Skip to main content

Enumerating Prime Implicants of Propositional Formulae in Conjunctive Normal Form

  • Conference paper
Logics in Artificial Intelligence (JELIA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8761))

Included in the following conference series:

Abstract

In this paper, a new approach for enumerating the set prime implicants (PI) of a Boolean formula in conjunctive normal form (CNF) is proposed. It is based on an encoding of the input formula as a new one whose models correspond to the set of prime implicants of the original theory. This first PI enumeration approach is then enhanced by an original use of the boolean functions or gates usually involved in many CNF instances encoding real-world problems. Experimental evaluation on several classes of CNF instances shows the feasibility of our proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acuña, V., Milreu, P.V., Cottret, L., Marchetti-Spaccamela, A., Stougie, L., Sagot, M.-F.: Algorithms and complexity of enumerating minimal precursor sets in genome-wide metabolic networks. Bioinformatics 28(19), 2474–2483 (2012)

    Article  Google Scholar 

  2. Audemard, G., Saïs, L.: Circuit based encoding of CNF formula. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 16–21. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Boufkhad, Y., Gregoire, E., Marquis, P., Sais, L.: Tractable cover compilations. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI 1997), pp. 122–127 (1997)

    Google Scholar 

  4. Cadoli, M., Donini, F.M.: A survey on knowledge compilation. AI Commun. 10(3-4), 137–150 (1997)

    Google Scholar 

  5. Castell, T.: Computation of prime implicates and prime implicants by a variant of the Davis and Putnam procedure. In: ICTAI, pp. 428–429 (1996)

    Google Scholar 

  6. Coudert, O., Madre, J.: Fault tree analysis: 1020 prime implicants and beyond. In: Reliability and Maintainability Symposium, pp. 240–245 (January 1993)

    Google Scholar 

  7. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. (JAIR) 17, 229–264 (2002)

    MathSciNet  MATH  Google Scholar 

  8. de Kleer, J., Mackworth, A.K., Reiter, R.: Characterizing diagnoses. In: Proceedings of the 8th National Conference on Artificial Intelligence (AAAI 1990), pp. 324–330 (1990)

    Google Scholar 

  9. Déharbe, D., Fontaine, P., Berre, D.L., Mazure, B.: Computing prime implicants. In: FMCAD, pp. 46–52 (2013)

    Google Scholar 

  10. del Val, A.: Tractable databases: How to make propositional unit resolution complete through compilation. In: Proceedings of the 4th International Conference on Principles of Knowledge Representation and Reasoning (KR 1994), Bonn, Germany, May 24-27, pp. 551–561 (1994)

    Google Scholar 

  11. Dutuit, Y., Rauzy, A.: Exact and truncated computations of prime implicants of coherent and non-coherent fault trees within Aralia. Reliability Engineering and System Safety 58(2), 127–144 (1997)

    Article  Google Scholar 

  12. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Fu, Z., Malik, S.: Extracting logic circuit structure from conjunctive normal form descriptions. In: 20th International Conference on VLSI Design (VLSI Design 2007), Sixth International Conference on Embedded Systems (ICES 2007), Bangalore, India, January 6-10, pp. 37–42 (2007)

    Google Scholar 

  14. Ginsberg, M.: A circumscriptive theorem prover. In: Reinfrank, M., Ginsberg, M.L., de Kleer, J., Sandewall, E. (eds.) Non-Monotonic Reasoning 1988. LNCS, vol. 346, pp. 100–114. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  15. Grégoire, É., Ostrowski, R., Mazure, B., Saïs, L.: Automatic extraction of functional dependencies. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 122–132. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Gurvich, V., Khachiyan, L.: On generating the irredundant conjunctive and disjunctive normal forms of monotone boolean functions. Discrete Applied Mathematics 96-97(1), 363–373 (1999)

    Google Scholar 

  17. Heras, F., Larrosa, J., de Givry, S., Schiex, T.: 2006 and 2007 Max-SAT evaluations: Contributed instances. JSAT 4(2-4), 239–250 (2008)

    MATH  Google Scholar 

  18. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Manquinho, V.M., Flores, P., Marques-Silva, J., Oliveira, A.L.: Prime implicant computation using satisfiability algorithms. In: Proc. of the IEEE International Conference on Tools with Artificial Intelligence, pp. 232–239 (1997)

    Google Scholar 

  20. Manquinho, V.M., Oliveira, A.L., Marques-Silva, J.: Models and algorithms for computing minimum-size prime implicants. In: Proc. International Workshop on Boolean Problems, IWBP 1998 (1998)

    Google Scholar 

  21. Marques-Silva, J.: On computing minimum size prime implicants. In: International Workshop on Logic Synthesis (1997)

    Google Scholar 

  22. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing minimal correction subsets. In: IJCAI (2013)

    Google Scholar 

  23. McCluskey Jr., E.J.: Minimization of boolean functions. Bell System Technical Journal 35(6), 1417–1444 (1956)

    Article  MathSciNet  Google Scholar 

  24. Morgado, A., Liffiton, M., Marques-Silva, J.: MaxSAT-based MCS enumeration. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS, vol. 7857, pp. 86–101. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Ostrowski, R., Grégoire, É., Mazure, B., Saïs, L.: Recovering and exploiting structural knowledge from CNF formulas. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 185–199. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  26. Palopoli, L., Pirri, F., Pizzuti, C.: Algorithms for selective enumeration of prime implicants. Artificial Intelligence 111(1-2), 41–72 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pizzuti, C.: Computing prime implicants by integer programming. In: Proceedings of the 8th International Conference on Tools with Artificial Intelligence, ICTAI, pp. 332–336. IEEE Computer Society, Washington, DC (1996)

    Google Scholar 

  28. Quine, W.: On cores and prime implicants of truth functions. American Mathematical Monthly, 755–760 (1959)

    Google Scholar 

  29. Quine, W.V.: The problem of simplifying truth functions. The American Mathematical Monthly 59(8), 521–531 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ravi, K., Somenzi, F.: Minimal assignments for bounded model checking. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 31–45. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  31. Roy, J.A., Markov, I.L., Bertacco, V.: Restoring circuit structure from SAT instances. In: IWLS, Temecula Creek, CA, pp. 361–368 (June 2004)

    Google Scholar 

  32. Schrag, R.: Compilation for critically constrained knowledge bases. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference (AAAI 1996), pp. 510–515 (1996)

    Google Scholar 

  33. Slavkovik, M., Agotnes, T.: A judgment set similarity measure based on prime implicants. In: Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2014 (to appear, 2014)

    Google Scholar 

  34. Tison, P.: Generalized consensus theory and applications to the minimization of boolean circuits. IEEE Transactions on Computers 16(4), 446–456 (1967)

    Article  MATH  Google Scholar 

  35. Tseitin, G.: On the complexity of derivations in the propositional calculus. In: Slesenko, H. (ed.) Structures in Constructives Mathematics and Mathematical Logic, Part II, pp. 115–125 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jabbour, S., Marques-Silva, J., Sais, L., Salhi, Y. (2014). Enumerating Prime Implicants of Propositional Formulae in Conjunctive Normal Form. In: Fermé, E., Leite, J. (eds) Logics in Artificial Intelligence. JELIA 2014. Lecture Notes in Computer Science(), vol 8761. Springer, Cham. https://doi.org/10.1007/978-3-319-11558-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11558-0_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11557-3

  • Online ISBN: 978-3-319-11558-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics