Advertisement

Numerical Simulation of a Gas-Stirred Ladle

  • H. Zambrano
  • A. Bencomo
  • L. Trujillo
  • L. Di G. SigalottiEmail author
Conference paper
Part of the Environmental Science and Engineering book series (ESE)

Abstract

In this paper we present three-dimensional, numerical simulations of the turbulent recirculatory flow in a gas-stirred vessel. The physical model consists of air injected in a water cylindrical vessel, corresponding to a one-seventh scale model of an industrial 35 tons steel-making ladle. Plume development and recirculation is investigated for air blowing through an eccentric porous plug placed at the bottom of the vessel. The experimentally observed plume behaviour and the mixing process due to recirculatory water motion within the ladle is qualitatively well reproduced by the numerical simulations. When the airflow rate is increased, the intensity of agitation and turbulence increases, thereby enhancing the mixing in the ladle.

Keywords

Nozzle Exit Recirculation Region Porous Plug Plume Region Turbulent Eddy Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aoki J, Thomas BG, Peter J, Peaslee KD (2004) Experimental and theoretical investigation of mixing in a bottom gas-stirred ladle. In: Proceedings of the association for iron and steel technology (AISTech 2004), vol I, pp 1045–1056Google Scholar
  2. Balaji D, Mazumdar D (1991) Numerical computation of flow phenomena in gas-stirred ladle systems. Steel Res 62(1):16–23Google Scholar
  3. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New YorkGoogle Scholar
  4. Cloete SWP, Eksteen JJ, Bradshaw SM (2009) A mathematical modelling study of fluid flow and mixing in full-scale gas-stirred ladles. Prog Comput Fluid Dyn 9(6/7):345–356CrossRefGoogle Scholar
  5. Crowe C, Sommerfeld M, Tsuji Y (1998) Multiphase flows with droplets and particles. CRC Press, Boca RatonGoogle Scholar
  6. De Felice V, Daoud ILA, Dussoubs B, Jardy A, Bellot J-P (2012) Numerical modelling of inclusion behaviour in a gas-stirred ladle. ISIJ Int 52(7):1273–1280CrossRefGoogle Scholar
  7. Domgin JF, Gardin P, Brunet M (1999) Experimental and numerical investigation of gas stirred ladles. In: Proceedings of the second international conference on CFD in the minerals and process industries, CSIRO, Melbourne, 6–8 December 1999, pp 181–186Google Scholar
  8. Drew DA (1983) Mathematical modelling of two-phase flow. Annu Rev Fluid Mech 15:261–291CrossRefGoogle Scholar
  9. Drew DA, Lahey RT (1987) The virtual mass and lift force on a sphere in rotating and straining inviscid flow. Int J Multiph Flow 13(1):113–121CrossRefGoogle Scholar
  10. Goldschmit MB, Coppola Owen AH (2001) Numerical modelling of gas stirred ladles. Ironmak Steelmak 28(4):337–341CrossRefGoogle Scholar
  11. Grevet JH, Szekely J, El-Kaddah N (1982) An experimental and theoretical study of gas bubble driven circulation systems. Int J Heat Mass Transf 25(4):487–497CrossRefGoogle Scholar
  12. Mazumdar D, Guthrie RIL (1995) The physical and mathematical modelling of gas stirred ladle systems. ISIJ Int 35(1):1–20CrossRefGoogle Scholar
  13. Méndez CG, Nigro N, Cardona A, Begnis SS, Chiapparoli WP (2002) Physical and numerical modelling of a gas stirred ladle. In: Idelshon SR, Sonzogni VE, Cardona A (eds) Mecánica computacional, vol XXI. Santa Fe-Paraná, Argentina, pp 2646–2654Google Scholar
  14. Olsen JE, Cloete S (2009) Coupled DPM and VOF model for analyses of gas stirred ladles at higher gas rates. In: Proceedings of the seventh international conference on CFD in the minerals and process industries, CSIRO, Melbourne, 9–11 December 2009, pp 1–6Google Scholar
  15. Pan S-M, Ho Y-H, Hwang W-S (1997) Three-dimensional fluid flow model of gas-stirred ladles. J Mater Eng Perform 6(3):311–318CrossRefGoogle Scholar
  16. Pope SB (2000) Turbulent flows. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. Ramírez-Argáez MA (2007) Numerical simulation of fluid flow and mixing in gas-stirred ladles. Mater Manuf Process 23(1):59–68CrossRefGoogle Scholar
  18. Sahai Y, Guthrie RIL (1982) Hydrodynamics of gas stirred melts: part I. Gas/liquid coupling. Metall Trans B 13B:193–202CrossRefGoogle Scholar
  19. Schwarz MP, Turner WJ (1988) Applicability of the standard \(k\)-\(\varepsilon \) turbulence model to gas-stirred baths. Appl Math Model 12(3):273–279CrossRefGoogle Scholar
  20. Sheng YY, Irons GA (1992) Measurement and modeling of turbulence in the gas/liquid two-phase zone during gas injection. Metall Trans B 24B:695–705Google Scholar
  21. Taniguchi S, Kawaguchi S, Kikuchi A (2002) Fluid flow and gas-liquid mass transfer in gas-injected vessels. Appl Math Model 26(2):249–262CrossRefGoogle Scholar
  22. Woo JS, Szekely J, Castillejos AH, Brimacombe JK (1990) A study on the mathematical modelling of turbulent recirculating flows in gas-stirred ladles. Metall Trans B 21B:269–277CrossRefGoogle Scholar
  23. Xia JL, Ahokainen T, Holappa L (1999) Modelling of flows in a ladle with gas stirred liquid Wood’s metal. In: Proceedings of the second international conference on CFD in the minerals and process industries, CSIRO, Melbourne, 6–8 December 1999, pp 187–192Google Scholar
  24. Xia JL, Ahokainen T, Holappa L (2002) Analysis of flows in a ladle with gas-stirred melt. Scand J Metall 30(2):69–76CrossRefGoogle Scholar
  25. Xie Y, Oeters F (1992) Experimental studies on the flow velocity of molten metals in a ladle model at centric gas blowing. Steel Res 63:93–104Google Scholar
  26. Yakhot V, Orszag SA, Thangam S, Gatski TB, Spaziale CG (1992) Development of turbulence models for shear flows by a double expansion technique. Phys Fluids A 4(7):1510–1520CrossRefGoogle Scholar
  27. Yakhot V, Smith LM (1992) The renormalization group, the \(\varepsilon \)-expansion, and derivation of turbulence models. J Sci Comput 7:35–51CrossRefGoogle Scholar
  28. Zhang L (2000) Mathematical simulation of fluid flow in gas-stirred liquid systems. Model Simul Mater Sci Eng 8:463–476CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • H. Zambrano
    • 1
  • A. Bencomo
    • 2
  • L. Trujillo
    • 3
  • L. Di G. Sigalotti
    • 4
    • 5
    Email author
  1. 1.Facultad de IngenieríaUniversidad Central de Venezuela, UCV, (Doctorado Individualizado)CaracasVenezuela
  2. 2.Escuela de Ingeniería Metalúrgica y Ciencia de los Materiales, Facultad de IngenieríaUniversidad Central de Venezuela, UCVCaracasVenezuela
  3. 3.Centro de FísicaInstituto Venezolano de Investigaciones Científicas, IVICCaracasVenezuela
  4. 4.Instituto Venezolano de Investigaciones Científicas, IVICCaracasVenezuela
  5. 5.Departamento de Ciencias BásicasUniversidad Autónoma Metropolitana-AzcapotzalcoMexicoMexico

Personalised recommendations