Skip to main content

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 36))

  • 2320 Accesses

Abstract

Secondary flow features of turbine blade flows are only assessable by 3D computational fluid dynamics (CFD) which is a time-consuming task. In this paper a fast automatic optimization process for the aerodynamic improvement of three-dimensional turbine blades is described and applied to a two-stage turbine rig. Basically, standard tools are used where the 3D CFD analysis, however, is significantly accelerated by a novel CFD solver running on graphics processing units (GPU) and the entire blade is parameterized in 3D. This approach shows that three-dimensional optimization of turbine blades is feasible within days of runtime and finds an improved blade design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arabnia M, Ghaly W (2009) A strategy for multi-point shape optimization of turbine stage in three-dimensional flow. In: Proceedings of ASME turbo expo 2009, GT2009-59708, Orlando, Florida

    Google Scholar 

  2. Brandvik T, Pullan G (2011) An accelerated 3D Navier-Stokes solver for flows in turbomachines. J Turbomach 133(2):021025

    Article  Google Scholar 

  3. Briasco G, Cravero C, Macelloni P (2010) Turbine blade profile optimization using soft-computing techniques. In: Proceedings of 2nd international conference on engineering optimization, Lisbon, Portugal

    Google Scholar 

  4. Dennis B, Egorov I, Han ZX, Dulikravich G, Poloni, C (2000) Multi-objective optimization of turbomachinery cascades for minimum loss, maximum loading, and maximum gap-to-chord ratio. In: Proceedings of 8th AIAA/NASA/USAF/ISSMO symposium on multidisciplinary analysis and optimization, AIAA 2000-4876, Long Beach, California

    Google Scholar 

  5. Ghaly W (2010) Shape representation. In: North Atlantic treaty organization, research & technology organization (ed) strategies for optimization and automated design of gas turbine engines, RTO-EN-AVT-167

    Google Scholar 

  6. Giannakoglou KC (1999) Designing turbomachinery blades using evolutionary methods. In: Proceedings of 44th ASME gas turbine & aeroengine congress, 9-GT-181, Indianapolis

    Google Scholar 

  7. Gräsel J, Keskin A, Swoboda M, Przewozny H, Saxer A (2004) A full parametric model for turbomachinery blade design and optimisation. In: Proceedings of ASME DETC 2004, DETC2004-57467, Salt Lake City, Utah

    Google Scholar 

  8. Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comput 9(2):159–195

    Article  Google Scholar 

  9. Hasenjäger M, Sendhoff B, Sonoda T, Arima T (2005) Three dimensional aerodynamic optimization for an ultra-low aspect ratio transonic turbine stator blade. In: Proceedings of ASME turbo expo 2005, GT2005-68680, Reno-Tahoe, Nevada

    Google Scholar 

  10. Keskin A, Haselbach F, Meyer M, Janke E, Brandvik T, Pullan G (2011) Aerodynamic design and optimzation of turbomachinery component using a GPU flow solver. In: Proceedings of 9th European conference on turbomachinery fluid dynamics and thermodynamics, Istanbul, Turkey

    Google Scholar 

  11. Menzel S, Olhofer M, Sendhoff B (2006) Evolution design optimisation of a turbine stator blade using free form deformation techniques. In: Proceedings of conference on modelling fluid flow (CMFF’06), Budapest, Hungary

    Google Scholar 

  12. Nagel MG (2004) Numerische Optimierung dreidimensional parametrisierter Turbinenschaufeln mit umfangsunsymmetrischen Plattformen—Entwicklung, Anwendung und Validierung. PhD thesis, Universität der Bundeswehr München

    Google Scholar 

  13. Pierret S, Van den Braembussche RA (1999) Turbomachinery blade design using a navier-stokes solver and artificial neural network. J Turbomach 121(2):326–332

    Article  Google Scholar 

  14. Pierret S, Demeulenaere A, Gouverneur B, Van den Braembussche RA (2000) Designing turbomachinery blades with the function approximation concept and the navier-stokes equations. In: Proceedings of 8th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, AIAA 2000-4879, Long Beach, California

    Google Scholar 

  15. Shahpar S, Lapworth L (2003) Padram parametric design and rapid meshing system for turbomachinery optimisation. In: Proceedings of ASME turbo expo 2003, GT2003-38698, Atlanta, Georgia, pp 579–590

    Google Scholar 

Download references

Acknowledgments

This work has been carried out in collaboration with Rolls-Royce Deutschland as part of the research project VIT 3 (Virtual Turbomachinery, contract no. 80142272) funded by the State of Brandenburg, the European Community and Rolls-Royce Deutschland. Rolls-Royce Deutschland’s permission to publish this work is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Amtsfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amtsfeld, P., Bestle, D., Meyer, M. (2015). Direct 3D Aerodynamic Optimization of Turbine Blades with GPU-Accelerated CFD. In: Greiner, D., Galván, B., Périaux, J., Gauger, N., Giannakoglou, K., Winter, G. (eds) Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences. Computational Methods in Applied Sciences, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-319-11541-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11541-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11540-5

  • Online ISBN: 978-3-319-11541-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics