Skip to main content

The Fuzzy Description Logic \(\mathsf{G}\text{-}{\mathcal{F\!L}_0} \) with Greatest Fixed-Point Semantics

  • Conference paper
Logics in Artificial Intelligence (JELIA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8761))

Included in the following conference series:

Abstract

We study the fuzzy extension of the Description Logic \(\mathcal{F\!L}_0\) with semantics based on the Gödel t-norm. We show that subsumption w.r.t. a finite set of primitive definitions, using greatest fixed-point semantics, can be characterized by a relation on weighted automata. We use this result to provide tight complexity bounds for reasoning in this logic, showing that it is PSpace-complete. If the definitions do not contain cycles, subsumption becomes co-NP-complete.

Partially supported by the DFG under grant BA 1122/17-1, in the research training group 1763 (QuantLA), and the Cluster of Excellence ‘Center for Advancing Electronics Dresden’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baader, F.: Using automata theory for characterizing the semantics of terminological cycles. Annals of Mathematics and Artificial Intelligence 18(2), 175–219 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pp. 364–369. Professional Book Center (2005)

    Google Scholar 

  3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press (2007)

    Google Scholar 

  4. Baader, F., Peñaloza, R.: On the undecidability of fuzzy description logics with GCIs and product t-norm. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS (LNAI), vol. 6989, pp. 55–70. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Bobillo, F., Straccia, U.: Fuzzy description logics with general t-norms and datatypes. Fuzzy Sets and Systems 160(23), 3382–3402 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borgwardt, S., Distel, F., Peñaloza, R.: Decidable Gödel description logics without the finitely-valued model property. In: Proc. of the 14th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2014). AAAI Press (to appear, 2014)

    Google Scholar 

  7. Borgwardt, S., Peñaloza, R.: Undecidability of fuzzy description logics. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Proc. of the 13th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2012), pp. 232–242. AAAI Press (2012)

    Google Scholar 

  8. Borgwardt, S., Peñaloza, R.: The complexity of lattice-based fuzzy description logics. Journal on Data Semantics 2(1), 1–19 (2013)

    Article  Google Scholar 

  9. Cerami, M., Straccia, U.: On the (un)decidability of fuzzy description logics under Łukasiewicz t-norm. Information Sciences 227, 1–21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cintula, P., Hájek, P., Noguera, C. (eds.): Handbook of Mathematical Fuzzy Logic, Studies in Logic, pp. 37–38. College Publications (2011)

    Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  12. Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser (2003)

    Google Scholar 

  13. Hájek, P.: Metamathematics of Fuzzy Logic (Trends in Logic). Springer (2001)

    Google Scholar 

  14. Hájek, P.: Making fuzzy description logic more general. Fuzzy Sets and Systems 154(1), 1–15 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kleene, S.C.: Introduction to Metamathematics. Van Nostrand, New York (1952)

    MATH  Google Scholar 

  16. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Trends in Logic, Studia Logica Library. Springer (2000)

    Google Scholar 

  17. Mailis, T., Stoilos, G., Simou, N., Stamou, G.B., Kollias, S.: Tractable reasoning with vague knowledge using fuzzy \(\mathcal{EL}^{++}\). Journal of Intelligent Information Systems 39(2), 399–440 (2012)

    Article  Google Scholar 

  18. Nebel, B.: Terminological reasoning is inherently intractable. Artificial Intelligence 43(2), 235–249 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nebel, B.: Terminological cycles: Semantics and computational properties. In: Sowa, J. (ed.) Principles of Semantic Networks, pp. 331–362. Morgan Kaufmann (1991)

    Google Scholar 

  20. Stoilos, G., Stamou, G.B., Pan, J.Z.: Classifying fuzzy subsumption in fuzzy-\(\mathcal{EL}\)+. In: Baader, F., Lutz, C., Motik, B. (eds.) Proc. of the 2008 Int. Workshop on Description Logics (DL 2008). CEUR Workshop Proceedings, vol. 353 (2008)

    Google Scholar 

  21. Stoilos, G., Straccia, U., Stamou, G.B., Pan, J.Z.: General concept inclusions in fuzzy description logics. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) Proc. of the 17th Eur. Conf. on Artificial Intelligence (ECAI 2006), pp. 457–461. IOS Press (2006)

    Google Scholar 

  22. Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intelligence Research 14, 137–166 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Straccia, U.: Description logics over lattices. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 14(1), 1–16 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5(2), 285–309 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Borgwardt, S., Leyva Galano, J.A., Peñaloza, R. (2014). The Fuzzy Description Logic \(\mathsf{G}\text{-}{\mathcal{F\!L}_0} \) with Greatest Fixed-Point Semantics. In: Fermé, E., Leite, J. (eds) Logics in Artificial Intelligence. JELIA 2014. Lecture Notes in Computer Science(), vol 8761. Springer, Cham. https://doi.org/10.1007/978-3-319-11558-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11558-0_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11557-3

  • Online ISBN: 978-3-319-11558-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics