Abílio VC, Vera Jr JA, Ferreira LS, Duarte CR, Martins CR, Torres-Leite D, et al. Effects of melatonin on behavioral dopaminergic supersensitivity. Life Sci. 2003;7:3003–15.

    Article  CAS  Google Scholar 

  • Abílio VC, Silva RH, Carvalho RC, Grassl C, Calzavara MB, Registro S, et al. Important role of striatal catalase in aging- and reserpine-induced oral dyskinesia. Neuropharmacology. 2004;47:263–72.

    Article  PubMed  CAS  Google Scholar 

  • Agovic MS, Yablonsky-Alter E, Lidsky TI, Banerjee SP. Mechanisms for metoclopramide-mediated sensitization and haloperidol-induced catalepsy in rats. Eur J Pharmacol. 2008;587:181–6.

    Article  CAS  PubMed  Google Scholar 

  • Alam M, Mayarhofer A, Schmidt WJ. The neurobehavioral changes induced by bilateral rotenone lesion in medial forebrain bundle of rats are reversed by L-DOPA. Behav Brain Res. 2004;151:117–24.

    Article  CAS  PubMed  Google Scholar 

  • Al-Khatib IM, Fujiwara M, Ueki S. Relative importance of the dopaminergic system in haloperidol-catalepsy and the anticataleptic effect of antidepressants and methamphetamine in rats. Pharmacol Biochem Behav. 1989;33:93–7.

    Article  CAS  PubMed  Google Scholar 

  • Amir S, Brown ZW, Amit Z, Ornstein K. Body pinch induces long lasting cataleptic like immobility in mice: behavioral characterization and the effect of naloxone. Life Sci. 1981;28:1189–94.

    Article  CAS  PubMed  Google Scholar 

  • Andén NE, Dahlström A, Fuxe K, Larsson K. Functional role of the nigro-neostriatal dopamine neurons. Acta Pharmacol Toxicol. 1966;24:263–74.

    Article  Google Scholar 

  • Antelman SM, Kocan D, Edwards DJ, Knopf S, Perel JM, Stiller R. Behavioral effects of a single neuroleptic treatment grow with the passage of time. Brain Res. 1986;385:58–67.

    Article  CAS  PubMed  Google Scholar 

  • Arnt J, Christensen AV. Differential reversal by scopolamine and THIP of the antiestereotypic and cataleptic effects of neuroleptics. Eur J Pharmacol. 1981;69:107–11.

    Article  CAS  PubMed  Google Scholar 

  • Arnt J, Hytell J, Bach-Lauritsen T. Further studies of the mechanism behind scopolamine-induced reversal of antistereotypic and cataleptogenic effects of neuroleptics in rats. Acta Pharmacol Toxicol. 1986;59:319–24.

    Article  CAS  Google Scholar 

  • Asper H, Baggiolini M, Burki HR, Lauener H, Ruch W, Stille G. Tolerance phenomena with neuroleptics catalepsy, apomorphine stereotypies and striatal dopamine metabolism in the rat after single and repeated administration of loxapine and haloperidol. Eur J Pharmacol. 1973;22:287–94.

    Article  CAS  PubMed  Google Scholar 

  • Axelrod J, Reisine TD. Stress hormones: their interaction and regulation. Science. 1984;224:452–9.

    Article  CAS  PubMed  Google Scholar 

  • Ayd Jr FJ. A survey of drug-induced extrapyramidal reactions. JAMA. 1961;175:1054–60.

    Article  CAS  PubMed  Google Scholar 

  • Ayd FJ. Neuroleptics an antiparkinson drugs. Int Drug Ther Newslett. 1971;6:33–6.

    Google Scholar 

  • Bara-Jimenez W, Sherzai A, Dimitrova T, Favit A, Bibbiani F, Gillespie M, et al. Adenosine A(2A) receptor antagonist treatment of Parkinson’s disease. Neurology. 2003;61:293–6.

    Article  CAS  PubMed  Google Scholar 

  • Barnes DE, Robinson B, Csernansky JG, Bellows EP. Sensitization versus tolerance to haloperidol-induced catalepsy: multiple determinants. Pharmacol Biochem Behav. 1990;36:883–7.

    Article  CAS  PubMed  Google Scholar 

  • Bernardi MM, Palermo Neto J. Effects of abrupt and gradual withdrawal from long-term haloperidol treatment on open-field of rats. Psychopharmacology (Berl). 1979;65:247–50.

    Article  CAS  Google Scholar 

  • Bernardi MM, De Souza H, Palermo Neto J. Effects of single and long-term haloperidol administration on open field behavior of rats. Psychopharmacology (Berl). 1981;73:171–5.

    Article  CAS  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci. 1973;20:415–55.

    Article  CAS  PubMed  Google Scholar 

  • Betarbet R, Sherer TB, Mackenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000;3:1301–6.

    Article  CAS  PubMed  Google Scholar 

  • Bloom FE, Algeri S, Groppetti A, Revuelta A, Costa E. Lesions of central norepinephrine terminals with 6-OH-dopamine: biochemistry and fine structure. Science. 1969;166:1284–6.

    Article  CAS  PubMed  Google Scholar 

  • Brown J, Handley SL. The development of catalepsy in drug-free mice on repeated testing. Neuropharmacology. 1980;19:675–8.

    Article  CAS  PubMed  Google Scholar 

  • Bures J, Buresova O, Huston JP. Techniques and basic experiments for the study of brain and behavior. Amsterdam: Elsevier; 1976.

    Google Scholar 

  • Burt DR, Creese I, Snyder SH. Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science. 1977;196:326–8.

    Article  CAS  PubMed  Google Scholar 

  • Cahan RB, Parrish DD. Reversibility of drug-induced parkinsonism. Am J Psychiatry. 1960;116:1022–3.

    Article  CAS  PubMed  Google Scholar 

  • Calderon SF, Sanberg PR, Norman AB. Quinolinic acid lesions of rat striatum abolish D1- and D2-dopamine receptor-mediated catalepsy. Brain Res. 1988;450:403–7.

    Article  CAS  PubMed  Google Scholar 

  • Campbell A, Baldessarini RJ. Tolerance to behavioral effects of haloperidol. Life Sci. 1981;29:1341–6.

    Article  CAS  PubMed  Google Scholar 

  • Cannon JR, Hua Y, Richardson RJ, Xi G, Keep RF, Schallert T. The effect of thrombin on a 6-hydroxydopamine model of Parkinson’s disease depends on timing. Behav Brain Res. 2007;183:161–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Casey DE, Povlsen UJ, Meidahl B, Gerlach J. Neuroleptic-induced tardive dyskinesia and parkinsonism: changes during several years of continuing treatment. Psychopharmacol Bull. 1986;22:250–3.

    CAS  PubMed  Google Scholar 

  • Chinen CC, Frussa-Filho R. Conditioning to injection procedures and repeated testing increase SCH 23390-induced catalepsy in mice. Neuropsychopharmacology. 1999;21:670–7.

    Article  CAS  PubMed  Google Scholar 

  • Christensen AV, Arnt J, Hyttel J, Larsen JJ, Svendesen O. Pharmacological effects of a specific dopamine D1 antagonist SCH 23390 in comparison with neuroleptics. Life Sci. 1984;34:1529–40.

    Article  CAS  PubMed  Google Scholar 

  • Conceição IM, Frussa-Filho R. Effects of a single administration of buspirone on catalepsy, yawning and stereotypy in rats. Braz J Med Biol Res. 1993;26:71–4.

    PubMed  Google Scholar 

  • Costall B, Naylor RJ. Neuroleptic antagonism of dyskinetic phenomena. Eur J Pharmacol. 1975;33:301–12.

    Article  CAS  PubMed  Google Scholar 

  • Crane J. Psychiatry at a mission hospital in South Africa. Ulster Med J. 1976;45:73–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 1976;192:481–3.

    Article  CAS  PubMed  Google Scholar 

  • Creese I, Sibley DR, Hamblin MW, Leff SE. The classification of dopamine receptors: relationship to radioligand binding. Annu Rev Neurosci. 1983;6:43–71.

    Article  CAS  PubMed  Google Scholar 

  • Datla KP, Zbarsky V, Rai D, Parkar S, Osakabe N, Aruoma OI, Dexter DT. Short-term supplementation with plant extracts rich in flavonoids protect nigrostriatal dopaminergic neurons in a rat model of Parkinson’s disease. J Am Coll Nutr. 2007;26:341–9.

    Article  CAS  PubMed  Google Scholar 

  • De Graaf CJ, Korf J. Conditional tolerance to haloperidol-induced catalepsy is not caused by striatal dopamine receptor supersensitivity. Psychopharmacology (Berl). 1986;90:54–7.

    Article  Google Scholar 

  • De Ryck M, Teitelbaum P. Morphine catalepsy as an adaptive reflex state in rats. Behav Neurosci. 1984;98:243–61.

    Article  PubMed  Google Scholar 

  • De Sousa-Moreira LF, Pinheiro MC, Masur J. Catatonic behavior induced by haloperidol, increased by retesting and elicited without drug in rats. Pharmacology. 1982;25:1–5.

    Article  PubMed  Google Scholar 

  • Delwaide PJ. Parkinsonian rigidity. Funct Neurol. 2001;16:147–56.

    CAS  PubMed  Google Scholar 

  • Demars JPCA. Neuromuscular effects of long-term phenothiazine medication, eletroconvulsive therapy and leucotomy. J Nerv Ment Dis. 1966;143:73–9.

    Article  CAS  PubMed  Google Scholar 

  • Dimascio A, Demirgian E. Antiparkinson drug overuse. Psychosomatics. 1970;11:596–601.

    Article  CAS  PubMed  Google Scholar 

  • During MJ, Freese A, Deutch AY, Kibat PG, Sabel BA, Langer R, Roth RH. Biochemical and behavioral recovery in a rodent model of Parkinson’s disease following stereotactic implantation of dopamine-containing liposomes. Exp Neurol. 1992;115:193–9.

    Article  CAS  PubMed  Google Scholar 

  • Dutra RC, Andreazza AP, Andreatini R, Tufik S, Vital MA. Behavioral effects of MK-801 on reserpine-treated mice. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26:487–95.

    Article  CAS  PubMed  Google Scholar 

  • Ezrin-Waters C, Seeman P. Tolerance of haloperidol catalepsy. Eur J Pharmacol. 1977;41:321–7.

    Article  CAS  PubMed  Google Scholar 

  • Ezrin-Waters C, Muller P, Seeman P. Catalepsy induced by morphine or haloperidol effects of apomorphine and anticholinergic drugs. Can J Physiol Pharmacol. 1976;54:516.

    Article  CAS  Google Scholar 

  • Ferré S, Guix T, Prat G, Jane F, Casas M. Is experimental catalepsy properly measured? Pharmacol Biochem Behav. 1990;35:753–7.

    Article  PubMed  Google Scholar 

  • Fot R, Randrup A, Pakkenberg H. Lesions in corpus striatum and cortex of rats brain and the effect on pharmacologically induced stereotyped, aggressive and cataleptic behavior. Psychopharmacology (Berl). 1970;18:346–56.

    Article  Google Scholar 

  • Friedman JH. “Rubral” tremor induced by a neuroleptic drug. Mov Disord. 1992;7:281–2.

    Article  CAS  PubMed  Google Scholar 

  • Frussa-Filho R, Palermo-Neto J. Effects of single and long-term metoclopramide administration on open-field and stereotyped behavior of rats. Eur J Pharmacol. 1988;149:323–9.

    Article  CAS  PubMed  Google Scholar 

  • Frussa-Filho R, Palermo-Neto J. Effects of single and long-term administration of sulpiride on open-field and stereotyped behavior of rats. Braz J Med Biol Res. 1990;23:463–72.

    CAS  PubMed  Google Scholar 

  • Frussa-Filho R, Palermo-Neto J. Effects of single and long-term droperidol administration on open-field and stereotyped behavior of rats. Physiol Behav. 1991;50:825–30.

    Article  CAS  PubMed  Google Scholar 

  • Frussa-Filho R, Otoboni JR, Uema FT, Palermo-Neto J. Effects of age and isolation on the evolution of catalepsy during chronic haloperidol treatment. Braz J Med Biol Res. 1992;25:925–8.

    CAS  PubMed  Google Scholar 

  • Fuenmayor LD, Vogt M. The influence of cerebral 5-hydroxytryptamine on catalepsy induced by brain-amine depleting neuroleptics or by cholinomimetics. Br J Pharmacol. 1979;67:309–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fundaró A. Pinch-induced catalepsy in mice: a useful model to investigate antidepressant or anxiolytic drugs. Prog Neuropsychopharmacol Biol Psychiatry. 1998;22:147–58.

    Article  PubMed  Google Scholar 

  • Gerlach M, Riederer P. Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm. 1996;103:987–1041.

    Article  CAS  PubMed  Google Scholar 

  • Gessa GL, Tacliamonte A. Effect of methadone and dextromoramide on dopamine metabolism: comparison with haloperidol and amphetamine. Neuropharmacology. 1975;14:913.

    Article  CAS  PubMed  Google Scholar 

  • Gianutsos G, Hynes MD, Lal H. Enhancement of apomorphine-induced inhibition of striatal dopamine-turnover following chronic haloperidol. Biochem Pharmacol. 1975;24:581–2.

    Article  CAS  PubMed  Google Scholar 

  • Goetz CG, Klawans HL. Drug-induced extrapyramidal disorders—a neuropsychiatric interface. J Clin Psychopharmacol. 1981;1:297–303.

    Article  CAS  PubMed  Google Scholar 

  • Gough AL, Olley JE. Catalepsy induced by intrastriatal injections of delta9-THC and 11-OH-delta9-THC in the rat. Neuropharmacology. 1978;17:137–44.

    Article  CAS  PubMed  Google Scholar 

  • Gras C, Amilhon B, Lepicard EM, Poirel O, Vinatier J, Herbin M, et al. The vesicular glutamate transporter VGLUT3 synergizes striatal acetylcholine tone. Nat Neurosci. 2008;11:292–300.

    Article  CAS  PubMed  Google Scholar 

  • György L, Pfeifer KA, Hajtman B. Modification of certain central nervous effects of haloperidol during long-term treatment in the mouse and rat. Psychopharmacology (Berl). 1969;16:223–33.

    Article  Google Scholar 

  • Hall RA, Jackson RB, Swain JM. Neurotoxic reactions resulting from chlorpromazine administration. JAMA. 1956;161:214–8.

    Article  CAS  Google Scholar 

  • Hansen TE, Hoffman WF. Drug-induced Parkinsonism. In: Yassa R, Vasavan Nair MP, Jeste DV, editors. Neuroleptic-induced movement disorders. New York: Cambridge University Press; 1997. p. 341–80.

    Google Scholar 

  • Hausner RS. Neuroleptic-induced parkinsonism and Parkinson’s disease: differential diagnosis and treatment. J Clin Psychiatry. 1983;44:13–6.

    CAS  PubMed  Google Scholar 

  • Hayakawa T, Sugimoto Y, Chen Z, Fujii Y, Kamei C. Effects of anti-parkinsonian drugs on neurobehavioural changes induced by bilateral 6-hydroxydopamine lesions in rats. Clin Exp Pharmacol Physiol. 1999;26:421–5.

    Article  CAS  PubMed  Google Scholar 

  • Hess EJ, Albers LJ, Le H, Creese I. Effects of chronic SCH 23390 treatment on the biochemical and behavioral properties of D1 and D2 dopamine receptors: potentiated behavioral responses to a D2 dopamine agonist after selective D1 dopamine receptor upregulation. J Pharmacol Exp Ther. 1986;238:846–54.

    CAS  PubMed  Google Scholar 

  • Hess EJ, Norman AB, Creese I. Chronic treatment with dopamine receptor antagonists: behavioral and pharmacologic effects on D1 and D2 dopamine receptors. J Neurosci. 1988;8:2361–70.

    CAS  PubMed  Google Scholar 

  • Hillegaart V, Ahlenius S, Magnusson O, Fowler CJ. Repeated testing of rats markedly enhances the duration of effects induced by haloperidol on treadmill locomotion, catalepsy, and a conditioned avoidance response. Pharmacol Biochem Behav. 1987;27:159–64.

    Article  CAS  PubMed  Google Scholar 

  • Honma T, Fukushima H. Correlation between catalepsy and dopamine decrease in the rat striatum induced by neuroleptics. Neuropharmacology. 1976;15:601–7.

    Article  CAS  PubMed  Google Scholar 

  • Honma T, Fukushima H. Effects of bilateral lesions in the striatum or nucleus accumbens on the cataleptogenic activity of neuroleptics in rats. Jpn J Pharmacol. 1978;28:231–8.

    Article  CAS  PubMed  Google Scholar 

  • Hubbard CA, Trugman JM. Reversal of reserpine-induced catalepsy by selective D1 and D2 dopamine agonists. Mov Disord. 1993;8:473–8.

    Article  CAS  PubMed  Google Scholar 

  • Hyntel J. SCH 23390—The first selective dopamine D1 antagonist. Eur J Pharmacol. 1983;91:153–4.

    Article  Google Scholar 

  • Hyntel J. Functional evidence for selective dopamine D1 receptor blockade by SCH 23390. Neuropharmacology. 1984;23:1395–401.

    Article  Google Scholar 

  • Iorio LC, Barnett A, Leitz FG, Houser VP, Korduba CA. SCH 23390 a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J Pharmacol Exp Ther. 1983;226:462–8.

    CAS  PubMed  Google Scholar 

  • Iwata SI, Izumi K, Shimizu T, Fukuda T. Effects of repeated testing on the incidence of haloperidol-induced catalepsy in mice. Pharmacol Biochem Behav. 1989;33:705–7.

    Article  CAS  PubMed  Google Scholar 

  • Janssen PA, Niemegeers CJ, Schellekens KH. Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Part 1 “neuroleptic activity spectra” for rats. Arzneimittelforschung. 1965;15:104–17.

    CAS  PubMed  Google Scholar 

  • Johnson AM, Loew DM, Vigouret JM. Stimulant properties of bromocriptine on central dopamine receptors in comparison to apomorphine, (+)-amphetamine and L DOPA. Br J Pharmacol. 1976;56:59–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jolicoeur FB, Rivest R, Drumheller A. Hypokinesia, rigidity, and tremor induced by hypothalamic 6-OHDA lesions in the rat. Brain Res Bull. 1991;26:317–20.

    Article  CAS  PubMed  Google Scholar 

  • Keepers GA, Casey DE. Clinical management of acute neuroleptic-induced extrapyramidal syndromes, Review. Curr Psychiatr Ther. 1986;23:139–57.

    CAS  PubMed  Google Scholar 

  • Khisti RT, Mandhane SN, Chopde CT. Haloperidol-induced catalepsy: a model for screening antidepressants effective in treatment of depression with Parkinson’s disease. Indian J Exp Biol. 1997;35:1297–301.

    CAS  PubMed  Google Scholar 

  • Klein A, Schmidt WJ. Catalepsy intensifies context-dependently irrespective of whether it is induced by intermittent or chronic dopamine deficiency. Behav Pharmacol. 2003;14:49–53.

    Article  CAS  PubMed  Google Scholar 

  • Klemm WR. Neurophysiologic studies of the immobility reflex (animal hypnosis). In: Ehrenpreis S, Solnitzky OC, editors. Neurosciences research, vol. 4. London: Academic; 1971. p. 165–212.

    Chapter  Google Scholar 

  • Klemm WR. Evidence for a cholinergic role in haloperidol-induced catalepsy. Psychopharmacology (Berl). 1985;85:139–42.

    Article  CAS  Google Scholar 

  • Klemm WR. The catalepsy of blocked dopaminergic receptors. Psychopharmacology (Berl). 1993;111:251–3.

    Article  CAS  Google Scholar 

  • Klemm WR, Block H. D1 and D2 receptor blockade have additive cataleptic effects in mice, but receptor effects may interact in opposite ways. Pharmacol Biochem Behav. 1988;29:223–9.

    Article  CAS  PubMed  Google Scholar 

  • Klett CJ, Caffey Jr E. Evaluating the long-term need for antiparkinson drugs by chronic schizophrenics. Arch Gen Psychiatry. 1972;26:374–9.

    Article  CAS  PubMed  Google Scholar 

  • Klockgether T. Parkinson’s disease: clinical aspects. Cell Tissue Res. 2004;318:115–20.

    Article  PubMed  Google Scholar 

  • Korf J. Striatal dopamine receptor supersensitivity is not the (exclusive) cause of behavioural tolerance to long-term haloperidol treatment. Psychopharmacology (Berl). 1988;95:144–5.

    Article  CAS  Google Scholar 

  • Kruse W. Treatment of drug-induced extrapyramidal symptoms. (A comparative study of three antiparkinson agents). Dis Nerv Syst. 1960;21:79–81.

    CAS  PubMed  Google Scholar 

  • Kuschinsky K, Hornykiewicz O. Morphine catalepsy in the rat: relation to striatal dopamine metabolism. Eur J Pharmacol. 1972;19:119–22.

    Article  CAS  PubMed  Google Scholar 

  • Laduron PM. Dopamine sensitive adenylate ciclase as a receptor site. In: Kebabian JW, Kaiser C, editors. Dopamine receptors. ACS Symp Ser 224. Washington, DC: American Chemical Society; 1983.

    Google Scholar 

  • Lane E, Dunnett S. Animal models of Parkinson’s disease and L-dopa induced dyskinesia: how close are we to the clinic? Psychopharmacology (Berl). 2008;199:303–12.

    Article  CAS  Google Scholar 

  • Lipska BK, Jaskiw GE, Braun AR, Weinberger DR. Prefrontal cortical and hippocampal modulation of haloperidol-induced catalepsy and apomorphine-induced stereotypic behaviors in the rat. Biol Psychiatry. 1995;38:255–62.

    Article  CAS  PubMed  Google Scholar 

  • Liu CQ, Hu DN, Liu FX, Chen Z, Luo JH. Apomorphine-induced turning behavior in 6-hydroxydopamine lesioned rats is increased by histidine and decreased by histidine decarboxylase, histamine H1 and H2 receptor antagonists, and an H3 receptor agonist. Pharmacol Biochem Behav. 2008;90:325–30.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd KG, Willigens MT, Worms P. Cortical lesions differently affect neuroleptic-and non-neuroleptic induced catalepsy in rats. Br J Pharmacol. 1981;54:821P.

    Google Scholar 

  • Lorenc-Koci E, Wolfarth S, Ossowska K. Haloperidol-increased muscle tone in rats as a model of parkinsonian rigidity. Exp Brain Res. 1996;109:268–76.

    Article  CAS  PubMed  Google Scholar 

  • Lucas G, Bonhomme N, De Deurwaerdère P, Le Moal M, Spampinato U. 8-OH-DPAT, a 5-HT1A agonist and ritanserin, a 5-HT2A/C antagonist, reverse haloperidol-induced catalepsy in rats independently of striatal dopamine release. Psychopharmacology (Berl). 1997;131:57–63.

    Article  CAS  Google Scholar 

  • Masuda Y, Murai S, Itoh T. Tolerance and reverse tolerance to haloperidol catalepsy induced by the difference of administration interval in mice. Jpn J Pharmacol. 1982;32:1186–8.

    Article  CAS  PubMed  Google Scholar 

  • Mcauley JH. The physiological basis of clinical deficits in Parkinson’s disease. Prog Neurobiol. 2003;69:27–48.

    Article  CAS  PubMed  Google Scholar 

  • McEvoy JP. The clinical use of anticholinergic drugs as treatment for extrapyramidal side effects of neuroleptic drugs. J Clin Psychopharmacol. 1983;3:288–302.

    Article  CAS  PubMed  Google Scholar 

  • Meller E, Kuga S, Friedhoff AJ, Goldstein M. Selective D2 dopamine receptor agonists prevent cataleps induced by SCH 23390, a selective D1 antagonist. Life Sci. 1985;36:1857–64.

    Article  CAS  PubMed  Google Scholar 

  • Meschler JP, Conley TJ, Howlett AC. Cannabinoid and dopamine interaction in rodent brain: effects on locomotor activity. Pharmacol Biochem Behav. 2000;67:567–73.

    Article  CAS  PubMed  Google Scholar 

  • Metz GA, Tse A, Ballermann M, Smith LK, Fouad K. The unilateral 6-OHDA rat model of Parkinson’s disease revisited: an electromyographic and behavioural analysis. Eur J Neurosci. 2005;22:735–44.

    Article  PubMed  Google Scholar 

  • Miller R, Wickens JR, Beninger RJ. Dopanime D1 and D2 receptors in relation to reward and performance: a case for the D1 receptor as a primary site of therapeutic action of neuroleptic drugs. Prog Neurobiol. 1990;34:143–83.

    Article  CAS  PubMed  Google Scholar 

  • Miyagi M, Arai N, Taya F, Itoh F, Komatsu Y, Kojima M, Isaji M. Effect of cabergoline, a long-acting dopamine D2 agonist, on reserpine-treated rodents. Biol Pharm Bull. 1996;19:1499–502.

    Article  CAS  PubMed  Google Scholar 

  • Miyasaki JM, Martin W, Suchowersky O, Weiner WJ, Lang AE. Practice parameter: initiation of treatment for Parkinson’s disease: an evidence-based review: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2002;58:11–7.

    Article  CAS  PubMed  Google Scholar 

  • Mizuki Y, Ushijima I, Yamada M. Effects of chronic methamphetamine on SCH 23390- or haloperidol-induced catalepsy, and effects of coadministration of SCH23390 or haloperidol in mice. Pharmacol Biochem Behav. 1996;53:437–40.

    Article  CAS  PubMed  Google Scholar 

  • Morelli M, Di Chiara G. Catalepsy induced by SCH 23390 in rats. Eur J Pharmacol. 1985;117:179–85.

    Article  CAS  PubMed  Google Scholar 

  • Morpurgo C. Effects of antiparkinson drugs on a phenothiazine-induced catatonic reaction. Arch Int Pharmacodyn Ther. 1962;1(137):84–90.

    Google Scholar 

  • Namba MM, Quock RM, Malone MH. Narcotic antagonist potentiation of L-DOPA in the reversal of reserpine induced catalepsy. Proc West Pharmacol Soc. 1980;23:285–9.

    CAS  PubMed  Google Scholar 

  • Namba MM, Quock RM, Malone MH. Effects of narcotic antagonists on L-dopa reversal of reserpine-induced catalepsy and blepharoptosis in mice. Life Sci. 1981;28:1629–36.

    Article  CAS  PubMed  Google Scholar 

  • Nehru B, Verma R, Khanna P, Sharma SK. Behavioral alterations in rotenone model of Parkinson’s disease: attenuation by co-treatment of centrophenoxine. Brain Res. 2008;1201:122–7.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen IM. Pharmacological vs. clinical physiognomy of neuroleptics, with special reference to their sedative and antipsychotic effects. Acta Psychiatr Belg. 1974;74:473–84.

    CAS  PubMed  Google Scholar 

  • Nowak K, Welsch-Kunze S, Kuschinsky K. Conditioned tolerance to haloperidol- and droperidol-induced catalepsy. Naunyn Schmiedebergs Arch Pharmacol. 1988;337:385–91.

    Article  CAS  PubMed  Google Scholar 

  • Ögren SO, Fuxe K. D1 and D2 receptor antagonist induce catalepsy via different efferent. Striatal pathways. Neurosci Lett. 1988;85:333–8.

    Article  PubMed  Google Scholar 

  • Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci. 1999;22:123–44.

    Article  CAS  PubMed  Google Scholar 

  • Owen F, Crow TJ, Poulter M, Cross AJ, Longden A, Riley GJ. Increased dopamine receptor sensitivity in schizophrenia. Lancet. 1978;II:223–6.

    Article  Google Scholar 

  • Perry JC, Vital MA, Frussa-Filho R, Tufik S, Palermo-Neto J. Monosialoganglioside (GM1) attenuates the behavioural effects of long-term haloperidol administration in supersensitive rats. Eur Neuropsychopharmacol. 2004;14:127–33.

    Article  CAS  PubMed  Google Scholar 

  • Pinna A, Pontis S, Morelli M. Expression of dyskinetic movements and turning behaviour in subchronic L-DOPA 6-hydroxydopamine-treated rats is influenced by the testing environment. Behav Brain Res. 2006;171:175–8.

    Article  CAS  PubMed  Google Scholar 

  • Pires JG, Fonseca FC, Woelffel AB, Futuro-Neto HA. Evidence of interaction between fluoxetine and isosorbide dinitrate on neuroleptic-induced catalepsy in mice. Braz J Med Biol Res. 1998;31:417–20.

    Article  CAS  PubMed  Google Scholar 

  • Pires JG, Bonikovski V, Futuro-Neto HA. Acute effects of selective serotonin reuptake inhibitors on neuroleptic-induced catalepsy in mice. Braz J Med Biol Res. 2005;38:1867–72.

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266:730–2.

    Article  CAS  PubMed  Google Scholar 

  • Poulos C, Hinson R. Pavlovian conditional tolerance to haloperidol catalepsy: evidence of dynamic adaptation in the dopaminergic system. Science. 1982;218:491–2.

    Article  CAS  PubMed  Google Scholar 

  • Puri SK, Lal H. Tolerance to the behavioral and neurochemical effects of haloperidol and morphine in rats chronically treated with morphine or haloperidol. Naunyn Schmiedebergs Arch Pharmacol. 1974;282:155–70.

    Article  CAS  PubMed  Google Scholar 

  • Queiroz CM, Frussa-Filho R. Effects of buspirone on an animal model of tardive dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry. 1999;23:1405–18.

    Article  CAS  PubMed  Google Scholar 

  • Rácz I, Bilkei-Gorzo A, Markert A, Stamer F, Göthert M, Zimmer A. Anandamide effects on 5-HT(3) receptors in vivo. Eur J Pharmacol. 2008;596:98–101.

    Article  PubMed  CAS  Google Scholar 

  • Rao SS, Hofmann LA, Shakil A. Parkinson’s disease: diagnosis and treatment. Am Fam Physician. 2006;74:2046–54.

    PubMed  Google Scholar 

  • Riederer P, Wuketich S. Time course of nigrostriatal degeneration in parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm. 1976;38:277–301.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Díaz M, Abdala P, Barroso-Chinea P, Obeso J, González-Hernández T. Motor behavioural changes after intracerebroventricular injection of 6-hydroxydopamine in the rat: an animal model of Parkinson’s disease. Behav Brain Res. 2001;122:79–92.

    Article  PubMed  Google Scholar 

  • Rozzini R, Missale C, Gadola M. Drug-induced parkinsonism. Lancet. 1985;1:113.

    Article  Google Scholar 

  • Sanberg PR. Haloperidol-induced catalepsy is mediated by postsynaptic dopamine receptors. Nature. 1980;284:472–3.

    Article  CAS  PubMed  Google Scholar 

  • Sanberg PR, Pisa M, Faulks IJ, Fibiger HC. Experimental influences on catalepsy. Psychopharmacology (Berl). 1980;69:225–6.

    Article  CAS  Google Scholar 

  • Sanberg PR, Bunsey MD, Giordano M, Norman AB. The catalepsy test: its ups and downs. Behav Neurosci. 1988;102:748–59.

    Article  CAS  PubMed  Google Scholar 

  • Sarkaki A, Badavi M, Hoseiny N, Gharibnaseri MK, Rahim F. Postmenopausal effects of intrastriatal estrogen on catalepsy and pallidal electroencephalogram in an animal model of parkinson’s disease. Neuroscience. 2008;154:940–5.

    Article  CAS  PubMed  Google Scholar 

  • Sayers AC, Burki HR, Ruch W, Asper H. Anticholinergic properties of antipsychotic drugs and their relation to extrapyramidal side-effects. Psychopharmacology (Berl). 1976;51:15–22.

    Article  CAS  Google Scholar 

  • Schmidt WJ, Alam M. Controversies on new animal models of Parkinson’s disease pro and con: the rotenone model of Parkinson’s disease (PD). J Neural Transm Suppl. 2006;70:273–6.

    CAS  PubMed  Google Scholar 

  • Schmidt A, Vogel R, Rutledge SJ, Opas EE, Rodan GA, Friedman E. Cross-talk between an activator of nuclear receptors-mediated transcription and the D1 dopamine receptor signaling pathway. Pharmacol Biochem Behav. 2005;80:379–85.

    Article  CAS  PubMed  Google Scholar 

  • Schwarting RK, Huston JP. The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol. 1996;50:275–331.

    Article  CAS  PubMed  Google Scholar 

  • Seeman P. Brain dopamine receptors. Pharmacol Rev. 1981;32:229–313.

    Google Scholar 

  • Seeman P, Lee T, Chau-Wong M, Wong K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature. 1976;261:717–9.

    Article  CAS  PubMed  Google Scholar 

  • Setler P, Sarau H, McKenzie G. Differential attenuation of some effects of haloperidol in rats given scopolamine. Eur J Pharmacol. 1976;39:117–26.

    Article  CAS  PubMed  Google Scholar 

  • Sherer TB, Betarberbet R, Tasta CM, Seo BB, Richardson JR, Kim JH, et al. Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci. 2003;23:10756–64.

    CAS  PubMed  Google Scholar 

  • Sherer TB, Richardson JR, Testa CM, Seo BB, Panov AV, Yagi T, Matsuno-Yagi A, Miller GW, Greenamyre JT. Mechanism of toxicity of pesticides acting at complex 1: relevance to environmental etiologies of Parkinson’s disease. J Neurochem. 2007;100:1469–79.

    CAS  PubMed  Google Scholar 

  • Shipley JE, Rowland N, Antelman SM, Buggy J, Edwards DJ, Shapiro AP. Increased amphetamine stereotypy and longer haloperidol catalepsy in spontaneously hypertensive rats. Life Sci. 1981;28:745–53.

    Article  CAS  PubMed  Google Scholar 

  • Silva SR, Futuro-Neto HA, Pires JG. Inhibition of chlorpromazine-induced catalepsy by the 5-HT-1A ligands pindolol and buspirone in mice. Braz J Med Biol Res. 1990;23:869–71.

    CAS  PubMed  Google Scholar 

  • Simpson GM. Controlled studies of antiparkinsonism agents in the treatment of drug-induced extrapyramidal symptoms. Acta Psychiatr Scand Suppl. 1970;212:44–51.

    Article  CAS  PubMed  Google Scholar 

  • Skirboll S, Bunney BS. The effects of acute and chronic haloperidol treatment on spontaneuously firing neurons in the caudate nucleous of the cat. Life Sci. 1979;25:1419–34.

    Article  CAS  PubMed  Google Scholar 

  • Smith GP, Young RC. A new experimental model of hypokinesia. Adv Neurol. 1974;5:427–32.

    CAS  PubMed  Google Scholar 

  • Smith DJ, Kyle S, Forty L, Cooper C, Walters J, Russell E, et al. Differences in depressive symptom profile between males and females. J Affect Disord. 2008;108:279–84.

    Article  PubMed  Google Scholar 

  • Sousa FC, Gomes PB, Noronha EC, Macêdo DS, Vasconcelos SM, Fonteles MM, Viana GS. Effects of dopaminergic and cholinergic interactions on rat behavior. Life Sci. 2001;69:2419–28.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan J, Schmidt WJ. Intensification of cataleptic response in 6-hydroxydopamine-induced neurodegeneration of substantia nigra is not dependent on the degree of dopamine depletion. Synapse. 2004;51:213–8.

    Article  CAS  PubMed  Google Scholar 

  • St Jean A, Donald MW, Ban TA. Interchangeability of antiparkinson medication. Am J Psychiatry. 1964a;120:1189–90.

    Article  CAS  Google Scholar 

  • St Jean A, Donald MW, Ban TA. Uses and abuses of antiparkinsonian medication. Am J Psychiatry. 1964b;120:801–3.

    Article  Google Scholar 

  • Stanley ME, Glick SD. Interaction of drug effects with testing procedures in the measurement of catalepsy. Neuropharmacology. 1976;15:393–4.

    Article  CAS  PubMed  Google Scholar 

  • Stephen PJ, Williamson J. Drug-induced parkinsonism in the elderly. Lancet. 1984;2:1082–3.

    Article  CAS  PubMed  Google Scholar 

  • Strome EM, Zis AP, Doudet DJ. Electroconvulsive shock enhances striatal dopamine D1 and D3 receptor binding and improves motor performance in 6-OHDA-lesioned rats. J Psychiatry Neurosci. 2007;32:193–202.

    PubMed Central  PubMed  Google Scholar 

  • Sutton MA, Beninger RJ. Psychopharmacology of conditioned reward: evidence for a rewarding signal at D1-like dopamine receptors. Psychopharmacology (Berl). 1999;144:95–110.

    Article  CAS  Google Scholar 

  • Tarsy D, Baldessarini RJ. Behavioural supersensitivity to apomorphine following chronic treatment with drugs which interfere with the synaptic function of catecholamines. Neuropharmacology. 1974;13:927–40.

    Article  CAS  PubMed  Google Scholar 

  • Tikhonova MA, Lebedeva VV, Kulikov AV, Bazovkina DV, Popova NK. Effect of imipramine on the behavior and cerebral 5-HT1A serotonin receptors in mice genetically predisposed to catalepsy. Bull Exp Biol Med. 2006;141:48–50.

    Article  CAS  PubMed  Google Scholar 

  • Tronci E, Simola N, Borsini F, Schintu N, Frau L, Carminati P, Morelli M. Characterization of the antiparkinsonian effects of the new adenosine A2A receptor antagonist ST1535: acute and subchronic studies in rats. Eur J Pharmacol. 2007;566:94–102.

    Article  CAS  PubMed  Google Scholar 

  • Undie AS, Friedman E. Differences in the cataleptogenic actions of SCH 23390 and selected classical neuroleptics. Psychopharmacology (Berl). 1988;96:311–6.

    Article  CAS  Google Scholar 

  • Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol. 1968;5:107–10.

    Article  CAS  PubMed  Google Scholar 

  • Ungerstedt U. Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl. 1971;367:69–93.

    Article  CAS  PubMed  Google Scholar 

  • Ungerstedt U, Arbuthnott GW. Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res. 1970;24:485–93.

    Article  CAS  PubMed  Google Scholar 

  • Uretsky NJ, Iversen LL. Effects of 6-hydroxydopamine on catecholamine containing neurones in the rat brain. J Neurochem. 1970;17:269–78.

    Article  CAS  PubMed  Google Scholar 

  • Ushijima I, Mizuki Y, Yamada M. Development of tolerance and reverse tolerance to haloperidol—and SCH 23390- induced cataleptic effects during withdrawal periods after long-term treatment. Pharmacol Biochem Behav. 1995;50:259–64.

    Article  CAS  PubMed  Google Scholar 

  • Vital MABF, Frussa-Filho R, Palermo-Neto J. Effects of monosialogangloside on dopaminergic supersensitivity. Life Sci. 1995;56:2299–307.

    Article  CAS  PubMed  Google Scholar 

  • Vital MA, Flório JC, Frussa-Filho R, De Lucia R, Tufik S, Palermo-Neto J. Effects of haloperidol and GM1 ganglioside treatment on striatal D2 receptor binding and dopamine turnover. Life Sci. 1998;62:1161–9.

    Article  CAS  PubMed  Google Scholar 

  • Waddington JL. New antipsychotic drugs: preclinical evaluation and clinical profiles in the treatment of schizophrenia. In: Reveley MA, Deakin JFW, editors. The psychopharmacology of schizophrenia. London: Arnold; 2000. p. 225–50.

    Google Scholar 

  • Wanibuchi F, Usuda S. Synergistic effects between D1 and D2 dopamine antagonist on catalepsy in rats. Psychopharmacology (Berl). 1990;102:339–42.

    Article  CAS  Google Scholar 

  • Zarrindast MR, Habibi-Moini S. Blockade of both D1 and D2 receptors may induce catalepsy in mice. Gen Pharmacol. 1991;22:1023–221.

    Article  CAS  PubMed  Google Scholar 

  • Zarrindast MR, Samadi P, Haeri-Rohani A, Moazami N, Shafizadeh M. Nicotine potentiation of morphine-induced catalepsy in mice. Pharmacol Biochem Behav. 2002;72:197–202.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Fukue Fukushiro Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frussa-Filho, R., Fukushiro, D.F., Patti, C.d.L., Chinen, C.C., Kameda, S.R., Carvalho, R.d.C. (2016). Assessment of Motor Function in Rodents: Behavioral Models Sharing Simplicity and Multifaceted Applicability. In: Andersen, M., Tufik, S. (eds) Rodent Model as Tools in Ethical Biomedical Research. Springer, Cham. https://doi.org/10.1007/978-3-319-11578-8_26

Download citation

Publish with us

Policies and ethics