Skip to main content

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 36))

  • 2267 Accesses

Abstract

Designing complex and challenging machines demands the use of sophisticated methods such as multi-objective optimization. In this paper the aerodynamic design process of a jet engine compressor is used to demonstrate how process automation and optimization may support engineers to find better designs. The design process is divided into four sub-processes starting with a correlation-based 1D meanline code and ending with a 3D CFD analysis. These sub-processes of different fidelity are automated and coupled to enable a cascaded, sequential optimization. This approach allows to start with few basic assumptions and ends with a complete 3D geometry and flow field of an axial jet engine compressor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cumpsty N (2004) Compressor aerodynamics. Krieger Publishing Company, Malabar

    Google Scholar 

  2. De Haller P (1953) Das Verhalten von Tragflügeln in Axialverdichtern und im Windkanal. In: Brennstoff-Wärme-Kraft 5, VDI-Verlag, Düsseldorf, pp 333–336

    Google Scholar 

  3. Drela M (1986) Two-dimensional transonic aerodynamic design and analysis using the Euler equations. Massachusetts Institute of Technology, Boston

    Google Scholar 

  4. Dutta AK, Flassig PM, Bestle D (2008) A non-dimensional quasi-3d blade design approach with respect to aerodynamic criteria. In: Proceedings of ASME Turbo Expo 2008, GT2008-50687, Berlin

    Google Scholar 

  5. Engineous Software Inc. (2009) iSIGHT-FD Version 3.5 user’s guide. Dassault Systèmes Simulia Corporatio. Cary

    Google Scholar 

  6. Gallimore SJ (2001) Axial compressor design. Rolls-Royce plc, Derby

    Google Scholar 

  7. Hinz M (2012) Neue Parametrisierungsstrategien und Methoden der Prozessbeschleunigung für die Verdichteroptimierung. Shaker, Aachen

    Google Scholar 

  8. Keskin A (2007) Process integration and automated multi-objective optimization supporting aerodynamic compressor design. Shaker, Aachen

    Google Scholar 

  9. Koch CC (1981) Stalling pressure rise capability of axial flow compressor stages. J Eng Power 103:645–656

    Article  Google Scholar 

  10. Lieblein S, Schwenk FC, Broderick RL (1953) Diffusion factor for estimating losses and limiting blade loadings in axial-flow-compressor blade elements. NACA RM E53D01. Los Angeles

    Google Scholar 

  11. Poehlmann F (2009) Knowledge-based automatic 2d compressor blade generation using aspects of aerodynamic robustness. Diploma Thesis, Technical University Berlin

    Google Scholar 

  12. Poehlmann F, Bestle D (2012) Multi-objective compressor design optimization using multidesign transfer between codes of different fidelity. In: Proceedings of ASME Turbo Expo 2012, GT2012-68577. Copenhagen

    Google Scholar 

  13. Rühle, Bestle D (2010) Ein Verfahren zur optimalen Hochdruckverdichterauslegung auf Basis der Meridianströmungsrechnung. In: Proceedings of Deutscher Luft- und Raumfahrtkongress. Hamburg

    Google Scholar 

  14. Tiwari S, Koch P, Fadel G, Deb K (2008) AMGA: An archive-based micro genetic algorithm for multiobjective optimization. In: Proceedings of genetic and evolutionary computation conference, Atlanta, pp 729–736

    Google Scholar 

  15. Wu CH (1952) A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-, radial- and mixed-flow types. NACA TN-2604. Lewis Flight Propulsion Laboratory, Washington

    Google Scholar 

Download references

Acknowledgments

The presented work has been performed within the VIT 3 project (Virtual Turbomachinery) in collaboration with Rolls-Royce Deutschland. The project is partly funded by the Federal State of Brandenburg, Germany and the European Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiete Poehlmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poehlmann, F., Bestle, D., Flassig, P., Hinz, M. (2015). Modular Automated Aerodynamic Compressor Design Process. In: Greiner, D., Galván, B., Périaux, J., Gauger, N., Giannakoglou, K., Winter, G. (eds) Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences. Computational Methods in Applied Sciences, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-319-11541-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11541-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11540-5

  • Online ISBN: 978-3-319-11541-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics