Advertisement

Numerical Simulation of a Spanwise Vortex in a Periodic Forced Flow

  • E. J. López-Sánchez
  • G. Ruíz ChavarríaEmail author
Conference paper
Part of the Environmental Science and Engineering book series (ESE)

Abstract

In geophysical flows, vortices are present at very different scales. Examples of them are the meddies, formed at the outlet of the Mediterranean Sea or the vorticity dipoles, occurring when water flushes from a channel into the open sea. In this paper we investigate the formation and the evolution of a spanwise vortex in the latter system, when a periodic forcing is imposed. To this end the Navier-Stokes and continuity equations are solved with a finite volume code (OpenFOAM 2008). The numerical solution has been obtained for a Reynolds number \(Re = 1{,}000\) and a Strouhal number \(S = 0.02\). For comparison, we carried a simulation in a flow produced by a single pulse. We have found that the spanwise vortex appears in front of the dipole. It detaches from the bottom and moves away. When flow is produced by a pulse, this vortex has a horseshoe shape, while for a periodic forcing flow, the shape of the spanwise vortex evolves in time.

Keywords

Strouhal Number Time Convergence Open Domain Pulsate Flow Point Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Authors acknowledge DGAPA-UNAM by support under project IN116312, “Vorticidad y ondas no lineales en fluidos”.

References

  1. Albagnac J (2010) Dynamique tridimensionnelle de dipoles tourbillonnaires en eau peu profonde. Thèse de doctorat, Université Paul Sabatier Toulouse III Institut de Mcanique des Fluides de Toulouse. FranceGoogle Scholar
  2. Chaplygin SA (2007) One case of vortex motion in fluid. Reg Chaotic Dyn 2(12):219–232CrossRefGoogle Scholar
  3. Duran-Matute M, Albagnac J, Kamp LPJ, van Heijst GJF (2010) Dynamics and structure of decaying shallow dipolar vortices. Phys Fluids 22:116606CrossRefGoogle Scholar
  4. Lacaze L, Brancher P, Eiff O, Labat L (2010) Experimental characterization of the 3D dynamics of a laminar shallow vortex dipole. Exp Fluids 48:225–231Google Scholar
  5. López-Sánchez, E. J. (2013) Vorticidad y transporte de partículas en un flujo periódico a la salida de un canal. Doctoral thesis, Universidad Nacional Autónoma de México, MéxicoGoogle Scholar
  6. López-Sánchez EJ, Ruiz-Chavarría G (2013) Vorticity and particle transport in periodic flow leaving a channel. Eur J Mech B/Fluids 42:92103CrossRefGoogle Scholar
  7. Nicolau del Roure F, Sokolofsky SA, Chang K (2009) Structure and evolution of tidal starting jet vortices at idealized barotropic inlets. J Geophys Res 114:C05024CrossRefGoogle Scholar
  8. OpenFOAM (2008). The Open Source CFD Toolbox. Programmers Guide. Version 1:5Google Scholar
  9. Sous D, Bonneton N, Sommeria J (2004) Turbulent vortex dipoles in a shallow water layer. Phys Fluids 16:2886–2898CrossRefGoogle Scholar
  10. The open source CFD toolbox (2004). http://www.opencfd.co.uk/openfoam Consulted: April 2, 2013
  11. Wells MG, Van Heijst G-JF (2003) A model of tidal flushing of an estuary by dipole formation. Dyn Atmos Oceans Elsevier 37:223–244CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Facultad de CienciasUniversidad Nacional Autónoma de MexicoMexicoMexico

Personalised recommendations