Advertisement

3D Numerical Simulation of Rayleigh-Bénard Convection in a Cylindrical Container

  • N. Y. Sánchez Torres
  • E. J. López SánchezEmail author
  • S. Hernández Zapata
  • G. Ruiz Chavarría
Conference paper
Part of the Environmental Science and Engineering book series (ESE)

Abstract

The heat transport by natural convection is a central mechanism in the explanation of many natural phenomena. Despite many existing work on the Rayleigh-Bénard convection, often the phenomenon is studied by making a two-dimensional approach or using a rectangular container. In this work, we solve numerically the Navier-Stokes, continuity and energy equations in cylindrical coordinates. To this end a finite difference scheme is used for the time and spatial coordinates \(r\) and \(z\), whereas a Fourier spectral method is used for the angular coordinate. The advantage of this procedure is that it can be easily parallelized. The numerical results include the formation of concentric rolls and other patterns, which are compared with experimental results reported in the literature.

Keywords

Velocity Field Rayleigh Number Critical Rayleigh Number Cylindrical Container Angular Coordinate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Authors acknowledge DGAPA-UNAM by support under project IN116312, “Vorticidad y ondas no lineales en fluidos”.

References

  1. Bénard H (1900) Les tourbillons cellulaires dans une nappe liquide. Revue Gén Sci Pur Appl 11:1261–1271 and 1309–1328Google Scholar
  2. Bodenschatz E, Pesch W, Ahlers G (2000) Recent developments in Rayleigh-Benard convection. Annu Rev Fluid Mech 32:709–778CrossRefGoogle Scholar
  3. Boyd JP (2000) Chebyshev and Fourier spectral methods. Dover, New YorkGoogle Scholar
  4. Chandrasekhar S (1961) Hydrodynamic and Hydromagnetic Stability. Oxford University Press, New York, DoverGoogle Scholar
  5. Charru F (2007) Instabilités Hydrodynamiques. EDP Sciences CNRS Éditions, ParisGoogle Scholar
  6. Drazin PG, Reid WH (1981) Hydrodynamic stability. Cambridge University Press, CambridgeGoogle Scholar
  7. Fuentes R, Carvajal LF (2005) Método de diferencias finitas en mallas irregulares con soluciones analíticas parciales aplicado al flujo hidrodinámico. Rev Int Met Num Calc Dis Ing 21(3):263–272Google Scholar
  8. Getling AV, Brausch O (2003) Cellular flow patterns and their evolutionary scenarios in three-dimensional Rayleigh-Bénard convection. Phys Rev E 67:046313CrossRefGoogle Scholar
  9. Guyon E, Hulin J-P, Petit L (2001) Hydrodynamique physique, Savoirs Actuels. EDP Sciences/CNRS Éditions, ParisGoogle Scholar
  10. Li YR, Ouyang YQ, Peng L, Wu SY (2012) Direct numerical simulation of Rayleigh-Bénard convection in a cylindrical container of aspect ratio 1 for moderate Prandtl number fluid. Phys Fluids 24:074103. doi: 10.1063/1.4731296 CrossRefGoogle Scholar
  11. Paul MR, Chiam K-H, Cross MC, Fischer PF, Greenside HS (2003) Pattern formation and dynamics in Rayleigh-Bénard convection: numerical simulations of experimentally realistic geometries. Phys D 184:114–126CrossRefGoogle Scholar
  12. Peyret R (2002) Spectral methods for incompressible viscous flow. Springer, New YorkCrossRefGoogle Scholar
  13. Rayleigh L (1916) On convection currents in a horizontal layer of fluid, when the higher temperature in on the under side. Philos Mag 6(32):529–546CrossRefGoogle Scholar
  14. Tagawa T, Ujihara A, Ozoe H (2003) Numerical computation for Rayleigh-Bénard convection of water in a magnetic field. Int J Heat Mass Transf 46:4097–4104CrossRefGoogle Scholar
  15. Ternik P, Rudolf R, Zunic Z (2013) Numerical study of Rayleigh-Bénard natural-convection heat-transfer characteristics of water-based au nanofluids. Mater Technol 47(2):211–215Google Scholar
  16. Valencia ML (2005) Estudio Numérico y Experimental de Flujo Rayleigh-Bénard en Cavidades Cúbicas para Régimen Transitorio y Turbulento. PhD Thesis. Universitat Rovira I Virgili. pp 1482–2006. ISBN: 978-84-690-8297-3/D.L: TGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • N. Y. Sánchez Torres
    • 1
  • E. J. López Sánchez
    • 1
    Email author
  • S. Hernández Zapata
    • 1
  • G. Ruiz Chavarría
    • 1
  1. 1.Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations