Advertisement

Confinement and Interaction Effects on the Diffusion of Passive Particles

  • A. Gonzalez
  • E. Diaz Herrera
  • M. Sandoval
  • M. A. Chavez Rojo
  • J. A. Moreno RazoEmail author
Conference paper
Part of the Environmental Science and Engineering book series (ESE)

Abstract

We use Molecular Dynamics simulations to study the effect of interactions and confinement (walls) on particle diffusion. We extend previous studies by analyzing the mean squared displacement (MSD) of an interacting fluid constrained to a circular, square and triangular cavity of nanometric size. The interactions among particles and walls are modeled by means of three classic potentials namely, Lenard-Jones (CLJ), soft Lenard-Jones (SLJ) and hard Lenard-Jones (HLJ) potentials. For hard spheres, for all cavities, and for very diluted densities, diffusion is shown to be less favorable in comparison with particles interacting with a CLJ. It is also observed that HLJ particles do not show difference in their MSD with SLJ particles at these densities. Confinement effects also appear at these densities and it is shown that diffusion decreases in the following cavity shape order: triangular, square and circular. For moderated densities, the combination of confinement and interactions shows a non-trivial effect. It is observed that particles inside a triangular cavity interacting by means of HLJ, reduce their MSD in comparison with CLJ or SLJ particles, since for this cavity shape, hard collisions reduce the particles’ speed. For higher densities, another non-trivial effect appears. Once again, the combination of interactions and confinement gives rise to order in the system that clearly reduces the system MSD. It is also shown that order appears for SLJ particles but it is absent for CLJ or HLJ particles.

Keywords

Mean Square Displacement Particle Diffusion Cavity Shape Interact Fluid Hard Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank CONACYT-Mexico (Project No. 178963) for Financial support. Computational resources for this work were provided by the LSVP at UAM-I and also in part by Xiuhcoatl-CINVESTAV.

References

  1. Alar Ainla GJ, Jesorka A (2012) Hydrodynamically confined flow devices, hydrodynamics—theory and model. InTech, ShangaiGoogle Scholar
  2. Alba-Simionesco C, Coasne B, Dosseh G, Dudziak G, Gubbins KE, Radhakrishnan R, Sliwinska-Bartkowiak M (2006) J Phys Condens Matter 18:R15Google Scholar
  3. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular biology of the cell. Garland Science, New YorkGoogle Scholar
  4. Batchelor GK (1977) J Fluid Mech 83:97CrossRefGoogle Scholar
  5. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684CrossRefGoogle Scholar
  6. Berezhkovskii AM, Hummer G (2002) Phys Rev Lett 89:064503CrossRefGoogle Scholar
  7. Chandrasekhar S (1943) Rev Mod Phys 15:813CrossRefGoogle Scholar
  8. Daniel MC, Astruc D (2004) Chem Rev 104:293CrossRefGoogle Scholar
  9. Das CK, Singh JK (2013) Theor Chem Acc 132:1351CrossRefGoogle Scholar
  10. Einstein A (1905) Ann Phys 17:549CrossRefGoogle Scholar
  11. Evans R (1990) J Phys Condens Matter 2:8989CrossRefGoogle Scholar
  12. Ferrari L (1990) Phys A 163:596CrossRefGoogle Scholar
  13. Foister RT, van de Ven TGM (1980) J Fluid Mech 96:105CrossRefGoogle Scholar
  14. Ghosh PK, Misko VR, Marchesoni F, Nori F (2013) Phys Rev Lett 110:268301CrossRefGoogle Scholar
  15. Grima R, Yaliraki SN (2007) J Chem Phys 127:084511CrossRefGoogle Scholar
  16. ten Hagen B, van Teeffelen S, Lowen H (2011) J Phys Condens Matter 23:194119CrossRefGoogle Scholar
  17. Han Y, Alsayed A, Nobili M, Zhang J, Lubensky TC, Yodh AG (2006) Science 314:626CrossRefGoogle Scholar
  18. Hartkamp R, Ghosh A, Weinhart T, Luding S (2012) J Chem Phys 137:044711CrossRefGoogle Scholar
  19. Healy K, Schiedt B, Morrison AP (2007) Nanomedicine 2:875CrossRefGoogle Scholar
  20. Heffelfinger G, van Swol F, Gubbins K (1987) Mol Phys 61:1381CrossRefGoogle Scholar
  21. Hille B (2001) Ion channels of excitable membranes. Sinauer, SunderlandGoogle Scholar
  22. Hinch EJ, Leal LG (1972) J Fluid Mech 52:683Google Scholar
  23. Howse JR, Jones RAL, Ryan AJ, Gough T, Vafabakhsh R, Golestanian R (2007) Phys Rev Lett 99:048102CrossRefGoogle Scholar
  24. Jimenez-Aquino JI, Velasco RM, Uribe FJ (2008) Phys Rev E 77:051105CrossRefGoogle Scholar
  25. Kalinay P, Percus JK (2005) J Chem Phys 122:204701CrossRefGoogle Scholar
  26. Kalinay P, Percus JK (2008) Phys Rev E 78:021103CrossRefGoogle Scholar
  27. Karbowniczek P, Chrzanowska A (2013) Acta Phys Pol B 44:1209CrossRefGoogle Scholar
  28. Klein J, Kumacheva E (1998) J Chem Phys 108:6996CrossRefGoogle Scholar
  29. Lobaskin V, Lobaskin D, Kulic I (2008) Eur Phys J Spec Top 157:149CrossRefGoogle Scholar
  30. Magda J, Tirrell M, Davis H (1985) J Chem Phys 83:1888CrossRefGoogle Scholar
  31. Reguera D, Rubi JM (2001) Phys Rev E 64:061106CrossRefGoogle Scholar
  32. Reguera D, Schmid G, Burada PS, Rubi JM, Reimann P, Hanggi P (2006) Phys Rev Lett 96:130603CrossRefGoogle Scholar
  33. Sandoval M, Dagdug L (2014) Effective diffusion of confined active Brownian swimmers. Phys Rev E 90(6):062711Google Scholar
  34. Sandoval M, Marath NK, Subramanian G, Lauga E (2014) J Fluid Mech 742:50CrossRefGoogle Scholar
  35. Siwy Z, Kosinska ID, Fulinski A, Martin CR (2005) Phys Rev Lett 94:048102CrossRefGoogle Scholar
  36. Zagorodny A, Holod I (2000) Condens Matter Phys 3:295CrossRefGoogle Scholar
  37. Zwanzig R (1992) J Chem Phys 96:3926CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A. Gonzalez
    • 1
  • E. Diaz Herrera
    • 1
  • M. Sandoval
    • 1
  • M. A. Chavez Rojo
    • 2
  • J. A. Moreno Razo
    • 1
    Email author
  1. 1.Department of PhysicsUniversidad Autonoma Metropolitana-IztapalapaMexicoMexico
  2. 2.Facultad de Ciencias QuimicasUniversidad Autonoma de Chihuahua, Nuevo Campus Universitario, Circuito UniversitarioChihuahuaMexico

Personalised recommendations