Flows from Bins: New Results

  • D. A. SerranoEmail author
  • A. Medina
  • G. Ruíz Chavarría
  • F. Sanchez Silva
Conference paper
Part of the Environmental Science and Engineering book series (ESE)


Gravity granular flows of cohesionless materials emerging from bottom exits and from lateral exit holes, both in vertical bins, and from face walls in tilted bins were modeled and measured. The models are based on continuum mechanics, whereas friction and gravity are the main involved forces. Measurements of the granular mass flow rates were obtained from temporal measurements of weights by using force sensors. In vertical and tilted bins the face wall thicknesses were considered in the governing correlations. Measurements are in good agreement with the theoretical predictions.


Mass Flow Rate Granular Material Granular Flow Vertical Pressure Kinetic Friction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors wish to thank the support by Facultad de Ciencias UNAM and by SIP IPN through the project 20141404.


  1. Amontons G (1699) De la Résistance Causée Dans les Machines. Mem Acad Roy Sci 206–222Google Scholar
  2. Bagrintsev II, Koshkovskii SS (1977) Investigation of the outflow of granular materials through openings in the wall of a vertical cylindrical tube. J Chem Pet Eng 6:503–505CrossRefGoogle Scholar
  3. Beverloo WA, Leniger HA, van de Velde J (1961) The flow of granular solids through orifices. Chem Eng Sci 15:260–269CrossRefGoogle Scholar
  4. Bowden FP, Tabor D (1950) The friction and lubrication of solids. Oxford University Press, OxfordGoogle Scholar
  5. Brown RL, Richards JC (1970) Principles of powder mechanics. Pergamon, New YorkGoogle Scholar
  6. Coulomb CA (1773) Memoires de Mathématiques et de Physique Présentés a l’Académie Royale des Sciences par Divers Sávants et lus dens les Assemble. L’Imprimerie Royale, Paris, pp 343–382Google Scholar
  7. Davies CE, Foye J (1991) Flow of granular material through vertical slots. Trans Inst Chem Eng 69:369–373Google Scholar
  8. Davies CE, Desai M (2008) Blockage in vertical slots: experimental measurement of minimum slot width for a variety of granular materials. Powder Technol 183:436–440CrossRefGoogle Scholar
  9. da Vinci L (1480) Circa Il codice Atlantico di Leonardo da Vinci nella Biblioteca Ambrosiana di MilanoGoogle Scholar
  10. Euler L (1748) Sur la Diminution de la Résistance du Frottement. Histoire de l’Académie Royale des Sciences et Belles-Lettres de Berlin 4:133–148Google Scholar
  11. Franklin FC, Johanson LN (1955) Flow of granular material through a circular orifice. Chem Eng Sci 4:119–129CrossRefGoogle Scholar
  12. Hagen GH (1852) Aber den Druck und die Bewegung des trocknen Sandes. Bericht uber die zur Bekanntmachung geeigneten Verhandlungen der Koniglich Preussischen Akademie der Wissenschaften zu Berlin 35:35–42Google Scholar
  13. Janssen HA (1895) Versuche über Getreidedruck in Silozellen [On the measurement of pressures in grain silos] Zeitschr. d. Vereines deutcher Ingenieure 39:1045–1049Google Scholar
  14. Landry JW, Grest GS, Silbert LE, Plimpton SJ (2003) Confined granular packings: structure, stress, and force. Phys Rev E 67:041303-1–041303-9CrossRefGoogle Scholar
  15. Liu Y (2014) The theoretical calculation of the flow rate of granular matter from an inclined orifice. Granul Matter 16:133–139CrossRefGoogle Scholar
  16. Medina A, Serrano DA, Gutiérrez GJ, Kesava Rao K, Vargas CA (2013) On the mass flow rate in silos with lateral exit holes. Rev Mex Fis 59:287–291Google Scholar
  17. Medina A, Cabrera D, López-Villa A, Pliego M (2014) Discharge rates of dry granular material from bins with lateral exit holes. Powder Technol 253:270–275CrossRefGoogle Scholar
  18. Sheldon HG, Durian DJ (2010) Granular discharge and clogging for tilted hoppers. Granul Matter 12:579–585CrossRefGoogle Scholar
  19. Torricelli E (1641) Opera Geometrica. Downloaded from
  20. Wieghardt K (1975) Experiments in granular flow. Annu Rev Fluid Mech 7:89–114CrossRefGoogle Scholar
  21. White FM (1994) Fluid mechanics, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  22. Zhuravlev VPh (2013) On the history of the dry friction law. Mech Solids 48:364–369CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • D. A. Serrano
    • 1
    Email author
  • A. Medina
    • 2
  • G. Ruíz Chavarría
    • 3
  • F. Sanchez Silva
    • 1
  1. 1.ESIME ZacatencoInstituto Politécnico NacionalMéxicoMéxico
  2. 2.ESIME AzcapotzalcoInstituto Politécnico NacionalMéxicoMéxico
  3. 3.Facultad de Ciencias UNAMCiudad UniversitariaMéxicoMéxico

Personalised recommendations