Skip to main content

Smoothed Particle Hydrodynamics for Free-Surface Flows

  • Conference paper
  • First Online:
Selected Topics of Computational and Experimental Fluid Mechanics

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 1674 Accesses

Abstract

A solver for free-surface flows (DualSPHysics) based on the Smoothed Particle Hydrodynamics (SPH) model is presented. The classical SPH formulation is described along with the governing equations, filters and corrections, boundary conditions and time stepping schemes. The reliability of the DualSPHysics model is discussed by comparing the numerical results with the experimental data for a benchmark test case. The applicability of the code is shown with some examples where wave propagation and wave-structure interaction are simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altomare C, Crespo AJC, Rogers BD, Domínguez JM, Gironella X, Gómez-Gesteira M (2014) Numerical modelling of Armour block sea breakwater with smoothed particle hydrodynamics. Comput Struct 130:34–45

    Article  Google Scholar 

  • Barreiro A, Crespo AJC, Domínguez JM, Gómez-Gesteira M (2013) Smoothed particle hydrodynamics for coastal engineering problems. Comput Struct 120(15):96–106

    Article  Google Scholar 

  • Batchelor GK (1974) Introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Benz W (1990) Smoothed particle hydrodynamics: a review. Numerical modelling of nonlinear stellar pulsations: problems and prospects. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Crespo AJC, Gómez-Gesteira M (2007) Boundary conditions generated by dynamic particles in SPH methods. CMC: Comput Mater Contin 5(3):173–184

    Google Scholar 

  • Crespo AJC, Gómez-Gesteira M, Dalrymple RA (2008) Modeling dambreak behavior over a wet bed by a SPH technique. J WaterW Port, Coast, Ocean Eng 134:313–320

    Article  Google Scholar 

  • Crespo AJC, Dominguez JM, Barreiro A, Gómez-Gesteira M, Rogers BD (2011) GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle hydrodynamics methods. PLoS ONE 6(6):e20685

    Article  Google Scholar 

  • Dalrymple RA, Rogers BD (2006) Numerical modeling of water waves with the SPH method. Coast Eng 53:141–147

    Article  Google Scholar 

  • Domínguez JM, Crespo AJC, Gómez-Gesteira M, Marongiu JC (2011) Neighbour lists in smoothed particle hydrodynamics. Int J Numer Methods Fluids 67(12):2026–2042

    Article  Google Scholar 

  • Domínguez JM, Crespo AJC, Gómez-Gesteira M (2013a) Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method. Comput Phys Commun 184(3):617–627

    Article  Google Scholar 

  • Domínguez JM, Crespo AJC, Rogers BD, Gómez-Gesteira M (2013b) New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters. Comput Phys Commun 184:1848–1860

    Article  Google Scholar 

  • Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non- spherical stars. Mon Not R Astron Soc 181:375–389

    Article  Google Scholar 

  • Gómez-Gesteira M, Dalrymple RA (2004) Using a 3D SPH method for wave impact on a tall structure. J Waterw Port, Coast, Ocean Eng 130(2):63–69

    Article  Google Scholar 

  • Gómez-Gesteira M, Cerqueiro D, Crespo AJC, Dalrymple RA (2005) Green water overtopping analyzed with a SPH model. Ocean Eng 32:223–238

    Article  Google Scholar 

  • Gómez-Gesteira M, Rogers BD, Dalrymple RA, Crespo AJC (2010) State-of-the-art of classical SPH for free surface flows. J Hydraul Res 48:6–27. doi:10.3826/jhr.2010.0012

    Article  Google Scholar 

  • Gómez-Gesteira M, Rogers BD, Crespo AJC, Dalrymple RA, Narayanaswamy M, Domínguez JM (2012a) SPHysics-development of a free-surface fluid solver-part 1: theory and formulations. Comput Geosci 48:289–299

    Article  Google Scholar 

  • Gómez-Gesteira M, Crespo AJC, Rogers BD, Dalrymple RA, Domínguez JM, Barreiro A (2012b) SPHysics-development of a free-surface fluid solver-part 2: efficiency and test cases. Comput Geosci 48:300–307

    Article  Google Scholar 

  • Kleefsman KMT, Fekken G, Veldman AEP, Iwanowski B, Buchner B (2005) A volume-of-fluid based simulation method for wave impact problems. J Comput Phys 206:363–393

    Article  Google Scholar 

  • Leimkuhler BJ, Reich S, Skeel RD (1996) Integration methods for molecular dynamic IMA volume in mathematics and its application. Springer, New York

    Google Scholar 

  • Liu GR (2003) Mesh free methods: moving beyond the infinite element method. CRC Press, Boca Raton

    Google Scholar 

  • Monaghan JJ (1982) Why particle methods work. SIAM J Sci Stat Comput 3:422–433

    Article  Google Scholar 

  • Monaghan JJ (1989) On the problem of penetration in particle methods. J Comput Phys 82:1–15

    Article  Google Scholar 

  • Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Appl 30:543–574

    Article  Google Scholar 

  • Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406

    Article  Google Scholar 

  • Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759

    Article  Google Scholar 

  • Monaghan JJ, Kos A (1999a) Solitary waves on a Cretan beach. J Waterw Port, Coast, Ocean Eng 125:145–154

    Google Scholar 

  • Monaghan JJ, Cas RF, Kos A, Hallworth M (1999b) Gravity currents descending a ramp in a stratified tank. J Fluid Mech 379:39–70

    Google Scholar 

  • Narayanaswamy MS, Crespo AJC, Gómez-Gesteira M, Dalrymple RA (2010) SPHysics-Funwave hybrid model for coastal wave propagation. J Hydraul Res 48:85–93. doi:10.3826/jhr.2010.0007

    Article  Google Scholar 

  • Rogers BD, Dalrymple RA, Stansby PK (2010) Simulation of caisson break water movement using SPH. J Hydraul Res 48:135–141. doi:10.3826/jhr.2010.0013

    Article  Google Scholar 

  • Verlet L (1967) Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103

    Article  Google Scholar 

  • Wendland H (1995) Piecewiese polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–396

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Barreiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Barreiro, A., Domínguez, J.M., Crespo, A.J.C., García-Feal, O., Gesteira, M.G. (2015). Smoothed Particle Hydrodynamics for Free-Surface Flows. In: Klapp, J., Ruíz Chavarría, G., Medina Ovando, A., López Villa, A., Sigalotti, L. (eds) Selected Topics of Computational and Experimental Fluid Mechanics. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-11487-3_6

Download citation

Publish with us

Policies and ethics