Advertisement

Alya Red CCM: HPC-Based Cardiac Computational Modelling

  • M. VázquezEmail author
  • R. Arís
  • J. Aguado-Sierra
  • G. Houzeaux
  • A. Santiago
  • M. López
  • P. Córdoba
  • M. Rivero
  • J. C. Cajas
Conference paper
Part of the Environmental Science and Engineering book series (ESE)

Abstract

This paper describes Alya Red CCM, a cardiac computational modelling tool for supercomputers. It is based on Alya, a parallel simulation code for multiphysics and multiscale problems, which can deal with all the complexity of biological systems simulations. The final goal is to simulate the pumping action of the heart: the model includes the electrical propagation, the mechanical contraction and relaxation and the blood flow in the heart cavities and main vessels. All sub-problems are treated as fully transient and solved in a staggered fashion. Electrophysiology and mechanical deformation are solved on the same mesh, with no interpolation. Fluid flow is simulated on a moving mesh using an Arbitrary Lagrangian-Eulerian (ALE) strategy, being the mesh deformation computed through an anisotropic Laplacian equation. The parallel strategy is based on an automatic mesh partition using Metis and MPI tasks. When required and in order to take profit of multicore clusters, an additional OpenMP parallelization layer is added. The paper describes the tool and its different parts. Alya’s flexibility allows to easily program a large variety of physiological models for each of the sub-problems, including the mutual coupling. This flexibility, added to the parallel efficiency to solve multiphysics problems in complex geometries render Alya Red CCM a well suited tool for cardiac biomedical research at either industrial or academic environments.

Keywords

Right Ventricle Wall Clock Time Mesh Deformation Parallel Efficiency Activation Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially supported by the Spanish projects TIN2009-13618, TIN2012-33116, CSD2007-00018. Also, it was partially supported with the grant SEV-2011-00067 of Severo Ochoa Program, awarded by the Spanish Government. Debora Gil has been supported by the Ramon y Cajal Program of the Spanish Ministry of Economy and Competitiveness.

References

  1. Arís R (2014) Electromechanical large scale computational models of the ventricular myocardium. PhD thesis, Universitat Politécnica de Catalunya, SpainGoogle Scholar
  2. Arís R, Aguado-Sierra J, Houzeaux G, Gil D, Borràs A, Sebastian R, Vázquez M (2014) Sensitivity analysis to initial stimuli and fiber orientation of a biventricular electromechanical computational model of the heart. PLOS One (Submitted)Google Scholar
  3. Belytschko T, Liu W, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New YorkGoogle Scholar
  4. Bishop MJ, Plank G, Burton RA, Schneider JE, Gavaghan DJ, Grau V, Kohl P (2010) Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function. Am J Physiol - Heart Circ Physiol 699–718Google Scholar
  5. Cajas J, Houzeaux G, Zavala M, Vázquez M, Uekermann B, Gatzhammer B, Mehl M, Fournier Y, Moulinec C (2014) Multi-physics multi-code coupling on supercomputers. In: 1st international workshop on software solutions for ICME (Aachen/Rolduc, 24–27 June 2014)Google Scholar
  6. Calderer R, Masud A (2010) A multiscale stabilized ale formulation for incompressible flows with moving boundaries. Comput Mech 46:185–197CrossRefGoogle Scholar
  7. Coghlan H, Coghlan A, Buckberg G, Cox J (2006) The electrical spiral of the heart: its role in the helical continuum. The hypothesis of the anisotropic conducting matrix. Eur J Cardiothorac Surg 29:178–187CrossRefGoogle Scholar
  8. Donea J, Huerta A, Ponthot J-P, Rodríguez-Ferran A (2004) Arbitrary Lagrangian-Eulerian methods. In: Stein E, de Borst R, Hughes TJ (eds) Encyclopaedia of computational mechanics. Wiley, New YorkGoogle Scholar
  9. Durrer D, van Dam RT, Freud GE, Janse MJ, Meijler FL, Arzbaecher RC (1970) Total excitation of the isolated human heart. Circulation 41:899–912CrossRefGoogle Scholar
  10. FitzHugh RA (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1:445–466CrossRefGoogle Scholar
  11. Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc A: Math Phys Eng SciGoogle Scholar
  12. Hosoi A, Washio T, Kadooka Y, Nakajima K, Hisada TA (2010) Multi-scale heart simulation on massively parallel computers. In: Proceedings of the ACM/IEEE SC2010 - international conference for high performance computing (New Orleans, Louisiana, USA, 13–19 November 2010)Google Scholar
  13. Houzeaux G, Principe J (2008) A variational subgrid scale model for transient incompressible flows. Int J Comp Fluid Dyn 22(3):135–152CrossRefGoogle Scholar
  14. Houzeaux G, Aubry R, Vázquez M (2011) Extension of fractional step techniques for incompressible flows: the preconditioned orthomin(1) for the pressure schur complement. Comput Fluids 44:297–313CrossRefGoogle Scholar
  15. Houzeaux G, Vázquez M, Aubry R, Cela J (2009) A massively parallel fractional step solver for incompressible flows. J Comput Phys 228(17):6316–6332CrossRefGoogle Scholar
  16. Houzeaux G, de la Cruz R, Owen H, Vázquez M (2013) Parallel uniform mesh multiplication applied to a navier-stokes solver. Comput Fluids 80:142–151CrossRefGoogle Scholar
  17. Houzeaux G, Vázquez M, Saez X, Cela J (2008) Hybrid MPI-OpenMP performance in massively parallel computational fluid dynamics. Presented at PARCFD 2008 international conference on parallel computational fluid dynamics. Lyon, FranceGoogle Scholar
  18. Lafortune P, Arís R, Vázquez M, Houzeaux G (2012) Coupled electromechanical model of the heart: parallel finite element formulation. Int J Numer Methods Biomed Eng 28:72–86CrossRefGoogle Scholar
  19. Löhner R, Mut F, Cebral J, Aubry R, Houzeaux G (2011) Deflated preconditioned conjugate gradient solvers for the pressure-poisson equation: extensions and improvements. Int J Numer Methods Eng 87:2–14CrossRefGoogle Scholar
  20. Metis (2015) Family of multilevel partitioning algorithms. http://glaros.dtc.umn.edu/gkhome/views/metis
  21. Niederer SA, Hunter PJ, Smith NP (2006) A quantitative analysis of cardiac myocyte relaxation: a simulation study. Biophys J 90:1697–1722CrossRefGoogle Scholar
  22. Puzyrev V, Koldan J, de la Puente J, Houzeaux G, Vázquez M, Cela JM (2013) A parallel finite-element method for three-dimensional controlled-source electromagnetic forward modelling. J Int Geophys. doi: 10.1093/gji/ggt027
  23. Rubart M, Zipes D (2001) Genesis of cardiac arrhythmias: electrophysiological considerations. In: Braunwald E, Zipes D, Libby P (eds) Heart disease, vol 1. W.B. Saunders Company, PhiladelphiaGoogle Scholar
  24. Sebastian R, Zimmerman V, Romero D, Sanchez-Quintana D (2012) Characterization and modeling of the peripheral cardiac conduction system. IEEE Trans Med ImagingGoogle Scholar
  25. Soto O, Löhner R, Camelli F (2003) A linelet preconditioner for incompressible flow solvers. Int J Numer Methods Heat Fluid Flow 13(1):133–147Google Scholar
  26. Ten Tusscher KHWJ, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue. Am J Physiol Heart Circ Physiol 286:1573–1589Google Scholar
  27. Thomas SR et al (2008) VPH Exemplar project strategy document. Deliverable 9, VPH NoEGoogle Scholar
  28. Vázquez M, Arís R, Houzeaux G, Aubry R, Villar P, Garcia-Barnós J, Gil D, Carreras F (2011) A massively parallel computational electrophysiology model of the heart. Int J Numer Methods Biomed Eng 27(12):1911–1929CrossRefGoogle Scholar
  29. Vázquez M, Houzeaux G, Koric S, Artigues A, Aguado-Sierra J, Aris R, Mira D, Calmet H, Cucchietti F, Owen H, Taha A, Cela JM (2014) Alya: towards exascale for engineering simulation codes. arxiv:1404.4881
  30. Wall W, Genkinger S, Ramm E (2007) A strong coupling partitioned approach for fluid-structure interaction with free surfaces. Comput Fluids 36:169–183CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • M. Vázquez
    • 1
    • 2
    Email author
  • R. Arís
    • 1
  • J. Aguado-Sierra
    • 1
  • G. Houzeaux
    • 1
  • A. Santiago
    • 1
  • M. López
    • 1
  • P. Córdoba
    • 1
  • M. Rivero
    • 1
  • J. C. Cajas
    • 1
  1. 1.Barcelona Supercomputing CenterBarcelonaSpain
  2. 2.IIIA-CSICBarcelonaSpain

Personalised recommendations