Advertisement

Numerical Simulation of the Flow Past a Pair of Magnetic Obstacles

  • J. Román
  • A. Beltrán
  • S. CuevasEmail author
Conference paper
Part of the Environmental Science and Engineering book series (ESE)

Abstract

We present a quasi-two-dimensional numerical simulation of the flow of a thin layer of electrolyte past a pair of localized Lorentz forces, named magnetic obstacles, placed side by side. Opposing Lorentz forces are produced by the interaction of the magnetic field created by a pair of small permanent magnets and a D.C. current applied tranversally to the main flow. By varying the separation between the magnets and the intensity of the applied current, different flow regimes are analyzed. The attention is focused on the interference of the wakes created by the magnetic obstacles.

Keywords

Lorentz Force Strouhal Number Solid Cylinder Applied Current Density Bistable Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been supported by CONACyT, Mexico, under project 131399. J. Román also acknowledges a grant from CONACyT. The authors are grateful to Saul Piedra for providing the subroutine for the particle tracking that we present in this article.

References

  1. Afanasyev YD, Korabel VN (2006) J Fluid Mech 553:119–141CrossRefGoogle Scholar
  2. Beltrán A (2010) Flow dynamics in magnetic obstacles. PhD thesis, National Autonomous University of MexicoGoogle Scholar
  3. Cuevas S, Smolentsev S, Abdou MA (2006) J Fluid Mech 553:227–252CrossRefGoogle Scholar
  4. Figueroa A, Demiaux F, Cuevas S, Ramos E (2009) J Fluid Mech 641:245–261CrossRefGoogle Scholar
  5. Honji H (1991) J Phys Soc Jpn 60(4):1161–1164CrossRefGoogle Scholar
  6. Honji H, Haraguchi Y (1995) J Phys Soc Jpn 64(7):2274–2277CrossRefGoogle Scholar
  7. Kenjeres S (2012) Phys Fluids 24:115111CrossRefGoogle Scholar
  8. Kenjeres S, ten Cate S, Voesenek CJ (2011) Int J Heat Fluid Flow 32:510–528CrossRefGoogle Scholar
  9. Le Gal P, Chauve MP, Lima R, Rezende J (1990) Phys Rev A 41:4566–4569Google Scholar
  10. Le Gal P, Peschard I, Chauve MP, Takedaa Y (1996) Phys Fluids 8(8):2097–2106CrossRefGoogle Scholar
  11. McCaig M (1977) Permanent magnets in theory and practice. Wiley, New YorkGoogle Scholar
  12. Peschard I, Le Gal P (1996) Phys Rev Lett 77:3122–3125CrossRefGoogle Scholar
  13. Román J (2013) Numerical study of the heat transfer in flows past arrays of magnetic obstacles. MSc thesis, National Autonomous University of Mexico (In Spanish)Google Scholar
  14. Sumner D, Wong SST, Price SJ, Paidoussis MP (1999) J Fluids Struct 13:309–338CrossRefGoogle Scholar
  15. Tympel S, Boeck T, Schumacher J (2013) J Fluid Mech 735:553–586CrossRefGoogle Scholar
  16. Votyakov EV, Kolesnikov Yu, Andreev O, Zienicke E, Thess A (2007) Phys Rev 98:144504Google Scholar
  17. Votyakov EV, Zienicke E, Kolesnikov Yu (2008) J Fluid Mech 610:131–156CrossRefGoogle Scholar
  18. Zdravkovich MM (1985) J Sound Vib 101:511–521CrossRefGoogle Scholar
  19. Zdravkovich MM (1997) Flow around circular cylinders, vol I. Oxford University Press, New YorkGoogle Scholar
  20. Zhang X, Huang H (2013) ASME J Heat Transf 135:021702CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoMorelosMéxico
  2. 2.Instituto de Investigaciones en MaterialesUnidad Morelia, Universidad Nacional Autónoma de MéxicoMoreliaMexico

Personalised recommendations