Parametrisation in Dissipative Particle Dynamics: Applications in Complex Fluids

  • Estela Mayoral-VillaEmail author
  • Eduardo Nahmad-Achar
Conference paper
Part of the Environmental Science and Engineering book series (ESE)


A brief overview of mesoscopic modelling for neutral and electrostatically charged complex fluids via Dissipative Particle Dynamics (DPD) is presented, with emphasis on the appropriate parametrisation and how to calculate the relevant parameters for given realistic systems. DPD is a technique that consists of carrying out a coarse-graining of the microscopic degrees of freedom and it is highly dependent on parameters describing the different kinds of force fields and the parametrisation. For this reason, we present here a revision of DPD parametrisation together with applications and comparisons with experimental results. The dependence on concentration and temperature of the interaction parameters for electrostatic and non-electrostatic systems is also considered, as well as some applications in complex fluids.


Interfacial Tension Solubility Parameter Dissipative Particle Dynamics Disjoin Pressure Conservative Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by DGAPA-UNAM (under project IN101614). Valuable support in computing resources was obtained from DGTIC-UNAM.


  1. Alarcón F, Perez E, Gama-Goicochea A (2013) Soft Matter 9:3777Google Scholar
  2. Albert DZ (1982) Phys Rev B 25:4810Google Scholar
  3. Barton AFM (1975) Chem Rev 75:731Google Scholar
  4. Blanks RF, Prausnitz JM (1964) IEC fundamentals 3:1Google Scholar
  5. Cardy J (1997) Scaling and renormalization in statistical physics. Cambridge University Press, UKGoogle Scholar
  6. de Gennes PG (1976) J Phys 37:1445Google Scholar
  7. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, IthacaGoogle Scholar
  8. de Gennes PG (1981) Macromolecules 14:1637Google Scholar
  9. de Gennes PG (1982) Macromolecules 15:492Google Scholar
  10. de Gennes PG, Pincus P, Velasco RM, Brochard F (1976) J Phys 37:1461Google Scholar
  11. Derjaguin BV, Churaev NV (1986) In: Croxton CA (ed) Fluid interfacial phenomena. Wiley, New YorkGoogle Scholar
  12. Dobrynin AV, Colby RH, Rubinstein M (1995) Macromoleules 28:1859Google Scholar
  13. Español P, Warren P (1995) Europhys Lett 30:191Google Scholar
  14. Esumi K et al (2001) Coll Surf A 194:7Google Scholar
  15. Fisk S, Widom B (1969) J Chem Phys. 50:3219Google Scholar
  16. Gama Goicochea A, Mayoral E, Klapp J, Pstorino C (2014) Soft Matter 10:166Google Scholar
  17. Gama Goicochea A, Nahmad-Achar E, Pérez E (2009) Langmuir 25:3529Google Scholar
  18. Gonzalez-Melchor M, Mayoral E, Velazquez ME, Alejandre J (2006) J Chem Phys 125:224107Google Scholar
  19. Griffiths PC, Paul A, Khayat Z, Wan K-W, King SM, Grillo I, Schweins R, Ferruti P, Franchini J, Duncan R (2004) Biomacromolecules 5:1422–1427Google Scholar
  20. Groot RD (2003) J Chem Phys 118:11265Google Scholar
  21. Groot RD, Warren PB (1997) J Chem Phys 107:4423Google Scholar
  22. Guggenheim EA (1945) J Chem Phys 13:253Google Scholar
  23. Hildebrand JH, Scott RL (1950) Solubility of nonelectrolytes. Reinhold, New YorkGoogle Scholar
  24. Hildebrand JH, Wood SE (1933) J Chem Phys 1:817Google Scholar
  25. Hoogerbrugge PJ, Koelman JMVA (1992) Europhys Lett 19:155Google Scholar
  26. Huldén M, Sjöblom E (1990) Progr Colloid Polym Sci 82:28Google Scholar
  27. Israelachvili JN (1992) Intermolecular and surfaces forces. Academic Press, New YorkGoogle Scholar
  28. Kadanoff LP (2000) Statistical physics: statics, dynamics and renormalization. Word Scientific Publishing, SingaporeGoogle Scholar
  29. Le Guillou C, Zinn-Justin J (1980) Phys Rev B 21:39767Google Scholar
  30. Maiti A, McGrother S (2003) J Chem Phys 120:1594Google Scholar
  31. Mayoral E, de la Cruz E, Longoria LC, Nahmad-Achar E (2011) Rev Int Contam Ambie 27:253Google Scholar
  32. Mayoral E, Gama Goicochea A (2014) Soft Matter 10:9054Google Scholar
  33. Mayoral E, Gama-Goicochea A (2013) J Chem Phys 138:094703Google Scholar
  34. Mayoral E, Nahmad-Achar E (2012) J Chem Phys 137:194701Google Scholar
  35. Mayoral E, Nahmad-Achar E (2013) In: Klapp J et al (eds) Study of structural properties in complex fluids by addition of surfactants using DPD simulation, in fluid dynamics in physics, engineering and environmental applications. Springer, ISBN 978-3-642-27722-1Google Scholar
  36. Mayoral E, Nahmad-Achar E (2014) Scaling properties in the adsorption of ionic polymeric surfactants on generic nanoparticles of metallic oxides by mesoscopic simulation. In: Sigalotti L, Klapp J, Sira E (eds) Computational and experimental fluid mechanics with applications to physics, engineering and the environment. Springer, Switzerland. doi: 10.1007/978-3-319-00191-3
  37. Mayoral E, Nahmad-Achar E (to be published)Google Scholar
  38. McNamee CE, Tsujii Y, Ohshima H, Matsumoto M (2004) Langmuir 20:1953Google Scholar
  39. Méndez JM, Johner A, Joanny JF (1998) Macromolecules 31:8297Google Scholar
  40. Moldover MR (1985) Phys Rev A 31(2):1022Google Scholar
  41. Odijk T (1979) Macromolecules 12:688Google Scholar
  42. Scatchard G (1931) Chem Rev 8:321Google Scholar
  43. Widom B (1965) J Chem Phys 43(11):3892Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Instituto Nacional de Investigaciones NuclearesCarretera México-Toluca S/N, La MarquesaEstado de MexicoMexico
  2. 2.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations