Advertisement

Turbulent Thermal Convection

  • Enrico FondaEmail author
  • Katepalli R. Sreenivasan
Conference paper
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Turbulent thermal convection is a phenomenon of crucial importance in understanding the heat transport and dynamics of several natural and engineering flows. Real world systems such as the Earth’s atmosphere—its oceans as well as the interior—and the interior of stars such as the Sun, are all affected to various degrees by thermal convection. The simplified physical model used to understand this ubiquitous heat transport mechanism is the Rayleigh-Bénard convection, which is a fluid flow driven by a temperature difference between the top and bottom plates of an experimental cell with adiabatic sidewalls. Despite the long history of the subject and the recent progress in theoretical, numerical and experimental domains, many questions remain unresolved. We report some recent results and discuss a few open issues.

Keywords

Nusselt Number Rayleigh Number Heat Transport Coherent Structure Large Aspect Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahlers G, Grossmann S, Lohse D (2009a) Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev Mod Phys 81(2):503CrossRefGoogle Scholar
  2. Ahlers G, Funfschilling D, Bodenschatz E (2009b) Transitions in heat transport by turbulent convection at Rayleigh numbers up to \(10^{15}\). New J Phys 11(12):123001CrossRefGoogle Scholar
  3. Ahlers G, He X, Funfschilling D, Bodenschatz E (2012) Heat transport by turbulent Rayleigh-Bénard convection for \(Pr \simeq 0.8 \) and \(3 \times 10^{12} \le Ra \le 10^{15}\) : aspect ratio \(\Gamma \) = 0.50. New J Phys 14(10):103012CrossRefGoogle Scholar
  4. Ahlers G, Xu X (2001) Prandtl-number dependence of heat transport in turbulent Rayleigh-Bénard convection. Phys Rev Lett 86(15):3320CrossRefGoogle Scholar
  5. Bailon-Cuba J, Emran MS, Schumacher J (2010) Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection. J Fluid Mech 655:152CrossRefGoogle Scholar
  6. Bodenschatz E, Pesch W, Ahlers G (2000) Recent developments in Rayleigh-Bénard convection. Annu Rev Fluid Mech 32(1):709CrossRefGoogle Scholar
  7. Brown E, Ahlers G (2007) Large-scale circulation model for turbulent Rayleigh-Bénard convection. Phys Rev Lett 98(13):134501CrossRefGoogle Scholar
  8. Buffett BA (2000) Earth’s core and the geodynamo. Science 288(5473):2007CrossRefGoogle Scholar
  9. Burnishev Y, Segre E, Steinberg V (2010) Strong symmetrical non-Oberbeck-Boussinesq turbulent convection and the role of compressibility. Phys Fluids 22(3):035108CrossRefGoogle Scholar
  10. Busse FH (1978) Non-linear properties of thermal convection. Rep Prog Phys 41(12):1929CrossRefGoogle Scholar
  11. Cardin P, Olson P (1994) Chaotic thermal convection in a rapidly rotating spherical shell: consequences for flow in the outer core. Phys Earth Planet In 82(3–4):235CrossRefGoogle Scholar
  12. Castaing B, Gunaratne G, Heslot F, Kadanoff L, Libchaber A, Thomae S, Wu X-Z, Zaleski S, Zanetti G (1989) Scaling of hard thermal turbulence in Rayleigh-Bénard convection. J Fluid Mech 204:1CrossRefGoogle Scholar
  13. Cattaneo F, Lenz D, Weiss N (2001) On the origin of the solar mesogranulation. Astrophys J 563(1):L91CrossRefGoogle Scholar
  14. Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Dover Publications, New YorkGoogle Scholar
  15. Chaumat S, Castaing B, Chilla F (2002) Rayleigh-Bénard cells: influence of the plates’ properties. Advances in turbulence IX (ed. IP Castro, PE Hancock, and TG Thomas) CIMNE, BarcelonaGoogle Scholar
  16. Chavanne X, Chilla F, Castaing B, Hebral B, Chabaud B, Chaussy J (1997) Observation of the ultimate regime in Rayleigh-Bénard convection. Phys Rev Lett 79(19):3648CrossRefGoogle Scholar
  17. Chillà F, Schumacher J (2012) New perspectives in turbulent Rayleigh-Bénard convection. Eur Phys J E 35(7):58CrossRefGoogle Scholar
  18. Cholemari MR, Arakeri JH (2009) Axially homogeneous, zero mean flow buoyancy-driven turbulence in a vertical pipe. J Fluid Mech 621:69CrossRefGoogle Scholar
  19. Ciliberto S, Cioni S, Laroche C (1996) Large-scale flow properties of turbulent thermal convection. Phys Rev E 54(6):R5901CrossRefGoogle Scholar
  20. Cross M, Hohenberg P (1993) Pattern formation outside of equilibrium. Rev Mod Phys 65(3):851CrossRefGoogle Scholar
  21. de Bruyn JR, Bodenschatz E, Morris SW, Trainoff SP, Hu Y, Cannell DS, Ahlers G (1996) Apparatus for the study of Rayleigh-Bénard convection in gases under pressure. Rev Sci Instrum 67(6):2043CrossRefGoogle Scholar
  22. du Puits R, Resagk C, Thess A (2007) Breakdown of wind in turbulent thermal convection. Phys Rev E 75(1):016302CrossRefGoogle Scholar
  23. du Puits R, Resagk C, Thess A (2013) Thermal boundary layers in turbulent Rayleigh-Bénard convection at aspect ratios between 1 and 9. New J Phys 15(1):013040CrossRefGoogle Scholar
  24. Fonda E, Sreenivasan KR, Lathrop DP (2012) Liquid nitrogen in fluid dynamics: visualization and velocimetry using frozen particles. Rev Sci Instrum 83(8):085101CrossRefGoogle Scholar
  25. Funfschilling D, Brown E, Ahlers G (2008) Torsional oscillations of the large-scale circulation in turbulent Rayleigh-Bénard convection. J Fluid Mech 607:119CrossRefGoogle Scholar
  26. Funfschilling D, Brown E, Nikolaenko A, Ahlers G (2005) Heat transport by turbulent Rayleigh-Bénard convection in cylindrical samples with aspect ratio one and larger. J Fluid Mech 536:145CrossRefGoogle Scholar
  27. Getling AV (1991) Formation of spatial structures in Rayleigh-Bénard convection. Sov Phys Usp 34(9):737CrossRefGoogle Scholar
  28. Gibert M, Pabiou H, Chillà F, Castaing B (2006) High-Rayleigh-number convection in a vertical channel. Phys Rev Lett 96(8):084501CrossRefGoogle Scholar
  29. Glazier JA, Segawa T, Naert A, Sano M (1999) Evidence against ‘ultrahard’ thermal turbulence at very high Rayleigh numbers. Nature 398(6725):307CrossRefGoogle Scholar
  30. Grossmann S, Lohse D (2000) Scaling in thermal convection: a unifying theory. J Fluid Mech 407:27CrossRefGoogle Scholar
  31. Grossmann S, Lohse D (2003) On geometry effects in Rayleigh-Bénard convection. J Fluid Mech 486:105CrossRefGoogle Scholar
  32. Guillot T (2005) The interior of giants planets: models and outstanding questions. Annu Rev Earth Planet Sci 33(1):493CrossRefGoogle Scholar
  33. Haller G (2015) Lagrangian coherent structures. Annu Rev Fluid Mech (August 2014):137Google Scholar
  34. Hartlep T, Tilgner A, Busse F (2003) Large scale structures in Rayleigh-Bénard convection at high Rayleigh numbers. Phys Rev Lett 91(6):064501CrossRefGoogle Scholar
  35. Hartmann DL, Moy LA, Fu Q (2001) Tropical convection and the energy balance at the top of the atmosphere. J Clim 14(24):4495CrossRefGoogle Scholar
  36. He X, Funfschilling D, Bodenschatz E, Ahlers G (2012a) Heat transport by turbulent Rayleigh-Bénard convection for \(Pr \simeq 0.8\) and \(4 \times 10^{11} \le Ra \le 2 \times 10^{14}\): ultimate-state transition for aspect ratio \(\Gamma = 1.00\). New J Phys 14(6):063030CrossRefGoogle Scholar
  37. He X, Funfschilling D, Nobach H, Bodenschatz E, Ahlers G (2012b) Transition to the ultimate state of turbulent Rayleigh-Bénard convection. Phys Rev Lett 108(2):024502CrossRefGoogle Scholar
  38. Hof B, van Doorne CWH, Westerweel J, Nieuwstadt FTM, Faisst H, Eckhardt B, Wedin H, Kerswell RR, Waleffe F (2004) Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305(5690):1594CrossRefGoogle Scholar
  39. Hogg J, Ahlers G (2013) Reynolds-number measurements for low-Prandtl-number turbulent convection of large-aspect-ratio samples. J Fluid Mech 725:664CrossRefGoogle Scholar
  40. Huang S-D, Kaczorowski M, Ni R, Xia K-Q (2013) Confinement-induced heat-transport enhancement in turbulent thermal convection. Phys Rev Lett 111(10):104501CrossRefGoogle Scholar
  41. Koschmieder EL (1974) Bénard convection. Adv Chem Phys 26. Prigogine I, Rice SA (eds). Wiley, HobokenGoogle Scholar
  42. Kraichnan RH (1962) Turbulent thermal convection at arbitrary Prandtl number. Phys Fluids 5(11):1374CrossRefGoogle Scholar
  43. Krishnamurti R, Howard LN (1981) Large-scale flow generation in turbulent convection. Proc Natl Acad Sci USA 78(4):1981CrossRefGoogle Scholar
  44. La Porta A, Voth GA, Crawford AM, Alexander J, Bodenschatz E (2001) Fluid particle accelerations in fully developed turbulence. Nature 409(6823):1017CrossRefGoogle Scholar
  45. Lathrop DP, Fineberg J, Swinney H (1992) Transition to shear-driven turbulence in Couette-Taylor flow. Phys Rev A 46(10):6390CrossRefGoogle Scholar
  46. Lohse D, Toschi F (2003) Ultimate state of thermal convection. Phys Rev Lett 90(3):034502CrossRefGoogle Scholar
  47. Lohse D, Xia K-Q (2010) Small-scale properties of turbulent Rayleigh-Bénard convection. Annu Rev Fluid Mech 42(1):335CrossRefGoogle Scholar
  48. Malkus WVR (1954) The heat transport and spectrum of thermal turbulence. Proc R Soc Lond A 225(1161):196CrossRefGoogle Scholar
  49. Marshall J, Schott F (1999) Open-ocean convection: observations, theory, and models. Rev Geophys 37(1):1CrossRefGoogle Scholar
  50. Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. Wiley, New YorkGoogle Scholar
  51. Niemela JJ, Skrbek L, Sreenivasan KR, Donnelly RJ (2000) Turbulent convection at very high Rayleigh numbers. Nature 404(1):837CrossRefGoogle Scholar
  52. Niemela JJ, Skrbek L, Sreenivasan KR, Donnelly RJ (2001) The wind in confined thermal convection. J Fluid Mech 449:169CrossRefGoogle Scholar
  53. Niemela JJ, Sreenivasan KR (2003) Confined turbulent convection. J Fluid Mech 481:355CrossRefGoogle Scholar
  54. Niemela JJ, Sreenivasan KR (2006) Turbulent convection at high Rayleigh numbers and aspect ratio 4. J Fluid Mech 557:411CrossRefGoogle Scholar
  55. Niemela JJ, Sreenivasan KR (2010) Does confined turbulent convection ever attain the ‘asymptotic scaling’ with 1/2 power? New J Phys 12(11):115002CrossRefGoogle Scholar
  56. Nordlund AK, Stein RF, Asplund M (2009) Solar surface convection. Living Rev Sol Phys 6Google Scholar
  57. Ouellette NT (2012) On the dynamical role of coherent structures in turbulence. C R Phys 13(9–10):866CrossRefGoogle Scholar
  58. Parodi A, von Hardenberg J, Passoni G, Provenzale A, Spiegel E (2004) Clustering of plumes in turbulent convection. Phys Rev Lett 92(19):194503CrossRefGoogle Scholar
  59. Qiu X-L, Tong P (2001) Large-scale velocity structures in turbulent thermal convection. Phys Rev E 64(3):036304CrossRefGoogle Scholar
  60. Rieutord M, Rincon F (2010) The suns supergranulation. Living Rev Sol Phys 7Google Scholar
  61. Roche P-E, Gauthier F, Kaiser R, Salort J (2010) On the triggering of the ultimate regime of convection. New J Phys 12(8):085014CrossRefGoogle Scholar
  62. Sano M, Wu X, Libchaber A (1989) Turbulence in helium-gas free convection. Phys Rev A 40(11):6421CrossRefGoogle Scholar
  63. Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the earth and planets. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  64. Shishkina O, Wagner C (2005) Analysis of thermal dissipation rates in turbulent Rayleigh-Bénard convection. J Fluid Mech 546:51CrossRefGoogle Scholar
  65. Sreenivasan K, Bershadskii A, Niemela J (2002) Mean wind and its reversal in thermal convection. Phys Rev E 65(5):056306CrossRefGoogle Scholar
  66. Sreenivasan K, Donnelly R (2001) Role of cryogenic helium in classical fluid dynamics basic research and model testing. Adv Appl Mech 37:239CrossRefGoogle Scholar
  67. Stevens RJAM, Lohse D, Verzicco R (2011) Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection. J Fluid Mech 688:31CrossRefGoogle Scholar
  68. Stevens RJAM, van der Poel EP, Grossmann S, Lohse D (2013) The unifying theory of scaling in thermal convection: the updated prefactors. J Fluid Mech 730:295CrossRefGoogle Scholar
  69. Stevens RJAM, Verzicco R, Lohse D (2010) Radial boundary layer structure and Nusselt number in Rayleigh-Bénard convection. J Fluid Mech 643:495CrossRefGoogle Scholar
  70. Tackley PJ (2000) Mantle convection and plate tectonics: toward an integrated physical and chemical theory. Science 288(5473):2002CrossRefGoogle Scholar
  71. Tritton DJ (1988) Physical fluid dynamics. Clarendon Press, OxfordGoogle Scholar
  72. Urban P, Hanzelka P, Musilová V, Králík T, Mantia ML, Srnka A, Skrbek L (2014) Heat transfer in cryogenic helium gas by turbulent Rayleigh-Bénard convection in a cylindrical cell of aspect ratio 1. New J Phys 16(5):053042CrossRefGoogle Scholar
  73. van Doorn E, Dhruva B, Sreenivasan KR, Cassella V (2000) Statistics of wind direction and its increments. Phys Fluids 12(6):1529CrossRefGoogle Scholar
  74. Van Dyke M (1982) An album of fluid motion. Parabolic Press, StanfordGoogle Scholar
  75. Velarde MG et al (1982) An album of fluid motion, assembled by Van Dyke M. Parabolic Press, StanfordGoogle Scholar
  76. Verdoold J, Tummers M, Hanjalić K (2006) Oscillating large-scale circulation in turbulent Rayleigh-Bénard convection. Phys Rev E 73(5):056304CrossRefGoogle Scholar
  77. von Hardenberg J, Parodi A, Passoni G, Provenzale A, Spiegel E (2008) Large-scale patterns in Rayleigh-Bénard convection. Phys Lett A 372(13):2223–2229CrossRefGoogle Scholar
  78. Wesfreid JE (2006) Scientific biography of Henri Bénard (1874–1939). In: Mutabazi I, Wesfreid JE, Guyon E (eds) Dynamics of spatio-temporal cellular structures. Springer tracts in modern physics, vol 207. Springer, New York, pp 9–37Google Scholar
  79. Whitehead JA, Parsons B (1977) Observations of convection at Rayleigh numbers up to 760,000 in a fluid with large Prandtl number. Geophys Astrophys Fluid Dyn 9(1):201CrossRefGoogle Scholar
  80. Wu X-Z, Libchaber A (1992) Scaling relations in thermal turbulence: the aspect-ratio dependence. Phys Rev A 45(2):842CrossRefGoogle Scholar
  81. Xi H-D, Lam S, Xia K-Q (2004) From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J Fluid Mech 503:47CrossRefGoogle Scholar
  82. Xia K-Q (2013) Current trends and future directions in turbulent thermal convection. Theor Appl Mech Lett 3(5):052001CrossRefGoogle Scholar
  83. Xia K-Q, Sun C, Zhou S-Q (2003) Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys Rev E 68(6):066303CrossRefGoogle Scholar
  84. Zocchi G, Moses E, Libchaber A (1990) Coherent structures in turbulent convection, an experimental study. Phys A 166(3):387CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.New York UniversityNew YorkUSA

Personalised recommendations