Skip to main content

Characterization of the Phenotypic Features, Immuno-modulatory Properties and Therapeutic Potentials of Wharton’s Jelly-Derived Mesenchymal Stromal Cells

  • Chapter
  • First Online:
Cellular Therapy for Stroke and CNS Injuries

Abstract

The Wharton’s jelly (WJ) of the umbilical cord has been identified as a rich source of mesenchymal stromal cells (MSCs), which are considered as promising candidates for stem cell-based therapy to treat several diseases. In particular, MSCs harvested from the “young” WJ are believed to be more proliferative, immunosuppressive and therapeutically active stem cells than those derived from adult tissues, such as the bone marrow or adipose. MSCs derived from WJ also exhibit transplantable features such as ease of sourcing, in vitro expandability, differentiation capacities, immune-evasion and immune-regulation profiles. Indeed, the potentiality of WJ-derived stem cells to treat cancer, cardiovascular and liver diseases, and nerve and cartilage tendon injuries has been suggested. In this paper, we present an overview of the phenotypic characteristics, immune-modulatory properties and therapeutic potentials of WJ-derived stem cells, and suggest optimization protocols for successful advancement of WJ-derived stem cells into clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFP:

Alpha-fetoprotein

BDNF:

Brain-derived neurotrophic factor

bFGF:

Basic fibroblast growth factor

BM-MSCs:

Bone marrow-derived mesenchymal stromal/stem cells

cAMP:

Cyclic adenosine monophosphate

CD:

Cluster differentiation

CDKN:

Cyclin-dependent kinase inhibitor

CFU-F:

Colony-forming unit-fibroblast

CL-MSCs:

Cord lining mesenchymal stem cells

COMP:

Cartilage oligomeric protein

CXCR:

C-X-C chemokine receptor

DCs:

Dendritic precursors

ESCs:

Embryonic stem cells

HIE:

Hypoxic-ischemic encephalopathy

HIFs :

hypoxia inducible factors

hiPSCs :

human induced pluripotent stem cells

HLA:

Human leukocyte antigen

HSCs:

Hematopoietic stem cells

HUCPVCs:

Human umbilical cord perivascular cells

HUVECs:

Human umbilical vein endothelial cells

IFN-γ:

Interferon gamma

IL:

Interleukin

iPSC:

Induced pluripotent stem cell

IV:

Intravenous

IVF:

In vitro fertilization

KDR:

Kinase insert domain receptor

MHC:

Major histocompatibility complex

MI:

Myocardial infaction

MSCs:

Mesenchymal stromal/stem cells

NGF:

Nerve growth factor

NMII:

Non-muscle myosin II

NP:

Nucleus pulposus

PDGF:

Platelet-derived growth factor

PHA:

Phytohemagglutinin

PLLA:

Poly-L-lactic-acid

SCID:

Severe combined immunodeficiency

SMA:

Smooth muscle actin

SPIO:

Superparamagnetic iron oxide particles

SSEA4:

Stage-specific embryonic antigen 4

TERT:

Telomerase reverse transcriptase

TGF- β:

Transforming growth factor- beta

UC:

Umbilical cord

UCMSCs:

Umbilical cord matrix stem cells

VEGF:

Vascular endothelial growth factor

WJ:

Wharton’s jelly

References

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    CAS  PubMed  Google Scholar 

  • Anzalone R, Lo Iacono M, Corrao S, Magno F, Loria T, Cappello F, Zummo G, Farina F, La Rocca G (2010) New emerging potentials for human Whartonʼs jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev 19:423–438

    CAS  PubMed  Google Scholar 

  • Arufe MC, De la Fuente A, Mateos J, Fuentes I, De Toro FJ, Blanco FJ (2011) Analysis of the chondrogenic potential and secretome of mesenchymal stem cells derived from human umbilical cord stroma. Stem Cells Dev 20:1199–1212

    CAS  PubMed  Google Scholar 

  • Ayuzawa R, Doi C, Rachakatla RS, Pyle MM, Maurya DK, Troyer D, Tamura M (2009) Naive human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Lett 280:31–37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392

    CAS  PubMed  Google Scholar 

  • Baldwin T (2009) Morality and human embryo research. Introduction to the talking point on morality and human embryo research. EMBO Rep 10:299–300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baudin B, Bruneel A, Bosselut N, Vaubourdolle M (2007) A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc 2:481–485

    CAS  PubMed  Google Scholar 

  • Bittira B, Kuang JQ, Al-Khaldi A, Shum-Tim D, Chiu RC (2002) In vitro preprogramming of marrow stromal cells for myocardial regeneration. Ann Thorac Surg 74:1154–1160

    PubMed  Google Scholar 

  • Bongso A, Fong CY (2013) The therapeutic potential, challenges and future clinical directions of stem cells from the Whartonʼs jelly of the human umbilical cord. Stem Cell Rev 9:226–240

    CAS  PubMed  Google Scholar 

  • Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, Fries JW, Tiemann K, Bohlen H, Hescheler J, Welz A, Bloch W, Jacobsen SE, Fleischmann BK (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110:1362–1369

    CAS  PubMed  Google Scholar 

  • Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45:115–120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campard D, Lysy PA, Najimi M, Sokal EM (2008) Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology 134:833–848

    CAS  PubMed  Google Scholar 

  • Can A, Karahuseyinoglu S (2007) Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 25:2886–2895

    PubMed  Google Scholar 

  • Chacko AW, Reynolds SRM (1954) Architecture of distended and nondistended human umbilical cord tissues, with special reference to the arteries and veins. Contrib Embryol 35:135–150

    Google Scholar 

  • Cho PS, Messina DJ, Hirsh EL, Chi N, Goldman SN, Lo DP, Harris IR, Popma SH, Sachs DH, Huang CA (2008) Immunogenicity of umbilical cord tissue derived cells. Blood 111:430–438

    CAS  PubMed  Google Scholar 

  • Chon BH, Lee EJ, Jing L, Setton LA, Chen J (2013) Human umbilical cord mesenchymal stromal cells exhibit immature nucleus pulposus cell phenotype in a laminin-rich pseudo-three-dimensional culture system. Stem Cell Res Ther 4(5):120

    PubMed Central  PubMed  Google Scholar 

  • Clausen TD, Mathiesen ER, Hansen T, Pedersen O, Jensen DM, Lauenborg J, Damm P (2008) High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care 31:340–346

    PubMed  Google Scholar 

  • Conconi MT, Burra P, Di Liddo R, Calore C, Turetta M, Bellini S, Bo P, Nussdorfer GG, Parnigotto PP (2006) CD105(+) cells from Whartonʼs jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med 18:1089–1096

    CAS  PubMed  Google Scholar 

  • Conconi MT, Di Liddo R, Tommasini M, Calore C, Parnigotto PP (2011) Phenotype and differentiation potential of stromal populations obtained from various zones of human umbilical cord: an overview. The Open Tissue Eng Regen Med J 4:6–20

    Google Scholar 

  • Dabelea D, Pettitt DJ (2001) Intrauterine diabetic environment confers risks for type 2 diabetes mellitus and obesity in the offspring, in addition to genetic susceptibility. J Pediatr Endocrinol Metab JPEM 14:1085–1091

    CAS  Google Scholar 

  • Deuse T, Stubbendorff M, Tang-Quan K, Phillips N, Kay MA, Eiermann T, Phan TT, Volk HD, Reichenspurner H, Robbins RC, Schrepfer S (2011) Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant 20:655–667

    PubMed  Google Scholar 

  • Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H (2001) Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci 14:1771–1776

    CAS  PubMed  Google Scholar 

  • Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress t-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    CAS  PubMed  Google Scholar 

  • Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F, Cantos C, Jorgensen C, Noel D (2007) Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25:2025–2032

    CAS  PubMed  Google Scholar 

  • Farias VA, Linares-Fernandez JL, Penalver JL, Pava Colmenero JA, Ferron GO, Duran EL, Fernandez RM, Olivares EG, OʼValle F, Puertas A, Oliver FJ, Ruiz de Almodovar JM (2011) Human umbilical cord stromal stem cell express CD10 and exert contractile properties. Placenta 32:86–95

    CAS  PubMed  Google Scholar 

  • Fathi F, Murasawa S, Hasegawa S, Asahara T, Kermani AJ, Mowla SJ (2009) Cardiac differentiation of P19CL6 cells by oxytocin. Int J Cardiol 134:75–81

    PubMed  Google Scholar 

  • Fong CY, Subramanian A, Gauthaman K, Venugopal J, Biswas A, Ramakrishna S, Bongso A (2012) Human umbilical cord Whartonʼs jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Rev 8:195–209

    CAS  PubMed  Google Scholar 

  • Ganta C, Chiyo D, Ayuzawa R, Rachakatla R, Pyle M, Andrews G, Weiss M, Tamura M, Troyer D (2009) Rat umbilical cord stem cells completely abolish rat mammary carcinomas with no evidence of metastasis or recurrence 100 days post-tumor cell inoculation. Cancer Res 69:1815–1820

    CAS  PubMed  Google Scholar 

  • Gatta V, DʼAurora M, Lanuti P, Pierdomenico L, Sperduti S, Palka G, Gesi M, Marchisio M, Miscia S, Stuppia L (2013) Gene expression modifications in Whartonʼs Jelly mesenchymal stem cells promoted by prolonged in vitro culturing. BMC Genomics 14:635

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gillman MW, Rifas-Shiman S, Berkey CS, Field AE, Colditz GA (2003) Maternal gestational diabetes, birth weight, and adolescent obesity. Pediatrics 111:221–226

    Google Scholar 

  • Gotherstrom C, Ringden O, Westgren M, Tammik C, Le Blanc K (2003) Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant 32:265–272

    CAS  PubMed  Google Scholar 

  • Griffin MD, Ritter T, Mahon BP (2010) Immunological aspects of allogeneic mesenchymal stem cell therapies. Hum Gene Ther 21:1641–1655

    CAS  PubMed  Google Scholar 

  • Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, Munoz-Lopez M, Real PJ, Macia A, Sanchez L, Ligero G, Garcia-Parez JL, Menendez P (2010) Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 28:1568–1570

    PubMed Central  PubMed  Google Scholar 

  • Hall S (2001) Nerve repair: a neurobiologistʼs view. J Hand Surg Am 26:129–136

    CAS  Google Scholar 

  • He H, Nagamura-Inoue T, Tsunoda H, Yuzawa M, Yamamoto Y, Yorozu P, Agata H, Tojo A (2013) Stage-specific embryonic antigen 4 in Whartonʼs jelly-derived mesenchymal stem cells is not a marker for proliferation and multipotency. Tissue Eng Part A 20(7–8):1314–1324

    Google Scholar 

  • Hollweck T, Hartmann I, Eblenkamp M, Wintermantel E, Reichart B, ï¾berfuhr P, Eissner G (2011) Cardiac differentiation of human Whartonʼs jelly stem cells—experimental comparison of protocols. Open Tissue Eng Regen Med J 4:95–102

    Google Scholar 

  • Hsieh JY, Wang HW, Chang SJ, Liao KH, Lee IH, Lin WS, Wu CH, Lin WY, Cheng SM (2013) Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS ONE 8(8):e72604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishikawa N, Suzuki Y, Ohta M, Cho H, Suzuki S, Dezawa M, Ide C (2007) Peripheral nerve regeneration through the space formed by a chitosan gel sponge. J Biomed Mater Res Part A 83:33–40

    CAS  Google Scholar 

  • Ilancheran S, Moodley Y, Manuelpillai U (2009) Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta 30:2–10

    CAS  PubMed  Google Scholar 

  • Jeschke MG, Gauglitz GG, Phan TT, Herndon DN, Kita K (2011) Umbilical cord lining membrane and Whartonʼs jelly-derived mesenchymal stem cells: the similarities and differences. Open Tissue Eng Regen Med J 4:21–27

    Google Scholar 

  • Kadner A, Hoerstrup SP, Tracy J, Breymann C, Maurus C, Melnitchouk S, Kadner G, Zund G, Turina M (2002) Human umbilical cord cells: a new cell source for cardiovascular tissue engineering. The Ann Thorac Surg 74:S1422–1428

    Google Scholar 

  • Kadner A, Zund G, Maurus C, Breymann C, Yakarisik S, Kadner G, Turina M, Hoerstrup SP (2004) Human umbilical cord cells for cardiovascular tissue engineering: a comparative study. Eur J Cardiothorac Surg 25:635–641

    PubMed  Google Scholar 

  • Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, Tukun A, Uckan D, Can A (2007) Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25:319–331

    CAS  PubMed  Google Scholar 

  • Kenar H, Kose GT, Toner M, Kaplan DL, Hasirci V (2011) A 3d aligned microfibrous myocardial tissue construct cultured under transient perfusion. Biomaterials 32:5320–5329

    CAS  PubMed  Google Scholar 

  • Kita K, Gauglitz GG, Phan TT, Herndon DN, Jeschke MG (2010) Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev 19:491–502

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Kubota T, Aso T (1998) Study on myofibroblast differentiation in the stromal cells of Whartonʼs jelly: expression and localization of alpha-smooth muscle actin. Early Hum Dev 51:223–233

    CAS  PubMed  Google Scholar 

  • Kuroda Y, Kitada M, Wakao S, Dezawa M (2011) Mesenchymal stem cells and umbilical cord as sources for schwann cell differentiation: their potential in peripheral nerve repair. Open Tissue Eng Regen Med J 4:54–63

    CAS  Google Scholar 

  • Lange-Consiglio A, Corradetti B, Rutigliano L, Cremonesi F, Bizzarro D (2011) In vitro studies of horse umbilical cord matrix-derived cells: from characterization to labeling for magnetic resonance imaging. Open Tissue Eng Regen Med J 4:120–133

    Google Scholar 

  • La Rocca G (2011) Connecting the dots: The promises of Whartonʼs jelly stem cells for tissue repair and regeneration. Open Tissue Eng Regen Med J 4:3–5

    Google Scholar 

  • La Rocca G, Anzalone R, Corrao S, Magno F, Loria T, Lo Iacono M, Di Stefano A, Giannuzzi P, Marasã L, Cappello F, Zummo G, Farina F (2009) Isolation and characterization of Oct-4 + /HLA-G + mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol 131:267–282

    CAS  PubMed  Google Scholar 

  • Laurent LC et al (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8:106–118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lo Iacono M, Anzalone R, Corrao S, Giuffrè M, Di Stefano A, Giannuzzi P, Cappello F, Farina F, La Rocca G (2011) Perinatal and whartonʼs jelly-derived mesenchymal stem cells in cartilage regenerative medicine and tissue engineering strategies. Open Tissue Eng Regen Med J 4:72–81

    CAS  Google Scholar 

  • Lopez Y, Seshareddy K, Trevino E, Cox J, Weiss ML (2011) Evaluating the impact of oxygen concentration and plating density on human Whartonʼs jelly-derived mesenchymal stromal cells. Open Tissue Eng Regen Med J 4:82–94

    CAS  Google Scholar 

  • Lopez Y, Lutjemeier B, Seshareddy K, Trevino EM, Hageman KS, Musch TI, Borgarelli M, Weiss ML (2013) Whartonʼs jelly or bone marrow mesenchymal stromal cells improve cardiac function following myocardial infarction for more than 32 weeks in a rat model: a preliminary report. Curr Stem Cell Res Ther 8:46–59

    CAS  PubMed  Google Scholar 

  • Maltsev VA, Rohwedel J, Hescheler J, Wobus AM (1993) Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev 44:41–50

    CAS  PubMed  Google Scholar 

  • Marcus AJ, Woodbury D (2008) Fetal stem cells from extra‐embryonic tissues: do not discard. J Cell Mol Med 12:730–742

    CAS  PubMed  Google Scholar 

  • Markov V, Kusumi K, Tadesse MG, William DA, Hall DM, Lounev V, Carlton A, Leonard J, Cohen RI, Rappaport EF, Saitta B (2007) Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles. Stem Cells Dev 16:53–73

    CAS  PubMed  Google Scholar 

  • Matsuse D, Kitada M, Kohama M, Nishikawa K, Makinoshima H, Wakao S, Fujiyoshi Y, Heike T, Nakahata T, Akutsu H et al (2010) Human umbilical cord-derived mesenchymal stromal cells differentiate into functional schwann cells that sustain peripheral nerve regeneration. J Neuropathol Exp Neurol 69:973–985

    CAS  PubMed  Google Scholar 

  • Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, Sano M, Toko H, Akazawa H, Sato T, Nakaya H, Kasanuki H, Komuro (2004) I Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279:11384–11391

    Google Scholar 

  • Matsuzuka T, Rachakatla RS, Doi C, Maurya DK, Ohta N, Kawabata A, Pyle MM, Pickel L, Reischman J, Marini F, Troyer D, Tamura M (2010) Human umbilical cord matrix-derived stem cells expressing interferon-beta gene significantly attenuate bronchioloalveolar carcinoma xenografts in scid mice. Lung Cancer 70:28–36

    PubMed Central  PubMed  Google Scholar 

  • Mayer JE Jr (1995) Uses of homograft conduits for right ventricle to pulmonary artery connections in the neonatal period. Semin Thorac Cardiovasc Surg (Annu) 7:130–132

    Google Scholar 

  • McElreavey KD, Irvine AI, Ennis KT, McLean WH (1991) Isolation, culture and characterisation of fibroblast-like cells derived from the Whartonʼs jelly portion of human umbilical cord. Biochem Soc Trans 19:29S

    CAS  PubMed  Google Scholar 

  • Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L, Helwig B, Beerenstrauch M, Abou-Easa K, Hildreth T, Troyer D, Medicetty S (2003) Matrix cells from Whartonʼs jelly form neurons and glia. Stem Cells 21:50–60

    CAS  PubMed  Google Scholar 

  • Najar M, Rouas R, Raicevic G, Boufker HI, Lewalle P, Meuleman N, Bron D, Toungouz M, Martiat P, Lagneaux L (2009) Mesenchymal stromal cells promote or suppress the proliferation of t lymphocytes from cord blood and peripheral blood: the importance of low cell ratio and role of interleukin-6. Cytotherapy 11:570–583

    CAS  PubMed  Google Scholar 

  • Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65:3307–3318

    CAS  PubMed  Google Scholar 

  • Nanaev AK, Kohnen G, Milovanov AP, Domogatsky SP, Kaufmann P (1997) Stromal differentiation and architecture of the human umbilical cord. Placenta 18:53–64

    CAS  PubMed  Google Scholar 

  • Naughton BA, San Roman J, Liu K, Purchio A, Pavelec R, Rekettye L (1997) Cells isolated from Whartonʼs jelly of the human umbilical cord develop a cartilage phenotype when treated with TGF-β in vitro. FASEB J 11:A19

    Google Scholar 

  • Ogawa M, Larue AC, Mehrotra M (2013) Hematopoietic stem cells are pluripotent and not just “hematopoietic”. Blood Cells Mol Dis 51:3–8

    PubMed Central  PubMed  Google Scholar 

  • Ohta M, Suzuki Y, Chou H, Ishikawa N, Suzuki S, Tanihara M, Suzuki Y, Mizushima Y, Dezawa M, Ide C (2004) Novel heparin/alginate gel combined with basic fibroblast growth factor promotes nerve regeneration in rat sciatic nerve. J Biomed Mater Res Part A 71:661–668

    Google Scholar 

  • Paldino E, Cenciarelli C, Giampaolo A, Milazzo L, Pescatori M, Hassan HJ, Casalbore P (2014) Induction of dopaminergic neurons from human Whartonʼs jelly mesenchymal stem cell by forskolin. J Cell Physiol 229(2):232–244

    CAS  PubMed  Google Scholar 

  • Pappa KI, Anagnou NP (2009) Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 4:423–433

    PubMed  Google Scholar 

  • Peng J, Wang Y, Zhang L, Zhao B, Zhao Z, Chen J, Guo Q, Liu S, Sui X, Xu W et al (2011) Human umbilical cord Whartonʼs jelly-derived mesenchymal stem cells differentiate into a schwann-cell phenotype and promote neurite outgrowth in vitro. Brain Res Bull 84:235–243

    PubMed  Google Scholar 

  • Pierdomenico L, Lanuti P, Lachmann R, Grifone G, Cianci E, Gialã L, Pacella S, Romano M, Vitacolonna E, Miscia S (2001) Diabetes mellitus during pregnancy interferes with the biological characteristics of Whartonʼs jelly mesenchymal stem cells. Open Tissue Eng Regen Med J 4:103–111

    Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    CAS  PubMed  Google Scholar 

  • Prasanna SJ, Jahnavi VS (2011) Whartonʼs jelly mesenchymal stem cells as off-the -shelf cellular therapeutics: a closer look into their regenerative and immunomodulatory properties. Open Tissue Eng Regen Med J 4:28–38

    Google Scholar 

  • Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB (2010) Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PloS One 5:e9016

    PubMed Central  PubMed  Google Scholar 

  • Purchio AF, Naughton BA, Roman JS (1999) Production of cartilage tissue using cells isolated from Whartonʼs jelly. US Patent 5(919):702

    Google Scholar 

  • Rachakatla RS, Marini F, Weiss ML, Tamura M, Troyer D (2007) Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors. Cancer Gene Ther 14:828–835

    CAS  PubMed  Google Scholar 

  • Rachakatla RS, Pyle MM, Ayuzawa R, Edwards SM, Marini FC, Weiss ML, Tamura M, Troyer D (2008) Combination treatment of human umbilical cord matrix stem cell-based interferon-beta gene therapy and 5-fluorouracil significantly reduces growth of metastatic human breast cancer in scid mouse lungs. Cancer Invest 26:662–670

    CAS  PubMed  Google Scholar 

  • Rey Nores JE, Bensussan A, Vita N, Stelter F, Arias MA, Jones M, Lefort S, Borysiewicz LK, Ferrara P, Labeta MO (1999) Soluble cd14 acts as a negative regulator of human t cell activation and function. Eur J Immunol 29:265–276

    CAS  PubMed  Google Scholar 

  • Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105–110

    PubMed  Google Scholar 

  • Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23:220–229

    PubMed  Google Scholar 

  • Sarugaser R, Hanoun L, Keating A, Stanford WL, Davies JE (2009) Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PloS ONE 4:e6498

    PubMed Central  PubMed  Google Scholar 

  • Sarugaser R, Ennis J, Stanford WL, Davies JE (2009) Isolation propagation, and characterization of human umbilical cord perivascular cells (HUCPVCs). Methods Mol Biol 482:269–279

    Google Scholar 

  • Scheers I, Lombard C, Najimi M, Sokal E (2011) Cell therapy for the treatment of metabolic liver disease: an update on the umbilical cord derived stem cells candidates. Open Tissue Eng Reg Med J 4:48–53

    CAS  Google Scholar 

  • Schoen FJ, Levy RJ (1999) Tissue heart valves: current challenges and future research perspectives. J Biomed Mater Res 47:439–465

    CAS  PubMed  Google Scholar 

  • Schugar RC, Chirieleison SM, Wescoe KE, Schmidt BT, Askew Y, Nance JJ, Evron JM, Peault B, Deasy BM (2009) High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue. J Biomed Biotechnol 2009:789526

    PubMed Central  PubMed  Google Scholar 

  • Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F (2008) Human leukocyte antigen-g5 secretion by human mesenchymal stem cells is required to suppress t lymphocyte and natural killer function and to induce cd4 + cd25highfoxp3 + regulatory t cells. Stem Cells 26:212–222

    CAS  PubMed  Google Scholar 

  • Semenov O, Breymann C (2011) Mesenchymal stem cells derived from Whartonʼs jelly and their potential for cardio-vascular tissue engineering. Open Tissue Eng Regen Med J 4:64–71

    CAS  Google Scholar 

  • Semenov OV, Koestenbauer S, Riegel M, Zech N, Zimmermann R, Zisch AH, Malek A (2010) Multipotent mesenchymal stem cells from human placenta: critical parameters for isolation and maintenance of stemness after isolation. Am J Obstet Gynecol 202:e191–e193

    Google Scholar 

  • Sharma T, Kumari P, Pincha N, Mutukula N, Saha S, Jana SS, Ta M (2013) Inhibition of non-muscle myosin II leads to G0/G1 arrest of Whartonʼs jelly-derived mesenchymal stromal cells. Cytotherapy 0:1–13

    Google Scholar 

  • Shinoka T, Ma PX, Shum-Tim D, Breuer CK, Cusick RA, Zund G, Langer R, Vacanti JP, Mayer JE Jr (1996) Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 94:64–168

    Google Scholar 

  • Strakova Z, Livak M, Krezalek M, Ihnatovych I (2008) Multipotent properties of myofibroblast cells derived from human placenta. Cell Tissue Res 332:479–488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    CAS  PubMed  Google Scholar 

  • Takechi K, Kuwabara Y, Mizuno M (1993) Ultrastructural and immunohistochemical studies of Whartonʼs jelly umbilical cord cells. Placenta 14:235–245

    CAS  PubMed  Google Scholar 

  • Tamura M, Kawabata A, Ohta N, Uppalapati L, Becker KG, Troyer D (2011) Whartonʼs jelly stem cells as agents for cancer therapy. Open Tissue Eng Regen Med J 4:39–47

    CAS  Google Scholar 

  • Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM (2008) White fat progenitor cells reside in the adipose vasculature. Science 322:583–586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tchoukalova Y, Koutsari C, Jensen M (2007) Committed subcutaneous preadipocytes are reduced in human obesity. Diabetologia 50:151–157

    CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    CAS  PubMed  Google Scholar 

  • Tipnis S, Viswanathan C, Majumdar AS (2010) Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of b7-h1 and ido. Immunol Cell Biol 88:795–806

    PubMed  Google Scholar 

  • Tomita S, Mickle DA, Weisel RD, Jia ZQ, Tumiati LC, Allidina Y, Liu P, Li RK (2002) Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 123:1132–1140

    PubMed  Google Scholar 

  • Troyer DL, Weiss ML (2008) Whartonʼs jelly-derived cells are a primitive stromal cell population. Stem Cells 26:591–599

    PubMed Central  PubMed  Google Scholar 

  • Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Whartonʼs jelly of the human umbilical cord. Stem Cells 22:1330–1337

    PubMed  Google Scholar 

  • Wang XY, Lan Y, He WY, Zhang L, Yao HY, Hou CM, Tong Y, Liu YL, Yang G, Liu XD, Yang X, Liu B, Mao N (2008) Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos. Blood 111:2436–2443

    CAS  PubMed  Google Scholar 

  • Wang L, Seshareddy K, Weiss ML, Detamore MS (2009) Effect of initial seeding density on human umbilical cord mesenchymal stromal cells for fibrocartilage tissue engineering. Tissue Eng Part A 15:1009–1017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Zhao L, Detamore MS (2011) Human umbilical cord mesenchymal stromal cells in a sandwich approach for osteochondral tissue engineering. J Tissue Eng Reg Med 5:712–721

    CAS  Google Scholar 

  • Wang H, Qiu X, Ni P, Qiu X, Lin X, Wu W, Xie L, Lin L, Min J, Lai X, Chen Y, Ho G, Ma L (2014) Immunological characteristics of human umbilical cord mesenchymal stem cells and the therapeutic effects of their transplantion on hyperglycemia in diabetic rats. Int J Mol Med 33(2):263–270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I, Troyer D, McIntosh KR (2008) Immune properties of human umbilical cord Whartonʼs jelly-derived cells. Stem Cells 26:2865–2874

    CAS  PubMed  Google Scholar 

  • Wharton T (1996) Adenographia [trans. S. Freer]. Oxford University, Oxford

    Google Scholar 

  • Xu Q, Zhang HT, Liu K, Rao JH, Liu XM, Wu L, Xu BN (2011) In vitro and in vivo magnetic resonance tracking of sinerem-labeled human umbilical mesenchymal stromal cell-derived schwann cells. Cell Mol Neurobiol 31:365–375

    PubMed  Google Scholar 

  • Zarkhin V, Talisetti A, Li L, Wozniak LJ, McDiarmid SV, Cox K, Esquivel C, Sarwal MM (2010) Expression of soluble HLA-G identifies favorable outcomes in liver transplant recipients. Transplantation 90:1000–1005

    CAS  PubMed  Google Scholar 

  • Zhang X, Zhang Q, Li W, Nie D, Chen W, Xu C, Yi X, Shi J, Tian M, Qin J, Jin G, Tu W (2014) Therapeutic effect of human umbilical cord mesenchymal stem cells on neonatal rat hypoxic-ischemic encephalopathy. J Neurosci Res 92(1):35–45

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar V. Borlongan .

Editor information

Editors and Affiliations

Conclusions

Conclusions

While we have provided insights on the phenotypic markers and therapeutic potentials of stem cells derived from the Wharton’s Jelly , we have also discussed knowledge gap on the biological properties of these cells and the important issues that need to be addressed with regard to their translational application. In order to render WJ applicable for cell-based therapy, further investigations are warranted to determine their advantages and limitations, and also to design optimal transplantation regimens required for specific diseases.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

dela Peña, I. et al. (2015). Characterization of the Phenotypic Features, Immuno-modulatory Properties and Therapeutic Potentials of Wharton’s Jelly-Derived Mesenchymal Stromal Cells. In: Zhao, LR., Zhang, J. (eds) Cellular Therapy for Stroke and CNS Injuries. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-11481-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11481-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11480-4

  • Online ISBN: 978-3-319-11481-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics