Smoothed Particle Hydrodynamics for Free-Surface Flows

  • A. BarreiroEmail author
  • J. M. Domínguez
  • A. J. C. Crespo
  • O. García-Feal
  • M. Gómez Gesteira
Conference paper
Part of the Environmental Science and Engineering book series (ESE)


A solver for free-surface flows (DualSPHysics) based on the Smoothed Particle Hydrodynamics (SPH) model is presented. The classical SPH formulation is described along with the governing equations, filters and corrections, boundary conditions and time stepping schemes. The reliability of the DualSPHysics model is discussed by comparing the numerical results with the experimental data for a benchmark test case. The applicability of the code is shown with some examples where wave propagation and wave-structure interaction are simulated.


Smooth Particle Hydrodynamic Message Passing Interface Smooth Particle Hydrodynamic Boundary Particle Water Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altomare C, Crespo AJC, Rogers BD, Domínguez JM, Gironella X, Gómez-Gesteira M (2014) Numerical modelling of Armour block sea breakwater with smoothed particle hydrodynamics. Comput Struct 130:34–45CrossRefGoogle Scholar
  2. Barreiro A, Crespo AJC, Domínguez JM, Gómez-Gesteira M (2013) Smoothed particle hydrodynamics for coastal engineering problems. Comput Struct 120(15):96–106CrossRefGoogle Scholar
  3. Batchelor GK (1974) Introduction to fluid dynamics. Cambridge University Press, CambridgeGoogle Scholar
  4. Benz W (1990) Smoothed particle hydrodynamics: a review. Numerical modelling of nonlinear stellar pulsations: problems and prospects. Kluwer Academic Publishers, BostonGoogle Scholar
  5. Crespo AJC, Gómez-Gesteira M (2007) Boundary conditions generated by dynamic particles in SPH methods. CMC: Comput Mater Contin 5(3):173–184Google Scholar
  6. Crespo AJC, Gómez-Gesteira M, Dalrymple RA (2008) Modeling dambreak behavior over a wet bed by a SPH technique. J WaterW Port, Coast, Ocean Eng 134:313–320CrossRefGoogle Scholar
  7. Crespo AJC, Dominguez JM, Barreiro A, Gómez-Gesteira M, Rogers BD (2011) GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle hydrodynamics methods. PLoS ONE 6(6):e20685CrossRefGoogle Scholar
  8. Dalrymple RA, Rogers BD (2006) Numerical modeling of water waves with the SPH method. Coast Eng 53:141–147CrossRefGoogle Scholar
  9. Domínguez JM, Crespo AJC, Gómez-Gesteira M, Marongiu JC (2011) Neighbour lists in smoothed particle hydrodynamics. Int J Numer Methods Fluids 67(12):2026–2042CrossRefGoogle Scholar
  10. Domínguez JM, Crespo AJC, Gómez-Gesteira M (2013a) Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method. Comput Phys Commun 184(3):617–627CrossRefGoogle Scholar
  11. Domínguez JM, Crespo AJC, Rogers BD, Gómez-Gesteira M (2013b) New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters. Comput Phys Commun 184:1848–1860CrossRefGoogle Scholar
  12. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non- spherical stars. Mon Not R Astron Soc 181:375–389CrossRefGoogle Scholar
  13. Gómez-Gesteira M, Dalrymple RA (2004) Using a 3D SPH method for wave impact on a tall structure. J Waterw Port, Coast, Ocean Eng 130(2):63–69CrossRefGoogle Scholar
  14. Gómez-Gesteira M, Cerqueiro D, Crespo AJC, Dalrymple RA (2005) Green water overtopping analyzed with a SPH model. Ocean Eng 32:223–238CrossRefGoogle Scholar
  15. Gómez-Gesteira M, Rogers BD, Dalrymple RA, Crespo AJC (2010) State-of-the-art of classical SPH for free surface flows. J Hydraul Res 48:6–27. doi: 10.3826/jhr.2010.0012 CrossRefGoogle Scholar
  16. Gómez-Gesteira M, Rogers BD, Crespo AJC, Dalrymple RA, Narayanaswamy M, Domínguez JM (2012a) SPHysics-development of a free-surface fluid solver-part 1: theory and formulations. Comput Geosci 48:289–299CrossRefGoogle Scholar
  17. Gómez-Gesteira M, Crespo AJC, Rogers BD, Dalrymple RA, Domínguez JM, Barreiro A (2012b) SPHysics-development of a free-surface fluid solver-part 2: efficiency and test cases. Comput Geosci 48:300–307CrossRefGoogle Scholar
  18. Kleefsman KMT, Fekken G, Veldman AEP, Iwanowski B, Buchner B (2005) A volume-of-fluid based simulation method for wave impact problems. J Comput Phys 206:363–393CrossRefGoogle Scholar
  19. Leimkuhler BJ, Reich S, Skeel RD (1996) Integration methods for molecular dynamic IMA volume in mathematics and its application. Springer, New YorkGoogle Scholar
  20. Liu GR (2003) Mesh free methods: moving beyond the infinite element method. CRC Press, Boca RatonGoogle Scholar
  21. Monaghan JJ (1982) Why particle methods work. SIAM J Sci Stat Comput 3:422–433CrossRefGoogle Scholar
  22. Monaghan JJ (1989) On the problem of penetration in particle methods. J Comput Phys 82:1–15CrossRefGoogle Scholar
  23. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Appl 30:543–574CrossRefGoogle Scholar
  24. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406CrossRefGoogle Scholar
  25. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759CrossRefGoogle Scholar
  26. Monaghan JJ, Kos A (1999a) Solitary waves on a Cretan beach. J Waterw Port, Coast, Ocean Eng 125:145–154Google Scholar
  27. Monaghan JJ, Cas RF, Kos A, Hallworth M (1999b) Gravity currents descending a ramp in a stratified tank. J Fluid Mech 379:39–70Google Scholar
  28. Narayanaswamy MS, Crespo AJC, Gómez-Gesteira M, Dalrymple RA (2010) SPHysics-Funwave hybrid model for coastal wave propagation. J Hydraul Res 48:85–93. doi: 10.3826/jhr.2010.0007 CrossRefGoogle Scholar
  29. Rogers BD, Dalrymple RA, Stansby PK (2010) Simulation of caisson break water movement using SPH. J Hydraul Res 48:135–141. doi: 10.3826/jhr.2010.0013 CrossRefGoogle Scholar
  30. Verlet L (1967) Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103CrossRefGoogle Scholar
  31. Wendland H (1995) Piecewiese polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–396CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A. Barreiro
    • 1
    Email author
  • J. M. Domínguez
    • 1
  • A. J. C. Crespo
    • 1
  • O. García-Feal
    • 1
  • M. Gómez Gesteira
    • 1
  1. 1.EPhysLab Environmental Physics LaboratoryUniversidad de VigoOurenseSpain

Personalised recommendations