Skip to main content

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 36))

Abstract

This paper reviews the combination of Artificial Neural Networks (ANN) and Evolutionary Optimisation (EO) to solve challenging problems for the academia and the industry. Both methodologies has been mixed in several ways in the last decade with more or less degree of success, but most of the contributions can be classified into the two following groups: the use of EO techniques for optimizing the learning of ANN (EOANN) and the developing of ANNs to increase the efficiency of EO processes (ANNEO). The number of contributions shows that the combination of both methodologies is nowadays a mature field but some new trends and the advances in computer science permits to affirm that there is still room for noticeable improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbass HA (2003) Speeding up back-propagation using multiobjective evolutionary algorithms. Neural Comput 5:2705–2726

    Article  Google Scholar 

  2. Abo El Fotoh HMF, Al-Sumait LS (2001) A neural approach to topological optimization of communication networks, with reliability constraints. IEEE Trans Reliab 50(4):397–408

    Article  Google Scholar 

  3. Abraham A, Nath B (2001) ALEC—an adaptive learning framework for optimizing artificial neural networks. In: Alexandrov VN et al (eds) Computational science, Springer, Germany, San Francisco, 171–180

    Google Scholar 

  4. Abraham A (2002) Optimization of evolutionary neural networks using hybrid learning algorithms. Int Symp Neural Netw 3:2797–2802. doi:10.1109/IJCNN.2002.1007591

    Google Scholar 

  5. Abraham A (2004) Meta learning evolutionary artificial neural networks. Neurocomputing 56:138

    Article  Google Scholar 

  6. Aguilar J, Colmenares A (1997) Recognition algorithm using evolutionary learning on the random neural networks. International symposium on neural networks. doi:10.1109/ICNN.1997.616168

  7. Ajith A (2004) Meta-learning evolutionary artificial neural networks. Neurocomputing 56:1–38. doi:10.1016/S0925-2312(03)00369-2

    Article  Google Scholar 

  8. Akkar HAR (2010) Optimization of artificial neural networks by using swarm intelligent

    Google Scholar 

  9. Alarcon-Rodriguez A, Ault G, Galloway S (2010) Multi-objective planning of distributed energy resources: a review of the state-of-the-art. Renew Sustain Energy Rev 14(5):1353–1366

    Article  Google Scholar 

  10. Alexandridis A (2012) An evolutionary-based approach in RBF neural network training. IEEE workshop on evolving and adaptive intelligent systems. doi:10.1109/EAIS.2012.6232817

  11. Aljahdali S, Buragga KA (2007) Evolutionary neural network prediction for software reliability modeling. The 16th international conference on software engineering and data engineering

    Google Scholar 

  12. Alonso S (2006) Propuesta de un Algoritmo Flexible de Optimización Global. Ph.D. thesis, Departamento de Informática y Sistemas. Universidad de Las Palmas de Gran Canaria

    Google Scholar 

  13. Angeline P, Saunders G, Pollack J (1994) An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans Neural Netw 5(1):54–65

    Article  Google Scholar 

  14. Arena P, Caponetto R, Fortuna L, Xibilia MG (1992) Genetic algorithms to select optimal neural network topology. In: Proceedings of the 35th midwest symposium on circuits and systems, vol 2, pp 1381–1383. doi:10.1109/MWSCAS.1992.271082

  15. Arias-Montano A, Coello CA, Mezura-Montes E (2012) Multiobjective evolutionary algorithms in aeronautical and aerospace engineering. IEEE Trans Evol Comput 16(5):662–694

    Article  Google Scholar 

  16. Bazaraa MS, Sherali HD, Shetty CM (1993) Nonlinear programming: theory and algorithms, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  17. Benaddy M, Wakrim M, Aljahdali S (2009) Evolutionary neural network prediction for cumulative failure modeling. ACS/IEEE international conference on computer systems and applications. doi:10.1109/AICCSA.2009.5069322

  18. Bevilacqua V, Mastronardi G, Menolascina F, Pannarale P, Pedone A (2006) A novel multi-objective genetic algorithm approach to artificial neural network topology optimisation: the breast cancer classification problem. IJCNN ’06. International joint conference on neural networks, pp 1958–1965

    Google Scholar 

  19. Blanco A, Delgado M, Pegalajar M (2000) A genetic algorithm to obtain the optimal recurrent neural network. Int J Approx Reason 23(1):67–83

    Article  MATH  MathSciNet  Google Scholar 

  20. Bornholdt S, Graudenz D (1993) General asymmetric neural networks and structure design by genetic algorithms: a learning rule for temporal patterns. In: International conference on systems, man and cybernetics. Systems engineering in the service of humans, conference proceedings, vol 2, pp 595–600

    Google Scholar 

  21. Bouzerdoum A, Pattison TR (1993) Neural network for quadratic optimization with bound constraints. IEEE Trans Neural Netw 4:293–303

    Article  Google Scholar 

  22. Bramanti A, Di Barba MF, Savini A (2001) Combining response surfaces and evolutionary strategies for multiobjective pareto-optimization in electromagnetics. Stud Appl Electromag Mech JSAEM 9:231–236

    Google Scholar 

  23. Branke J (1995) Evolutionary algorithms for neural network design and training. In: Proceedings of the first nordic workshop on genetic algorithms and its applications, pp 145–163

    Google Scholar 

  24. Branke J, Kohlmorgen U, Schmeck H (1995) A distributed genetic algorithm improving the generalization behavior of neural networks. In: Lavrac N et al Proceedings of the European conference on machine learning, pp 107–112

    Google Scholar 

  25. Braun H, Weisbrod J (1993) Evolving neural networks for application oriented problems. In: Fogel DB (ed) Proceedings of the second conference on evolutionary programming

    Google Scholar 

  26. Braun H (1995) On optimizing large neural networks (multilayer perceptrons) by learning and evolution. In: Proceedings of the third international congress on industrial and applied mathematics, ICIAM

    Google Scholar 

  27. Bukhtoyarov VV, Semenkina OE (2010) Comprehensive evolutionary approach for neural network ensemble automatic design. IEEE congress on evolutionary computation p 1–6. doi:10.1109/CEC.2010.5586516

  28. Bundzel M, Sincak P (2006) Combining gradient and evolutionary approaches to the artificial neural networks training according to principles of support vector machines. In: International symposium on neural networks, pp 2068–2074. doi:10.1109/IJCNN.2006.246976

  29. Cantu-Paz E, Kamath C (2002) Evolving neural networks for the classification of galaxies. Genetic and evolutionary computation conference, pp 1019–1026

    Google Scholar 

  30. Castellani M (2006) ANNE—a new algorithm for evolution of artificial neural network classifier systems. doi:10.1109/CEC.2006.1688728

  31. Chi-Keong G, Eu-Jin T, Kay CT (2008) Hybrid multiobjective evolutionary design for artificial neural networks. IEEE Trans Neural Netw 19(9):1531–1548. doi:10.1109/TNN.2008.2000444

    Article  Google Scholar 

  32. Cichocki A, Unbehauen R (1991) Switched-capacitor artificial neural networks for differential optimization. J Circuit Theory Appl 19:61187

    Google Scholar 

  33. Cichocki A, Unbehauen R (1993) Neural networks for optimization and signal processing. Wiley, New York

    MATH  Google Scholar 

  34. Coello CAC, Lamont GB, Veldhuizen DAV (2006) Evolutionary algorithms for solving multi-objective problems (genetic and evolutionary computation). Springer, New York

    Google Scholar 

  35. Coit DW, Smith AE (1996) Solving the redundancy allocation problem using a combined neural network/genetic algorithm approach. Comput Oper Res 23(6):515–526

    Article  MATH  Google Scholar 

  36. Da Silva IN (1997) A neuro-fuzzy approach to systems optimization and robust estimation. PhD thesis, School of electrical engineering and computer science, State University of Campinas, Brazil

    Google Scholar 

  37. Dempsey GL, McVey SE (1993) Circuit implementation of a peak detector neural network. IEEE Trans Circ Syst II 40:585–591

    Article  Google Scholar 

  38. Desai CK, Shaikh AA, (2006) Drill wear monitoring using artificial neural network with differential evolution learning. In: IEEE International conference on industrial technology ICIT 2006, pp 2019–2022. doi:10.1109/ICIT.2006.372500

  39. Di Muro G, Ferrari S (2008) A constrained-optimization approach to training neural networks for smooth function approximation and system identification. IJCNN 2008. (IEEE world congress on computational intelligence). IEEE international joint conference on neural networks, vol 2353–2359

    Google Scholar 

  40. Ding S, Li H, Su C, Yu J, Jin F (2013) Evolutionary artificial neural networks: a review. Artif Intell Rev 39(3):251–260

    Article  Google Scholar 

  41. Edwards D, Brown K, Taylor N (2002) An evolutionary method for the design of generic neural networks. In: Proceedings of the 2002 congress on evolutionary computation. CEC ’02. vol 2, pp 1769–1774

    Google Scholar 

  42. Efstratios FG, Sotiris MG (2007) Solving resource management optimization problems in contact centers with artificial neural networks. Int Conf Tools Artif Intell 2:405–412

    Google Scholar 

  43. Farzad F, Hemati S (2003) An algorithm based on evolutionary programming for training artificial neural networks with nonconventional neurons. In: Canadian conference on electrical and computer engineering. vol 3. doi:10.1109/CCECE.2003.1226270

  44. Fiszelew A, Britos P, Ochoa A, Merlino H, Fernndez E, Garca-Martnez R (2007) Finding optimal neural network architecture using genetic algorithms. Advances in computer science and engineering research in computing science 27:15–24

    Google Scholar 

  45. Fogel DB, Fogel LJ, Porto VW (1990) Evolutionary programming for training neural networks. In: Proceedings of the international joint conference on NNs, San Diego, CA, pp 601–605

    Google Scholar 

  46. Fogel D (1997) The advantages of evolutionary computation, bio-computing and emergent computation. In: Lundh D, Olsson B, and Narayanan A (eds) Skve, Sweden, World scientific press, Singapore, pp 1–11

    Google Scholar 

  47. Fogel D (1999) Evolutionary computation: towards a new philosophy of machineintelligence. 2nd edn, IEEE press

    Google Scholar 

  48. Forti M, Nistri P, Quincampoix M (2004) Generalized neural network for nonsmooth nonlinear programming problems. IEEE Trans Circ Syst I 51(9):1741–1754

    Article  MathSciNet  Google Scholar 

  49. Fukumi M, Akamatsu N (1996) A method to design a neural pattern recognition system by using a genetic algorithm with partial fitness and a deterministic mutation. In: Proceedings of IEEE international conference on SMC, vo1 3, pp 1989–1993

    Google Scholar 

  50. Fukumi M, Akamatsu N (1998) Rule extraction form neural networks trained using evolutionary algorithms with deterministic mutation. In: International symposium on neural networks. vol 1. doi:10.1109/IJCNN.1998.682363

  51. Fukumi M, Akamatsu N (1999) An evolutionary approach to rule generation from neural networks. IEEE Int Fuzzy Syst Conf Proc 3:1388–1393

    Article  Google Scholar 

  52. Funabiki N, Kitamichi J, Nishikawa S (1998) An evolutionary neural network approach for module orientation problems. IEEE Trans Syst Man Cybern—Part B Cybern 28(6):849–855

    Article  Google Scholar 

  53. Garcia-Pedrajas N, Hervas-Martinez C, Munoz-Perez J (2003) COVNET: a cooperative coevolutionary model for evolving artificial neural networks. IEEE Trans Neural Netw 14(3):575–596

    Article  Google Scholar 

  54. Gorunescu F, Gorunescu M, Gorunescu S (2005) An evolutionary computational approach to probabilistic neural network with application to hepatic cancer diagnosis. In: Proceedings of the 18th IEEE symposium on computer-based medical systems (CBMS05)

    Google Scholar 

  55. Grning L, Jin Y, Sendhoff B (2005) Efficient evolutionary optimization using individual-based evolution control and neural networks: a comparative study. The European symposium on artificial neural networks, pp 273–278

    Google Scholar 

  56. Guo-Cheng L, Zhi-Ling D (2008) Sub-gradient based projection neural networks for non-differentiable optimization problems. In: Proceedings of the seventh international conference on machine learning and cybernetics, Kunming

    Google Scholar 

  57. Gwo-Ching L (2012) Application a novel evolutionary computation algorithm for load forecasting of air conditioning. In: Power and energy engineering conference (APPEEC), 2012 Asia-pacific, pp 1–4. doi:10.1109/APPEEC.2012.6307573

  58. Haykin S (1999) Neural network, 2nd edn., A comprehensive foundationPretince Hall, New Jersey

    Google Scholar 

  59. Hayward S (2004) Evolutionary artificial neural network optimisation in financial engineering. In: Fourth international conference on hybrid intelligent systems. HIS ’04, pp 210–215

    Google Scholar 

  60. He Y, Sun Y (2001) Neural network-based L1-norm optimisation approach for fault diagnosis of nonlinear circuits with tolerance. In: Lee proceedings-circuits devices and systems, pp 223–228. doi:10.1049/ip-cds:20010418

  61. Hieu TH, Yonggwan W (2008) Evolutionary algorithm for training compact single hidden layer feedforward neural networks. In: International symposium on neural networks, pp 3028–3033: doi:10.1109/IJCNN.2008.4634225

  62. Hochman R, Khoshgoftaar TM, Allen EB, Hudepohl JP (1997) Evolutionary neural networks: a robust approach to software reliability problems. In: International symposium on software reliability engineering. doi:10.1109/ISSRE.1997.630844

  63. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  64. Holland JH (1980) Adaptive algorithms for discovering and using general patterns in growing knowledge-based. Intl J Policy Anal Inf Syst 4(3):245–268

    Google Scholar 

  65. Holland JH (1986) Escaping brittleness: the possibilities of general purpose learning algorithms applied in parallel rule-based systems. In: Michaiski RS, Carbonell JG, Mitchell TM (eds) Machine learning II, pp 593–623

    Google Scholar 

  66. Holland JH, Holyoak KJ, Nisbett RE, Thagard PR (1987) Classifier systems, Q-morphisms, and induction. In: Davis L (ed) Genetic algorithms and simulated annealing, pp 116–128

    Google Scholar 

  67. Honavar V, Uhr L (1993) Generative learning structures and processes for generalized connectionist networks. Inf Sci 70:75–108

    Article  Google Scholar 

  68. Hopfield JJ, Tank DW (1985) Neural Y computation on decisions optimization problem. Biol Cybem 52:141–152

    MATH  MathSciNet  Google Scholar 

  69. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366

    Article  Google Scholar 

  70. Hu X, Jun W (2006) Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network. IEEE Trans Neural Netw 17(6):1487–1499

    Article  Google Scholar 

  71. Huning H (2010) Convergence analysis of a segmentation algorithm for the evolutionary training of neural networks. In: IEEE symposium on combinations of evolutionary computation and neural networks. doi:10.1109/ECNN.2000.886222

  72. Husken M, Gayko JE, Sendhoff B (2000) Optimization for problem classes—neural networks that learn to learn 98–109

    Google Scholar 

  73. Husken M, Jin Y, Sendhoff B (2002) Structure optimization of neural networks for evolutionary design optimization. In: Proceedings of the 2002 GECCO workshop on approximation and learning in evolutionary computation, pp 13–16

    Google Scholar 

  74. Jimenez D (1998) Dynamically weighted ensemble neural networks for classification. In: Proceedings of the IJCNN-98, vol 1, Anchorage, AK, IEEE Computer Society Press, Los Alamitos, pp 753–756

    Google Scholar 

  75. Jin Y, Okabe T, Sendhoff B (2004) Neural network regularization and ensembling using multi-objective evolutionary algorithms. Congr Evol Comput CEC2004 1:1–8

    Google Scholar 

  76. Jinn-Moon Y, Jorng-Tzong H, Cheng-Yen K (1999) Incorporation family competition into gaussian and cauchy mutations to training neural networks using an evolutionary algorithm. IEEE Congress on evolutionary computation. doi:10.1109/CEC.1999.785519

  77. Katagiri H, Nishizaki I, Hayashida T, Kadoma T (2010) Multiobjective evolutionary optimization of training and topology of recurrent neural networks for time-series prediction. In: Prooceedings of the international conference on information science and applications (ICISA), p 1–8

    Google Scholar 

  78. Kazuyuki M (2001) A new algorithm to design compact two-hidden-layer artificial neural networks. Neural Netw 14(9):1265–1278. doi:10.1016/S0893-6080(01)00075-2

    Article  Google Scholar 

  79. Kennedy MP, Chua LO (1988) Neural networks for nonlinear programming. IEEE Trans Circ Syst 35(5):554562

    Article  MathSciNet  Google Scholar 

  80. Khorani V, Forouzideh N, Nasrabadi AM (2010) Artificial neural network weights optimization using ICA. Comparing performances. In: Proceedings of the IEEE workshop on hybrid intelligent models and applications, GA, ICA-GA and R-ICA-GA. doi:10.1109/HIMA.2011.5953956

  81. Kisiel-Dorohinicki M, Klapper-Rybicka M (2000) Evolution of neural networks in a multi-agent world

    Google Scholar 

  82. Kok JN, Marchiori E, Marchiori M, Rossi C (1996) Evolutionary training of CLP—constrained neural networks. In: Proceedings of the 2nd international conference on practical application of constraint technology, pp 129–142

    Google Scholar 

  83. Kolen JF, Pollack JB (1990) Back propagation is sensitive to initial conditions. Technical report TR 90-JK-BPSIC

    Google Scholar 

  84. Koza JR, Rice JP (1991) Genetic generation of both the weights and architecture for a neural network. In: Proceedings of the international joint conference on neural networks., IJCNN-91-Seattle, vol 2, pp 397–404

    Google Scholar 

  85. Lahiri A, Chakravorti S (2005) A novel approach based on simulated annealing coupled to artificial neural network for 3-D electric-field optimization. IEEE Trans Pow Deliv 20(3):2144–2152

    Article  Google Scholar 

  86. Larranaga P, Karshenas A, Bielza C, SantanaR (2013) A review on evolutionary algorithms in bayesian network learning and inference tasks. Inform Sci (2013), http://dx.doi.org/10.1016/j.ins.2012.12.051

  87. Levitin G (2007) Computational intelligence in reliability engineering: evolutionary techniques in reliability analysis and optimization. Volume 39 of studies in computational intelligence. Springer

    Google Scholar 

  88. Lin T, Ping HC, Hsu TH, Wang LC, Chen C, Chen CF, Wu CS, Liu TC, Lin CL, Lin YR, Chang FC (2011) A systematic approach to the optimization of artificial neural networks. In: IEEE 3rd International conference on communication software and networks (ICCSN), pp 76–79

    Google Scholar 

  89. Liu Q, Wang J (2008) A one-layer recurrent neural network with a discontinuous hard-limiting activation function for quadratic programming. IEEE Trans Neural Netw 19(4):558–570

    Article  Google Scholar 

  90. Liyanage SR, Xu J-X, Guan C, Ang KK, Zhang CS, Lee TH (2009) Classification of self-paced finger movements with EEG signals using neural network and evolutionary approaches. In: Proceedings of the international conference on control and automation. doi:10.1109/ICCA.2009.5410152

  91. Long C, Zeng-Guang H, Yingzi L, Min T, Wenjun CZ, Fang-Xiang W (2011) Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks. IEEE Trans Neural Netw 22(5):714–726

    Article  Google Scholar 

  92. Lu M, Shimizu K (1995) An epsi-approximation approach for global optimization with an application to neural networks. In: Proceedings of the IEEE international conference on neural networks, vol 2, pp 783–788

    Google Scholar 

  93. Maa CY, Shanblatt MA (1992) Linear and quadratic programming neural network analysis. IEEE Trans Neural Netw 3:580594

    Google Scholar 

  94. Macready WG, Wolpert DH (1997) The no free lunch theorems. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  95. Malinak P, Jaksa R (2007) Simultaneous gradient and evolutionary neural network weights adaptation methods. IEEE congress on evolutionary computation, pp 2665–2671. doi:10.1109/CEC.2007.4424807

  96. Marseguerra M, Zio E, Martorell S (2006) Basics of genetic algorithms optimization for RAMS applications. Reliab Eng Syst Saf 91(9):977–991

    Article  Google Scholar 

  97. Martorell S, Sánchez A, Carlos S, Serradell V (2004) Alternatives and challenges in optimizing industrial safety using genetic algorithms. Reliab Eng Syst Saf 86(1):25–38

    Article  Google Scholar 

  98. McCulloch WS, and Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Google Scholar 

  99. Miller GF, Todd PM, Hedge SU (1989) Designing neural networks using genetic algorithms. In: Schaffer JD (ed) Proceedings of the third international conference on genetic algorithms, pp 379–384

    Google Scholar 

  100. Misgana KM, John WN (2004) Joint application of artificial neural networks and evolutionary algorithms to watershed management. Water Resour Manage 18(5):459–482. doi:10.1023/B:WARM.0000049140.64059.d1

    Article  Google Scholar 

  101. Mitsuo-Gen RC (1997) Genetic algorithms and engineering design. Wiley, New York

    Google Scholar 

  102. Mohankumar N, Bhuvan B, Nirmala Devi M, Arumugam S (2008) A modified genetic algorithm for evolution of neural network in designing an evolutionary neuro-hardware. In: Proceedings of the international conference on genetic and evolutionary methods, pp 108–111

    Google Scholar 

  103. Montana D, Davis L (1989) Training feedforward neural networks using genetic algorithms. In: Proceedings of the 11th international joint conference on AI, Detroit, pp 762–767

    Google Scholar 

  104. More JJ, Toroaldo G (1991) On the solution of large quadratic programming problems with bound constraints. SIAM J Optim 1(1):93–113

    Article  MATH  MathSciNet  Google Scholar 

  105. Niknam A, Hoseini P, Mashoufi B, Khoei A (2013) A novel evolutionary algorithm for block-based neural network training. In: Proceedings of the first iranian conference on pattern recognition and image analysis (PRIA), pp 1–6

    Google Scholar 

  106. Nobuo F, Junji K, Seishi N (1998) An evolutionary neural network approach for module orientation problems. IEEE Trans Syst Man Cybern 28(6):849–855. doi:10.1109/3477.735394

    Google Scholar 

  107. Nunes De Castro L, Iyoda EM, Von Zuben FF, Gudwin RR (1998) Feedforward neural network initialization: an evolutionary approach. Brazilian symposium on neural networks, pp 43–48. doi:10.1109/SBRN.1998.730992

  108. Ortiz-Rodrguez JM, del Rosario BM, Gallego E, Vega-Carrillo HR(2008) Artificial neural networks modeling evolved genetically, a new approach applied in neutron spectrometry and dosimetry research areas. In: Proceedings of the electronics, robotics and automotive mechanics conference

    Google Scholar 

  109. Pal S, Vipsita S, Patra PK (2010) Evolutionary approach for approximation of artificial neural network. In: Proceedings of the IEEE international advance computing conference. doi:10.1109/IADCC.2010.5423015

  110. Pantic D, Trajkovic T, Milenkovic S, Stojadinovic N (1995) Optimization of power VDMOSFET’s process parameters by neural networks. In: Proceedings of the 25th European solid state device research conference, ESSDERC ’95. 793, 796, pp 25–27

    Google Scholar 

  111. Pattison RJA (1999) Genetic algorithms in optimal safety system design. Proc Inst Mech Eng Part E: J Process Mech Eng 213:187–197

    Article  Google Scholar 

  112. Pavlidis NG, Tasoulis DK, Plagianakos VP, Nikiforidis G, Vrahatis MN (2004) Spiking neural network training using evolutionary algorithms. In: Proceedings of the international joint conference on neural networks, pp 2190–2194

    Google Scholar 

  113. Prez-Ilzarb MJ (1998) Convergence analysis of a discrete-time recurrent neural network to perform quadratic real optimization with bound constraints. IEEE Trans Neural Netw 9:1344–1351

    Article  Google Scholar 

  114. Qiang Z, Pan-chi L (2012) Training and application of process neural network based on quantum-behaved evolutionary algorithm. In: Proceedings of the 2nd international conference on computer science and network technology (ICCSNT), pp 929–934

    Google Scholar 

  115. Qingshan L, Jun W (2011) Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions. IEEE Trans Neural Netw 22(4):601–614

    Article  Google Scholar 

  116. Rayas-Snchez JE (2004) EM-based optimization of microwave circuits using artificial neural networks: the state-of-the-art. IEEE Trans Microw Theory Tech 52(1):420–435

    Article  Google Scholar 

  117. Reddipogu A, Maxwell G, MacLeod C, Simpson M (2002) A novel artificial neural network trained using evolutionary algorithms for reinforcement learning. In: Proceeding of the international conference on neural information processing. doi:10.1109/ICONIP.2002.1199013

  118. Rodrguez-Vzquez A, Domnguez-Castro R, Rueda A, Huertas JL, Snchez-Sinencio E (1990) Nonlinear switched-capacitor neural networks for optimization problems. IEEE Trans Circ Syst II 37:384397

    Google Scholar 

  119. Romero RAF (1996) Otimizao de Sistemas atravs de Redes Neurais Multi-camadas. XI Congresso Brasileiro de Automtica, pp vol 2. So Paulo, Brasil pp 1585–1590

    Google Scholar 

  120. Rossana MS, Cruz HMP, Magalhaes RM (2011) Artificial neural networks and efficient optimization techniques for applications in engineering. Artificial neural networks—methodological advances and biomedical applications, pp 45–68

    Google Scholar 

  121. Schaffer JD, Whitley D, Eshelman LJ (1992) Combinations of genetic algorithms and neural networks: a survey of the state of the art. International workshop on combinations of genetic algorithms and neural networks (1992) COGANN-92. 1–37. doi:10.1109/COGANN.1992.273950

  122. Sebald AV, Chellapilla K (1998) On making problems evolutionarily friendly part 2: evolving the most convenient representations. The seventh international conference on evolutionary programming, EP98, San Diego, pp 281–290

    Google Scholar 

  123. Sheng-Fuu L, Jyun-Wei C (2013) Adaptive group organization cooperative evolutionary algorithm for tsk-type neural fuzzy networks design. Int J Adv Res Artif Intell (IJARAI) 2(3):1–9

    Google Scholar 

  124. Shepherd AJ (1997) Second-order methods for neural networks fast and reliable methods for multi-layer perceptrons. Springer

    Google Scholar 

  125. Shumeet B (1996) Evolution of an artificial neural network based autonomous land vehicle controller. IEEE Trans Syst Man Cybern 26(3):450–463. doi:10.1109/3477.499795

    Article  Google Scholar 

  126. Stepniewski SW, Keane AJ (1996) Topology design of feedforward neural networks by genetic algorithms. Parallel problem solving from nature, pp 771–780. doi:10.1007/3-540-61723-1040

  127. Sudharsanan SI, Sundareshan MK (1991) Exponential stability and a systematic synthesis of a neural network for quadratic minimization. Neural Netw 4:599–613

    Article  Google Scholar 

  128. Suraweera NP, Ranasinghe DN (2008) A natural algorithmic approach to the structural optimisation of neural networks. In: Proceedings of the 4th international conference on information and automation for sustainability, ICIAFS 2008, pp 150–156

    Google Scholar 

  129. Taishan Y, Duwu C, Yongqing T (2007) A new evolutionary neural network algorithm based on improved genetic algorithm and its application in power transformer fault diagnosis. doi:10.1109/BICTA.2007.4806406

  130. Tai-shan Y (2010) An improved evolutionary neural network algorithm and its application in fault diagnosis for hydropower units. In: Proceedings of the international conference on intelligent computation technology and automation. doi:10.1109/ICICTA.2010.589

  131. Talbot C, Massara R (1993) An application oriented comparison of optimization and neural network based design techniques. In: Proceedings of the 36th midwest symposium on circuits and systems. vol 1, pp 261–264

    Google Scholar 

  132. Tan ZH (2004) Hybrid evolutionary approach for designing neural networks for classification. Electr Lett 40(15). doi:10.1049/el:20045250

  133. Tank DW, Hopfield JJ (1986) Simple neural optimization network: an AD onverter. Signal decision circuit and a linear programming circuit IEEE trans circuits and systems, CAS-33, 533–541

    Google Scholar 

  134. Tao Q, Cao JD, Xue MS, Qiao H (2001) A high performance neural network for solving nonlinear programming problems with hybrid constraints. Phys Lett A 288(2):8894

    Article  MathSciNet  Google Scholar 

  135. Taylor CM (1997) Selecting neural network topologies: a hybrid approach combining genetic algorithms and neural network. B.S. Computer Science Southwest Missouri State University

    Google Scholar 

  136. Tenne Y, Goh CKE (2010) Computational intelligence in optimization, volume adaptation, learning, and optimization, vol 7. Springer

    Google Scholar 

  137. Thimm G, Fiesler E (1997) High-order and multilayer perceptron initialization. IEEE Trans Neural Netw 8(2):349–359

    Article  Google Scholar 

  138. Tian Y, Zhang J, Morris J (2001) On-line re-optimisation control of a batch polymerisation reactor based on a hybrid recurrent neural network model. In: Proceedings of the american control conference. Arlington, pp 350–355

    Google Scholar 

  139. Topchy AP, Lebedko OA (1997) Neural network training by means of cooperative evolutionary search. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 389(1–2):240–241

    Article  Google Scholar 

  140. Trajkovic T, Pantic D (1995) Inverse modeling and optimization of low-voltage power VDMOSFET’s technology by neural networks. Semiconductor, international conference. doi:10.1109/SMICND.1995.494868

  141. Ueda H, Ishikawa M (1997) Rule extraction from data with continuous valued inputs and and discrete valued outputs using neural networks. Technical report IEICE Japan, NC96-121, pp 63–70

    Google Scholar 

  142. Valdes J, Barton A (2007) Multi-objective evolutionary optimization of neural networks for virtual reality visual data mining: application to hydrochemistry. In: Proceedings of the international joint conference on neural networks, 2007. IJCNN 2007, pp 2233–2238

    Google Scholar 

  143. Velazco MI, Lyra C (2002) Optimization with neural networks trained by evolutionary algorithms. Int Symp Neural Netw 2:1516–1521. doi:10.1109/IJCNN.2002.1007742

    Google Scholar 

  144. Vonk E, Lakhmi CJ, Veelenturf LPJ, Johnson R (1995) Automatic generation of a neural network architecture using evolutionary computation. Electron Technol Dir Year 2000:144–149. doi:10.1109/ETD.1995.403479

    Google Scholar 

  145. Wai ST, Jun W (2000) Two recurrent neural networks for local joint torque optimization of kinematically redundant manipulators. IEEE Trans Syst Man Cybern Part B: Cybern 30(1):120–128

    Article  Google Scholar 

  146. Wang J (1996) Recurrent neural networks for optimization. In: Chen CH (ed) Fuzzy logic and neural network handbook. New York: McGraw-Hill, 4.14.35

    Google Scholar 

  147. Wang L (2005) A hybrid genetic algorithmneural network strategy for simulation optimization. Appl Math Comput 170(2):1329–1343

    Article  MATH  MathSciNet  Google Scholar 

  148. Wei B, Xiaoping X (2009) Subgradient-based neural networks for nonsmooth nonconvex optimization problems. IEEE Trans Neural Netw 20(6):1024–1038

    Article  Google Scholar 

  149. Werbos P (1991) An overview of neural networks for control. Control Syst IEEE 11(1):40–41

    Article  Google Scholar 

  150. Whitley D (2001) An overview of evolutionary algorithms: practical issues and common pitfalls. Inf Softw Technol 43:817–831

    Article  Google Scholar 

  151. Wu X, Xia Y, Li J, Chen WK (1996) A high performance neuralnetwork for solving linear and quadratic programming problems. IEEE Trans Neural Netw 7:643–651

    Article  Google Scholar 

  152. Xia SY, Wang J (1995) Neural network for solving linear programming problems with bounded variables. IEEE Trans Neural Netw 6:515–519

    Article  Google Scholar 

  153. Xia SY (1996) A new neural network for solving linear and quadratic programming problems. IEEE Trans Neural Netw 7:1544–1547

    Article  Google Scholar 

  154. Xia SY (1996) A new neural network for solving linear programming problems and its applications. IEEE Trans Neural Netw 7:525–529

    Article  Google Scholar 

  155. Xia SY, Wang J (1998) A general methodology for designing globally convergent optimization neural networks. IEEE Trans Neural Netw 9(6):1331–1343. doi:10.1109/72.728383

    Article  MathSciNet  Google Scholar 

  156. Xia SY, Leung H, Wang J (2001) A dual neural network for kinematic control of redundant robot manipulators. EEE Trans Syst Man Cybern B 31:147–154

    Article  Google Scholar 

  157. Xia SY, Leung H, Wang J (2002) A projection neural network and its application to constrained optimization problems. IEEE Trans Circ Syst II 49:447–458

    Article  MathSciNet  Google Scholar 

  158. Xia Y, Jun W (2003) A general projection neural network for solving optimization and related problems. In: Proceedings of the international joint conference on neural networks, vol 3, pp 2334–2339. doi:10.1109/IJCNN.2003.1223776

  159. Xia Y, Jun W (2004) A general projection neural network for solving monotone variational inequalities and related optimization problems. IEEE Trans Neural Netw 15(2):318–328. doi:10.1109/TNN.2004.824252

    Article  Google Scholar 

  160. Xia Y, Wang J (2004) A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints. IEEE Trans Circ Syst I 51(7):1385–1394

    Article  MathSciNet  Google Scholar 

  161. Xiao S, Yo D, Li Y (2006) Parallel learning evolutionary algorithm based on neural network ensemble. In: Proceedings of the international conference on information acquisition. doi:10.1109/ICIA.2006.305824

  162. Xiaolin H, Bo Z (2009) An alternative recurrent neural network for solving variational inequalities and related optimization problems. IEEE Trans Syst Man Cybern Part B: Cybern, 39 (6)

    Google Scholar 

  163. Xiyu L, Huichuan D, Mingxi T (2005) Design optimization by functional neural networks. Computer supported cooperative work in design. 824–829. doi:10.1109/CSCWD.2005.194292

  164. Xue W (2010) Chaotic artificial neural network in reactive power optimization of distribution network. China international conference on electricity distribution

    Google Scholar 

  165. Xue-Bin L, Jun W (2000) A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints. IEEE Trans Neural Netw 11 (6)

    Google Scholar 

  166. Xuejun C, Jianzhou W, Donghuai S, Jinzhao L (2008) A novel hybrid evolutionary algorithm based on PSO and AFSA for feedforward neural network training. In: Proceedings of the international conference on wireless communications, networking and mobile computing. doi:10.1109/WiCom.2518

  167. Yao X (1993) A review of evolutionary artificial neural networks. Int J Intell Syst 4:539–567

    Article  Google Scholar 

  168. Yao X (1995) Designing artificial neural networks using co-evolution. In: Proceedings of IEEE singapore international conference on intelligent control and instrumentation, pp 149–154

    Google Scholar 

  169. Yao X, Liu Y (1997) A new evolutionary system for evolving artificial neural networks. IEEE Trans Neural Netw 8(3):694–713

    Article  MathSciNet  Google Scholar 

  170. Yao X, Liu Y (1998) Making use of population information in evolutionary artificial neural networks. IEEE Trans Syst Man Cybern Part B: Cybern 28(3):417–425

    MathSciNet  Google Scholar 

  171. Yao X, Liu Y (1998) Towards designing artificial neural networks by evolution. Appl Math Comput 91(1):83–90

    Article  MATH  MathSciNet  Google Scholar 

  172. Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):14231447

    Google Scholar 

  173. Yaochu J, Tatsuya O, Bernhard S (2004) Neural network regularization and ensembling using multi-objective evolutionary algorithms. IEEE congress on evolutionary computation. doi:10.1109/CEC.2004.1330830

  174. Yasin ZM, Rahman TKA, Zakaria Z (2013) Quantum-inspired evolutionary programming-artificial neural network for prediction of undervoltage load shedding. In: Proceedings of the 8th IEEE conference on industrial electronics and applications (ICIEA), pp 583–588. doi:10.1109/ICIEA.2013.6566436

  175. Yong C, Xia L, Qi H, Chang-hua Z (2008) An artificial neural network based on CIEA. In: Proceedings of the international conference on computational intelligence and security, pp 35–40. doi:10.1109/CIS.2008.178

  176. Young-Seok H, Hungu L, MJT (2010) Acceleration of the convergence speed of evolutionary algorithms using multilayer neural networks. Eng Optim 35:91–102

    Google Scholar 

  177. Youshen X, Henry L, Jun W (2002) A projection neural network and its application to constrained optimization problems. IEEE Trans Circuits Syst-I: Fundam Theory Appl 49(4):447–458

    Article  Google Scholar 

  178. Yu J, Lam A, Li VK (2011) Evolutionary artificial neural network based on chemical reaction optimization. IEEE Congress on evolutionary computation (CEC), pp 2083–2090

    Google Scholar 

  179. Yuji S, Shigei N (1996) Evolutionary algorithms that generate recurrent neural networks for learning chaos dynamics. In: Proceedings of the international conference on evolutionary computation. 144–149. doi:10.1109/ICEC.1996.542350

  180. Young-Chin L, Yung-Chien L, Kuo-Lan S, Wen-Cheng C (2009) Mixed-integer evolutionary optimization of artificial neural networks. In: Proceedings of the international conference on innovative computing, information and control. doi:10.1109/ICICIC.2009.260

  181. Yun L, Alexander H (1996) Artificial evolution of neural networks and its application to feedback control. Artif Intell Eng 10(2):143–152. doi:10.1016/0954-1810(95)00024-0

    Article  Google Scholar 

  182. Zhang S, Zhu X, Zou LH (1992) Second-order neural networks for constrained optimization. IEEE Trans Neural Netw 3:1021–1024

    Article  Google Scholar 

  183. Zhang BT, Mhlenbein H (1993) Evolving optimal neural networks using genetic algorithms with Occam’s razor. Complex Syst 7(3):199–220

    Google Scholar 

  184. Zhou ZH, Wu J, Tang W (2002) Ensembling neural networks: many could be better than all. Artif Intell 137(1–2):239–263

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Maarouf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maarouf, M. et al. (2015). The Role of Artificial Neural Networks in Evolutionary Optimisation: A Review. In: Greiner, D., Galván, B., Périaux, J., Gauger, N., Giannakoglou, K., Winter, G. (eds) Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences. Computational Methods in Applied Sciences, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-319-11541-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11541-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11540-5

  • Online ISBN: 978-3-319-11541-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics