Skip to main content

The Contribution of Mesenchymal Stromal Cells in Traumatic Brain Injury

  • Chapter
  • First Online:
Cellular Therapy for Stroke and CNS Injuries

Abstract

Traumatic brain injury (TBI) is the leading cause of mortality and disability among young people in high-income countries. No single-agent treatment has been successfully translated to the clinical setting, hence there is still the need to focus on strategies that simultaneously act on multiple injury mechanisms. Mesenchymal stem/stromal cells (MSCs) are ideal candidates since they act on multiple mechanisms of protection and repair, improving structural and functional outcome after experimental TBI. The magnitude of protection varies extremely in different studies. Besides conceptual issues and methodological differences between injury models and laboratories, heterogeneity of MSC populations also affects the outcomes. This chapter focuses on the biology of MSCs, on mechanisms of brain protection and repair and on open questions that need to be addressed in order to increase effectiveness, reduce variability and safely move from preclinical studies to clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AKI :

Acute kidney injury

BBB :

Blood-brain barrier

BDNF:

Brain-derived neurotrophic factor

BM:

Bone marrow

BMMCs:

BM-derived mononuclear cells

BrdU :

5-bromo-2-deoxyuridine

CBF:

Cerebral blood flow

CCl4 :

Carbon tetrachloride

CCI :

Controlled cortical impact

CNS:

Central nervous system

CTs :

Clinical trials

DCX:

Doublecortin

GCS :

Glasgow coma scale

GDNF:

Glial cell-derived neurotrophic factor

GFAP :

Glial fibrillary acidic protein

GMP :

Good manufacturing practices

ia :

Intra-arterial

ic :

Intracerebral

icv:

intracerebroventricular

IDO:

Indoleamine 2, 3-dioxygenase

IL :

Interleukin

INF:

Interferon

ISTC:

International Society for Cellular Therapy

iv :

Intravenous

MAPC:

Multipotent adult progenitor cells

MCP-1:

Monocyte chemotactic protein-1

MIP-2 :

Macrophage inflammatory protein-2

MMP :

Matrix metalloproteinase

MRI:

Magnetic resonance imaging

MSC :

Mesenchymal stem/stromal cell

MSCs:

Mesenchymal stem/stromal cells

NGF :

Nerve growth factor

NO :

Nitric oxide

NSCs:

Neural stem cells

NT-3 :

Neurotrophin-3

PGE-2:

Prostaglandin E2

ROS :

Reactive oxygen species

Sgz:

Subgranular zone

Svz:

Subventricular zone

TBI:

Traumatic brain injury

TGF:

Transforming growth factor

TIMP-3:

Tissue inhibitor of matrix metalloproteinase-3

tPA :

Tissue plasminogen activator

TNF-α :

Tumor necrosis factor

Trk :

Tyrosine kinase receptor

TSG-6:

Tumor necrosis factor-stimulated gene-6

VCAM-1:

Vascular cell adhesion molecule-1

References

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    CAS  PubMed  Google Scholar 

  • Anderson AJ, Haus DL, Hooshmand MJ, Perez H, Sontag CJ, Cummings BJ (2011) Achieving stable human stem cell engraftment and survival in the CNS: is the future of regenerative medicine immunodeficient? Regen Med 6:367–406

    PubMed Central  PubMed  Google Scholar 

  • Arnhold S, Klein H, Klinz F-J, Absenger Y, Schmidt A, Schinköthe T, Brixius K, Kozlowski J, Desai B, Bloch W, Addicks K (2006) Human bone marrow stroma cells display certain neural characteristics and integrate in the subventricular compartment after injection into the liquor system. Eur J Cell Biol 85:551–565

    CAS  PubMed  Google Scholar 

  • Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor ENE, Timmers L, van Rijen HV, Doevendans PA, Pasterkamp G, Lim SK, de Kleijn DP (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10:301–312

    CAS  PubMed  Google Scholar 

  • Atoui R, Chiu RCJ (2012) Concise review: immunomodulatory properties of mesenchymal stem cells in cellular transplantation: update, controversies, and unknowns. Stem Cells Transl Med 1:200–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bailo M, Soncini M, Vertua E, Signoroni PB, Sanzone S, Lombardi G, Arienti D, Calamani F, Zatti D, Paul P, Albertini A, Zorzi F, Cavagnini A, Candotti F, Wengler GS, Parolini O (2004) Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation 78:1439–1448

    PubMed  Google Scholar 

  • Barnes P, Thomas KL (2008) Proteolysis of proBDNF is a key regulator in the formation of memory. PloS ONE 3:e3248

    PubMed Central  PubMed  Google Scholar 

  • Barry F, Murphy M, Coleman C, O’Brien T, Rae M, Duffy K (2008) Mesenchymal stem cells: characterization, therapeutic evaluation and manufacturing. Eur Cell Mater 16(Suppl. 3):2

    Google Scholar 

  • Barzilay R, Melamed E, Offen D (2009) Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells (Dayt Ohio) 27:2509–2515

    CAS  Google Scholar 

  • Batchelor PE, Liberatore GT, Wong JY, Porritt MJ, Frerichs F, Donnan GA, Howells DW (1999) Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci 19:1708–1716

    CAS  PubMed  Google Scholar 

  • Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA (2001) Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci 21:6718–6731

    CAS  PubMed  Google Scholar 

  • Bernardo ME, Locatelli F, Fibbe WE (2009) Mesenchymal stromal cells. Ann N Y Acad Sci 1176:101–117

    CAS  PubMed  Google Scholar 

  • Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonilla C, Zurita M, Otero L, Aguayo C, Vaquero J (2009) Delayed intralesional transplantation of bone marrow stromal cells increases endogenous neurogenesis and promotes functional recovery after severe traumatic brain injury. Brain Inj BI 23:760–769

    Google Scholar 

  • Bonilla C, Zurita M, Otero L, Aguayo C, Rico MA, Rodríguez A, Vaquero J (2012) Failure of delayed intravenous administration of bone marrow stromal cells after traumatic brain injury. J Neurotrauma 29:394–400

    PubMed  Google Scholar 

  • Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15:641–648

    PubMed Central  PubMed  Google Scholar 

  • Brain Trauma Foundation et al (2007) Guidelines for the management of severe traumatic brain injury. VII. Intracranial pressure monitoring technology. J Neurotrauma 24(Suppl 1):S45–54

    Google Scholar 

  • Bregman BS, Coumans J-V, Dai HN, Kuhn PL, Lynskey J, McAtee M, Sandhu F (2002) Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury. Prog Brain Res 137:257–273

    CAS  PubMed  Google Scholar 

  • Bruno MA, Cuello AC (2006) Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proc Natl Acad Sci U S A 103:6735–6740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A, Falda M, Bussolati B, Tetta C, Camussi G (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol JASN 20:1053–1067

    CAS  Google Scholar 

  • Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L, Tetta C, Camussi G (2012) Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PloS ONE 7:e33115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402

    CAS  PubMed  Google Scholar 

  • Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848

    CAS  PubMed  Google Scholar 

  • Caplan AI (2009) Why are MSCs therapeutic? New data: new insight. J Pathol 217:318–324

    CAS  PubMed  Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    CAS  PubMed  Google Scholar 

  • Cargnoni A, Ressel L, Rossi D, Poli A, Arienti D, Lombardi G, Parolini O (2012) Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis. Cytotherapy 14:153–161

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cargnoni A, Piccinelli EC, Ressel L, Rossi D, Magatti M, Toschi I, Cesari V, Albertini M, Mazzola S, Parolini O (2014) Conditioned medium from amniotic membrane-derived cells prevents lung fibrosis and preserves blood gas exchanges in bleomycin-injured mice-specificity of the effects and insights into possible mechanisms. Cytotherapy 16:17–32

    CAS  PubMed  Google Scholar 

  • Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells (Dayt Ohio) 25(11):2739–2749

    CAS  Google Scholar 

  • Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309

    CAS  PubMed  Google Scholar 

  • Chen Q, Long Y, Yuan X, Zou L, Sun J, Chen S, Perez-Polo JR, Yang K (2005) Protective effects of bone marrow stromal cell transplantation in injured rodent brain: synthesis of neurotrophic factors. J Neurosci Res 80:611–619

    CAS  PubMed  Google Scholar 

  • Cizkova D, Novotna I, Slovinska L, Vanicky I, Jergova S, Rosocha J, Radonak J (2011) Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury. J Neurotrauma 28:1951–1961

    PubMed  Google Scholar 

  • Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, Tetta C, Camussi G (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PloS ONE 5:e11803

    PubMed Central  PubMed  Google Scholar 

  • Correale J, Villa A (2004) The neuroprotective role of inflammation in nervous system injuries. J Neurol 251:1304–1316

    PubMed  Google Scholar 

  • Cox CS Jr, Baumgartner JE, Harting MT, Worth LL, Walker PA, Shah SK, Ewing-Cobbs L, Hasan KM, Day M-C, Lee D, Jimenez F, Gee A (2011) Autologous bone marrow mononuclear cell therapy for severe traumatic brain injury in children. Neurosurgery 68:588–600

    PubMed  Google Scholar 

  • Coyne TM, Marcus AJ, Woodbury D, Black IB (2006) Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cells (Dayt Ohio) 24:2483–2492

    Google Scholar 

  • Coyne TM, Marcus AJ, Reynolds K, Black IB, Woodbury D (2007) Disparate host response and donor survival after the transplantation of mesenchymal or neuroectodermal cells to the intact rodent brain. Transplantation 84:1507–1516

    PubMed  Google Scholar 

  • Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198:54–64

    CAS  PubMed  Google Scholar 

  • Da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    PubMed  Google Scholar 

  • David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12:388–399

    CAS  PubMed  Google Scholar 

  • De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928–1942

    PubMed  Google Scholar 

  • De Girolamo L, Lucarelli E, Alessandri G, Avanzini MA, Bernardo ME, Biagi E, Brini AT, D’Amico G, Fagioli F, Ferrero I, Locatelli F, Maccario R, Marazzi M, Parolini O, Pessina A, Torre ML, Italian Mesenchymal Stem Cell Group (2013) Mesenchymal stem/stromal cells: a new cells as drugs’ paradigm. Efficacy and critical aspects in cell therapy. Curr Pharm Des 19:2459–2473

    PubMed Central  PubMed  Google Scholar 

  • DeKosky ST, Kochanek PM, Clark RS, Ciallella JR, Dixon CE (1998) Secondary injury after head trauma: subacute and long-term mechanisms. Semin Clin Neuropsychiatry 3:176–185

    PubMed  Google Scholar 

  • Delcroix GJ-R, Schiller PC, Benoit J-P, Montero-Menei CN (2010) Adult cell therapy for brain neuronal damages and the role of tissue engineering. Biomaterials 31:2105–2120

    CAS  PubMed  Google Scholar 

  • Di Santo S, Yang Z, Wyler von Ballmoos M, Voelzmann J, Diehm N, Baumgartner I, Kalka C (2009) Novel cell-free strategy for therapeutic angiogenesis: in vitro generated conditioned medium can replace progenitor cell transplantation. PloS ONE 4:e5643

    PubMed Central  PubMed  Google Scholar 

  • Dimarino AM, Caplan AI, Bonfield TL (2013) Mesenchymal Stem Cells in Tissue Repair. Front Immunol 4:201

    PubMed Central  PubMed  Google Scholar 

  • Domínguez-Bendala J, Ricordi C (2012) Present and future cell therapies for pancreatic beta cell replenishment. World J Gastroenterol WJG 18:6876–6884

    Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    CAS  PubMed  Google Scholar 

  • Dong X, Pan R, Zhang H, Yang C, Shao J, Xiang L (2013) Modification of histone acetylation facilitates hepatic differentiation of human bone marrow mesenchymal stem cells. PloS ONE 8:e63405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dreyer J-L (2010) New insights into the roles of microRNAs in drug addiction and neuroplasticity. Genome Med 2:92

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J (2005) Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 106:4057–4065

    CAS  PubMed  Google Scholar 

  • Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242

    CAS  PubMed  Google Scholar 

  • Ernfors P, Kucera J, Lee KF, Loring J, Jaenisch R (1995) Studies on the physiological role of brain-derived neurotrophic factor and neurotrophin-3 in knockout mice. Int J Dev Biol 39:799–807

    CAS  PubMed  Google Scholar 

  • Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS Jr (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18:683–692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franquesa M et al (2013) Mesenchymal Stem Cells in Solid Organ Transplantation (MiSOT) fourth meeting: lessons learned from first clinical trials. Transplantation 96:234–238

    PubMed Central  PubMed  Google Scholar 

  • Friedenstein A (1990) Osteogenic stem cells in bone marrow. In: Heersche JNM, Kanis JA (eds) Bone and mineral research. Elsevier, Amsterdam

    Google Scholar 

  • Fukumoto T, Sperling JW, Sanyal A, Fitzsimmons JS, Reinholz GG, Conover CA, O’Driscoll SW (2003) Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthritis Cartilage 11(1):55–64

    CAS  PubMed  Google Scholar 

  • Giunti D, Parodi B, Usai C, Vergani L, Casazza S, Bruzzone S, Mancardi G, Uccelli A (2012) Mesenchymal stem cells shape microglia effector functions through the release of CX3CL1. Stem Cells (Dayt Ohio) 30:2044–2053

    CAS  Google Scholar 

  • Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, Dzau VJ (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11:367–368

    CAS  PubMed  Google Scholar 

  • Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graham DI, Ford I, Adams JH, Doyle D, Teasdale GM, Lawrence AE, McLellan DR (1989) Ischaemic brain damage is still common in fatal non-missile head injury. J Neurol Neurosurg Psychiatry 52:346–350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grinnemo KH, Månsson A, Dellgren G, Klingberg D, Wardell E, Drvota V, Tammik C, Holgersson J, Ringdén O, Sylvén C, Le Blanc K (2004) Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infarcted rat myocardium. J Thorac Cardiovasc Surg 127:1293–1300

    CAS  PubMed  Google Scholar 

  • Grinnemo KH, Månsson-Broberg A, Leblanc K, Corbascio M, Wärdell E, Siddiqui AJ, Hao X, Sylvén C, Dellgren G (2006) Human mesenchymal stem cells do not differentiate into cardiomyocytes in a cardiac ischemic xenomodel. Ann Med 38:144–153

    CAS  PubMed  Google Scholar 

  • Guan J, Zhu Z, Zhao RC, Xiao Z, Wu C, Han Q, Chen L, Tong W, Zhang J, Han Q, Gao J, Feng M, Bao X, Dai J, Wang R (2013) Transplantation of human mesenchymal stem cells loaded on collagen scaffolds for the treatment of traumatic brain injury in rats. Biomaterials 34:5937–5946

    CAS  PubMed  Google Scholar 

  • Han EY, Chun MH, Kim ST, Lim D (2013) Injection time-dependent effect of adult human bone marrow stromal cell transplantation in a rat model of severe traumatic brain injury. Curr Stem Cell Res Ther 8:172–181

    CAS  PubMed  Google Scholar 

  • Haniffa MA, Collin MP, Buckley CD, Dazzi F (2009) Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica 94:258–263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harting MT, Jimenez F, Xue H, Fischer UM, Baumgartner J, Dash PK, Cox CS (2009) Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 110:1189–1197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heile AMB, Wallrapp C, Klinge PM, Samii A, Kassem M, Silverberg G, Brinker T (2009) Cerebral transplantation of encapsulated mesenchymal stem cells improves cellular pathology after experimental traumatic brain injury. Neurosci Lett 463:176–181

    CAS  PubMed  Google Scholar 

  • Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A, International Society for Cellular Therapy (2005) Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy 7:393–395

    CAS  PubMed  Google Scholar 

  • Hu S-L, Luo H-S, Li J-T, Xia Y-Z, Li L, Zhang L-J, Meng H, Cui G-Y, Chen Z, Wu N, Lin J-K, Zhu G, Feng H (2010) Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells. Crit Care Med 38:2181–2189

    PubMed  Google Scholar 

  • Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke J Cereb Circ 43:3063–3070

    CAS  Google Scholar 

  • Huang X-P, Sun Z, Miyagi Y, McDonald Kinkaid H, Zhang L, Weisel RD, Li R-K (2010) Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 122:2419–2429

    CAS  PubMed  Google Scholar 

  • In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FHJ, Willemze R, Fibbe WE, Kanhai HHH (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102:1548–1549

    Google Scholar 

  • Iseki K, Hagino S, Nikaido T, Zhang Y, Mori T, Yokoya S, Hozumi Y, Goto K, Wanaka A, Tase C (2012) Gliosis-specific transcription factor OASIS coincides with proteoglycan core protein genes in the glial scar and inhibits neurite outgrowth. Biomed Res Tokyo Jpn 33:345–353

    CAS  Google Scholar 

  • Jankowski RJ, Deasy BM, Huard J (2002) Muscle-derived stem cells. Gene Ther 9:642–647

    CAS  PubMed  Google Scholar 

  • Jenkins LW, Moszynski K, Lyeth BG, Lewelt W, DeWitt DS, Allen A, Dixon CE, Povlishock JT, Majewski TJ, Clifton GL (1989) Increased vulnerability of the mildly traumatized rat brain to cerebral ischemia: the use of controlled secondary ischemia as a research tool to identify common or different mechanisms contributing to mechanical and ischemic brain injury. Brain Res 477:211–224

    CAS  PubMed  Google Scholar 

  • Jones TH, Morawetz RB, Crowell RM, Marcoux FW, FitzGibbon SJ, DeGirolami U, Ojemann RG (1981) Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg 54:773–782

    CAS  PubMed  Google Scholar 

  • Katsuda T, Kosaka N, Takeshita F, Ochiya T (2013) The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics 13:1637–1653

    CAS  PubMed  Google Scholar 

  • Kern S, Eichler H, Stoeve J, Klüter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells (Dayt Ohio) 24:1294–1301

    CAS  Google Scholar 

  • Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci Off J Soc Neurosci 29:13435–13444

    CAS  Google Scholar 

  • Kim H-J, Lee J-H, Kim S-H (2010) Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. J Neurotrauma 27:131–138

    PubMed  Google Scholar 

  • Kim H-S, Choi D-Y, Yun SJ, Choi S-M, Kang JW, Jung JW, Hwang D, Kim KP, Kim D-W (2012) Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res 11:839–849

    CAS  PubMed  Google Scholar 

  • Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685

    CAS  PubMed  Google Scholar 

  • Knaän-Shanzer S (2013) The immune status of mesenchymal stem cells and its relevance for therapeutic application. Stem Cells (Dayt Ohio)

    Google Scholar 

  • Kokaia Z, Lindvall O (2003) Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol 13:127–132

    CAS  PubMed  Google Scholar 

  • Kumar S, Kahn MA, Dinh L, de Vellis J (1998) NT-3-mediated TrkC receptor activation promotes proliferation and cell survival of rodent progenitor oligodendrocyte cells in vitro and in vivo. J Neurosci Res 54:754–765

    CAS  PubMed  Google Scholar 

  • Lai AY, Todd KG (2008) Differential regulation of trophic and proinflammatory microglial effectors is dependent on severity of neuronal injury. Glia 56:259–270

    PubMed  Google Scholar 

  • Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DPV, Lim SK (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4:214–222

    CAS  PubMed  Google Scholar 

  • Lai RC, Chen TS, Lim SK (2011) Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med 6:481–492

    PubMed  Google Scholar 

  • Lai RC, Yeo RWY, Tan KH, Lim SK (2013) Mesenchymal stem cell exosome ameliorates reperfusion injury through proteomic complementation. Regen Med 8:197–209

    CAS  PubMed  Google Scholar 

  • Laird MD, Vender JR, Dhandapani KM (2008) Opposing roles for reactive astrocytes following traumatic brain injury. Neurosignals 16:154–164

    CAS  PubMed  Google Scholar 

  • Li L, Jiang Q, Qu CS, Ding GL, Li QJ, Wang SY, Lee JH, Lu M, Mahmood A, Chopp M (2011) Transplantation of marrow stromal cells restores cerebral blood flow and reduces cerebral atrophy in rats with traumatic brain injury: in vivo MRI study. J Neurotrauma 28:535–545

    PubMed Central  PubMed  Google Scholar 

  • Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, Wang M, Zhou Y, Zhu W, Li W, Xu W (2013) Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 22:845–854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin B, Xu Y, Zhang B, He Y, Yan Y, He M-C (2014) MEK inhibition reduces glial scar formation and promotes the recovery of sensorimotor function in rats following spinal cord injury. Exp Ther Med 7:66–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loane DJ, Byrnes KR (2010) Role of microglia in neurotrauma. Neurother J Am Soc Exp Neurother 7:366–377

    CAS  Google Scholar 

  • Longhi L, Perego C, Ortolano F, Aresi S, Fumagalli S, Zanier ER, Stocchetti N, De Simoni M-G (2013) Tumor necrosis factor in traumatic brain injury: effects of genetic deletion of p55 or p75 receptor. J Cereb Blood Flow Metab 33(8):1182–1189

    Google Scholar 

  • Lu D, Li Y, Wang L, Chen J, Mahmood A, Chopp M (2001a) Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J Neurotrauma 18:813–819

    CAS  PubMed  Google Scholar 

  • Lu D, Mahmood A, Wang L, Li Y, Lu M, Chopp M (2001b) Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 12:559–563

    CAS  PubMed  Google Scholar 

  • Lu D, Mahmood A, Qu C, Hong X, Kaplan D, Chopp M (2007) Collagen scaffolds populated with human marrow stromal cells reduce lesion volume and improve functional outcome after traumatic brain injury. Neurosurgery 61:596–602; discussion 602–603

    PubMed Central  PubMed  Google Scholar 

  • Lucas S-M, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(Suppl 1):S232–240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lundberg J, Södersten E, Sundström E, Le Blanc K, Andersson T, Hermanson O, Holmin S (2012) Targeted intra-arterial transplantation of stem cells to the injured CNS is more effective than intravenous administration: engraftment is dependent on cell type and adhesion molecule expression. Cell Transplant 21:333–343

    PubMed  Google Scholar 

  • Madinier A, Bertrand N, Mossiat C, Prigent-Tessier A, Beley A, Marie C, Garnier P (2009) Microglial involvement in neuroplastic changes following focal brain ischemia in rats. PloS ONE 4:e8101

    PubMed Central  PubMed  Google Scholar 

  • Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, Parolini O (2008) Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells (Dayt Ohio) 26:182–192

    CAS  Google Scholar 

  • Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzón IM, Nepomnaschy I, Costa H, Cañones C, Raiden S, Vermeulen M, Geffner JR (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PloS ONE 5:e9252

    PubMed Central  PubMed  Google Scholar 

  • Mahmood A, Lu D, Wang L, Li Y, Lu M, Chopp M (2001a) Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery 49:1196–1203; discussion 1203–1204

    CAS  PubMed  Google Scholar 

  • Mahmood A, Lu D, Yi L, Chen JL, Chopp M (2001b) Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats. J Neurosurg 94:589–595

    CAS  PubMed  Google Scholar 

  • Mahmood A, Lu D, Wang L, Chopp M (2002) Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. J Neurotrauma 19:1609–1617

    PubMed  Google Scholar 

  • Mahmood A, Lu D, Lu M, Chopp M (2003) Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 53:697–702; discussion 702–703

    PubMed  Google Scholar 

  • Mahmood A, Lu D, Chopp M (2004a) Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma 21:33–39

    PubMed  Google Scholar 

  • Mahmood A, Lu D, Chopp M (2004b) Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Neurosurgery 55:1185–1193

    PubMed  Google Scholar 

  • Mahmood A, Lu D, Qu C, Goussev A, Chopp M (2005) Human marrow stromal cell treatment provides long-lasting benefit after traumatic brain injury in rats. Neurosurgery 57:1026–1031; discussion 1026–1031

    PubMed Central  PubMed  Google Scholar 

  • Mahmood A, Lu D, Qu C, Goussev A, Chopp M (2007) Treatment of traumatic brain injury with a combination therapy of marrow stromal cells and atorvastatin in rats. Neurosurgery 60:546–553; discussion 553–554

    PubMed  Google Scholar 

  • Mahmood A, Qu C, Ning R, Wu H, Goussev A, Xiong Y, Irtenkauf S, Li Y, Chopp M (2011) Treatment of TBI with collagen scaffolds and human marrow stromal cells increases the expression of tissue plasminogen activator. J Neurotrauma 28:1199–1207

    PubMed Central  PubMed  Google Scholar 

  • Mahmood A, Wu H, Qu C, Mahmood S, Xiong Y, Kaplan D, Chopp M (2013a) Down-regulation of Nogo-A by collagen scaffolds impregnated with bone marrow stromal cell treatment after traumatic brain injury promotes axonal regeneration in rats. Brain Res

    Google Scholar 

  • Mahmood A, Wu H, Qu C, Xiong Y, Chopp M (2013b) Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord. J Neurosurg 118:381–389

    CAS  PubMed  Google Scholar 

  • Mahmood A, Wu H, Qu C, Mahmood S, Xiong Y, Kaplan D, Chopp M (2014) Down-regulation of Nogo-A by collagen scaffolds impregnated with bone marrow stromal cell treatment after traumatic brain injury promotes axonal regeneration in rats. Brain Res 1542:41–48

    CAS  PubMed  Google Scholar 

  • Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marappagounder D, Somasundaram I, Dorairaj S, Sankaran RJ (2013) Differentiation of mesenchymal stem cells derived from human bone marrow and subcutaneous adipose tissue into pancreatic islet-like clusters in vitro. Cell Mol Biol Lett 18:75–88

    CAS  PubMed  Google Scholar 

  • Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73:1907–1920

    CAS  PubMed  Google Scholar 

  • Matsumoto M, Imura T, Fukazawa T, Sun Y, Takeda M, Kajiume T, Kawahara Y, Yuge L (2013) Electrical stimulation enhances neurogenin2 expression through β-catenin signaling pathway of mouse bone marrow stromal cells and intensifies the effect of cell transplantation on brain injury. Neurosci Lett 533:71–76

    CAS  PubMed  Google Scholar 

  • McIntosh TK, Smith DH, Meaney DF, Kotapka MJ, Gennarelli TA, Graham DI (1996) Neuropathological sequelae of traumatic brain injury: relationship to neurochemical and biomechanical mechanisms. Lab Investig J Tech Methods Pathol 74:315–342

    CAS  Google Scholar 

  • Meirelles L da S, Nardi NB (2009) Methodology, biology and clinical applications of mesenchymal stem cells. Front Biosci Landmark Ed 14:4281–4298

    Google Scholar 

  • Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, Wang H, Ge W, Bogin V, Chan KW, Thébaud B, Riordan NH (2007) Endometrial regenerative cells: a novel stem cell population. J Transl Med 5:57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Menge T, Zhao Y, Zhao J, Wataha K, Gerber M, Zhang J, Letourneau P, Redell J, Shen L, Wang J, Peng Z, Xue H, Kozar R, Cox CS Jr, Khakoo AY, Holcomb JB, Dash PK, Pati S (2012) Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury. Sci Transl Med 4:161ra150

    Google Scholar 

  • Morganti-Kossmann MC, Satgunaseelan L, Bye N, Kossmann T (2007) Modulation of immune response by head injury. Injury 38:1392–1400

    PubMed  Google Scholar 

  • Mori K, Iwata J, Miyazaki M, Nakao Y, Maeda M (2005) Functional recovery of neuronal activity in rat whisker-barrel cortex sensory pathway from freezing injury after transplantation of adult bone marrow stromal cells. J Cereb Blood Flow Metab 25:887–898

    PubMed  Google Scholar 

  • Murray IR, West CC, Hardy WR, James AW, Park TS, Nguyen A, Tawonsawatruk T, Lazzari L, Soo C, Péault B (2013) Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci CMLS

    Google Scholar 

  • Musina RA, Belyavski AV, Tarusova OV, Solovyova EV, Sukhikh GT (2008) Endometrial mesenchymal stem cells isolated from the menstrual blood. Bull Exp Biol Med 145:539–543

    CAS  PubMed  Google Scholar 

  • Nakajima K, Yamamoto S, Kohsaka S, Kurihara T (2008) Neuronal stimulation leading to upregulation of glutamate transporter-1 (GLT-1) in rat microglia in vitro. Neurosci Lett 436:331–334

    CAS  PubMed  Google Scholar 

  • Nakajima H, Uchida K, Guerrero AR, Watanabe S, Sugita D, Takeura N, Yoshida A, Long G, Wright KT, Johnson WEB, Baba H (2012) Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma 29:1614–1625

    PubMed Central  PubMed  Google Scholar 

  • Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110:3499–3506

    CAS  PubMed  Google Scholar 

  • Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EGA, Willemze R, Fibbe WE (2006) Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 108:2114–2120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neher JJ, Neniskyte U, Zhao J-W, Bal-Price A, Tolkovsky AM, Brown GC (2011) Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol 186:4973–4983

    CAS  PubMed  Google Scholar 

  • Neher JJ, Neniskyte U, Brown GC (2012) Primary phagocytosis of neurons by inflamed microglia: potential roles in neurodegeneration. Front Pharmacol 3:27

    PubMed Central  PubMed  Google Scholar 

  • Neirinckx V, Coste C, Rogister B, Wislet-Gendebien S (2013a) Concise review: adult mesenchymal stem cells, adult neural crest stem cells, and therapy of neurological pathologies: a state of play. Stem Cells Transl Med 2:284–296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neirinckx V, Marquet A, Coste C, Rogister B, Wislet-Gendebien S (2013b) Adult bone marrow neural crest stem cells and mesenchymal stem cells are not able to replace lost neurons in acute MPTP-lesioned mice. PloS ONE 8:e64723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Niemeyer P, Vohrer J, Schmal H, Kasten P, Fellenberg J, Suedkamp NP, Mehlhorn AT (2008) Survival of human mesenchymal stromal cells from bone marrow and adipose tissue after xenogenic transplantation in immunocompetent mice. Cytotherapy 10:784–795

    CAS  PubMed  Google Scholar 

  • Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD (2005) I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience 136:161–169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nudo RJ (2013) Recovery after brain injury: mechanisms and principles. Front Hum Neurosci 7:887

    PubMed Central  PubMed  Google Scholar 

  • Ooi YY, Ramasamy R, Rahmat Z, Subramaiam H, Tan SW, Abdullah M, Israf DA, Vidyadaran S (2010) Bone marrow-derived mesenchymal stem cells modulate BV2 microglia responses to lipopolysaccharide. Int Immunopharmacol 10:1532–1540

    CAS  PubMed  Google Scholar 

  • Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, Hempstead BL, Littman DR, Gan W-B (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–1609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parolini O et al (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells (Dayt Ohio) 26:300–311

    Google Scholar 

  • Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ (2004) Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103:1662–1668

    CAS  PubMed  Google Scholar 

  • Perego C, Fumagalli S, De Simoni M-G (2011) Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation 8:174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phinney DG (2012) Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. J Cell Biochem 113:2806–2812

    CAS  PubMed  Google Scholar 

  • Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells (Dayt Ohio) 25:2896–2902

    Google Scholar 

  • Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ (1999) Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 75:424–436

    CAS  PubMed  Google Scholar 

  • Pietilä M, Palomäki S, Lehtonen S, Ritamo I, Valmu L, Nystedt J, Laitinen S, Leskelä H-V, Sormunen R, Pesälä J, Nordström K, Vepsäläinen A, Lehenkari P (2012) Mitochondrial function and energy metabolism in umbilical cord blood- and bone marrow-derived mesenchymal stem cells. Stem Cells Dev 21:575–588

    PubMed Central  PubMed  Google Scholar 

  • Pischiutta F, D’Amico G, Dander E, Biondi A, Biagi E, Citerio G, De Simoni M-G, Zanier ER (2014) Immunosuppression does not affect human bone marrow mesenchymal stromal cell efficacy after transplantation in traumatized mice brain. Neuropharmacology 79:119–126

    CAS  PubMed  Google Scholar 

  • Prockop DJ, Oh JY (2012) Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther J Am Soc Gene Ther 20:14–20

    CAS  Google Scholar 

  • Qu C, Mahmood A, Lu D, Goussev A, Xiong Y, Chopp M (2008) Treatment of traumatic brain injury in mice with marrow stromal cells. Brain Res 1208:234–239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qu C, Xiong Y, Mahmood A, Kaplan DL, Goussev A, Ning R, Chopp M (2009) Treatment of traumatic brain injury in mice with bone marrow stromal cell-impregnated collagen scaffolds. J Neurosurg 111:658–665

    PubMed Central  PubMed  Google Scholar 

  • Qu C, Mahmood A, Liu XS, Xiong Y, Wang L, Wu H, Li B, Zhang ZG, Kaplan DL, Chopp M (2011) The treatment of TBI with human marrow stromal cells impregnated into collagen scaffold: functional outcome and gene expression profile. Brain Res 1371:129–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richardson RM, Sun D, Bullock MR (2007) Neurogenesis after traumatic brain injury. Neurosurg Clin N Am 18:169–181, xi

    PubMed  Google Scholar 

  • Rodriguez A-M, Elabd C, Amri E-Z, Ailhaud G, Dani C (2005) The human adipose tissue is a source of multipotent stem cells. Biochimie 87:125–128

    CAS  PubMed  Google Scholar 

  • Rogers I, Casper RF (2004) Umbilical cord blood stem cells. Best Pract Res Clin Obstet Gynaecol 18:893–908

    PubMed  Google Scholar 

  • Rossignoli F, Caselli A, Grisendi G, Piccinno S, Burns JS, Murgia A, Veronesi E, Loschi P, Masini C, Conte P, Paolucci P, Horwiz EM, Dominici M (2013) Isolation, characterization, and transduction of endometrial decidual tissue multipotent mesenchymal stromal/stem cells from menstrual blood. Biomed Res Int 2013:901821

    Google Scholar 

  • Rüster B, Göttig S, Ludwig RJ, Bistrian R, Müller S, Seifried E, Gille J, Henschler R (2006) Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 108:3938–3944

    PubMed  Google Scholar 

  • Saito A, Narasimhan P, Hayashi T, Okuno S, Ferrand-Drake M, Chan PH (2004) Neuroprotective role of a proline-rich Akt substrate in apoptotic neuronal cell death after stroke: relationships with nerve growth factor. J Neurosci 24:1584–1593

    CAS  PubMed  Google Scholar 

  • Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells (Dayt Ohio) 28:585–596

    CAS  Google Scholar 

  • Salingcarnboriboon R, Yoshitake H, Tsuji K, Obinata M, Amagasa T, Nifuji A, Noda M (2003) Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Exp Cell Res 287:289–300

    CAS  PubMed  Google Scholar 

  • Sancho-Bru P, Najimi M, Caruso M, Pauwelyn K, Cantz T, Forbes S, Roskams T, Ott M, Gehling U, Sokal E, Verfaillie CM, Muraca M (2009) Stem and progenitor cells for liver repopulation: can we standardise the process from bench to bedside? Gut 58:594–603

    CAS  PubMed  Google Scholar 

  • Saracino GAA, Cigognini D, Silva D, Caprini A, Gelain F (2013) Nanomaterials design and tests for neural tissue engineering. Chem Soc Rev 42:225–262

    CAS  PubMed  Google Scholar 

  • Schinköthe T, Bloch W, Schmidt A (2008) In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev 17:199–206

    PubMed  Google Scholar 

  • Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC, Pelletier MP (2007) Stem cell transplantation: the lung barrier. Transplant Proc 39:573–576

    CAS  PubMed  Google Scholar 

  • Shechter R, Schwartz M (2013) Harnessing monocyte-derived macrophages to control central nervous system pathologies: no longer “if” but “how.” J Pathol 229:332–346

    CAS  PubMed  Google Scholar 

  • Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704

    PubMed  Google Scholar 

  • Soncini M, Vertua E, Gibelli L, Zorzi F, Denegri M, Albertini A, Wengler GS, Parolini O (2007) Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 1:296–305

    CAS  PubMed  Google Scholar 

  • Song D, Ohtaki H, Tsumuraya T, Miyamoto K, Shibato J, Rakwal R, Xu Z, Hiraizumi Y, Inoue T, Shioda S (2013) The anti-inflammatory property of human bone marrow-derived mesenchymal stem/stromal cells is preserved in late-passage cultures. J Neuroimmunol 263:55–63

    CAS  PubMed  Google Scholar 

  • Stocchetti N (2005) Brain and sepsis: functional impairment, structural damage, and markers. Anesth Analg 101:1463–1464

    PubMed  Google Scholar 

  • Stocchetti N, Longhi L, Zanier ER (2008) Intracranial pressure monitoring for traumatic brain injury: available evidence and clinical implications. Minerva Anestesiol 74:197–203

    CAS  PubMed  Google Scholar 

  • Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58:233–247

    CAS  PubMed  Google Scholar 

  • Tajiri N, Acosta SA, Shahaduzzaman M, Ishikawa H, Shinozuka K, Pabon M, Hernandez-Ontiveros D, Kim DW, Metcalf C, Staples M, Dailey T, Vasconcellos J, Franyuti G, Gould L, Patel N, Cooper D, Kaneko Y, Borlongan CV, Bickford PC (2014) Intravenous transplants of human adipose-derived stem cell protect the brain from traumatic brain injury-induced neurodegeneration and motor and cognitive impairments: cell graft biodistribution and soluble factors in young and aged rats. J Neurosci 34:313–326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tate CC, Fonck C, McGrogan M, Case CC (2010) Human mesenchymal stromal cells and their derivative, SB623 cells, rescue neural cells via trophic support following in vitro ischemia. Cell Transplant 19:973–984

    PubMed  Google Scholar 

  • Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE, Doevendans PA, Piek JJ, El Oakley RM, Choo A, Lee CN, Pasterkamp G, de Kleijn DPV (2007) Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res 1:129–137

    CAS  PubMed  Google Scholar 

  • Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736

    CAS  PubMed  Google Scholar 

  • Van Poll D, Parekkadan B, Cho CH, Berthiaume F, Nahmias Y, Tilles AW, Yarmush ML (2008) Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatol Baltim Md 47:1634–1643

    Google Scholar 

  • Verderio C (2013) Extracellular membrane microvesicles and nanotubes in the brain: understanding their nature, their function in cell-to-cell communication, their role in transcellular spreading of pathological agents and their therapeutic potential. Front Physiol 4:163

    PubMed Central  PubMed  Google Scholar 

  • Villaron EM, Almeida J, López-Holgado N, Alcoceba M, Sánchez-Abarca LI, Sanchez-Guijo FM, Alberca M, Pérez-Simon JA, San Miguel JF, Del Cañizo MC (2004) Mesenchymal stem cells are present in peripheral blood and can engraft after allogeneic hematopoietic stem cell transplantation. Haematologica 89:1421–1427

    PubMed  Google Scholar 

  • Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416

    CAS  PubMed  Google Scholar 

  • Wakabayashi K, Nagai A, Sheikh AM, Shiota Y, Narantuya D, Watanabe T, Masuda J, Kobayashi S, Kim SU, Yamaguchi S (2010) Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res 88:1017–1025

    CAS  PubMed  Google Scholar 

  • Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, Pittenger MF, van Zijl PCM, Huang J, Bulte JWM (2008) Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke J Cereb Circ 39:1569–1574

    CAS  Google Scholar 

  • Walker PA, Harting MT, Jimenez F, Shah SK, Pati S, Dash PK, Cox CS Jr (2010) Direct intrathecal implantation of mesenchymal stromal cells leads to enhanced neuroprotection via an NFkappaB-mediated increase in interleukin–6 production. Stem Cells Dev 19:867–876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walker PA, Bedi S, Shah SK, Jimenez F, Xue H, Hamilton JA, Smith P, Thomas CP, Mays RW, Pati S, Cox CS (2012a) Intravenous multipotent adult progenitor cell therapy after traumatic brain injury: modulation of the resident microglia population. J Neuroinflammation 9:228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walker PA, Shah SK, Jimenez F, Aroom KR, Harting MT, Cox CS Jr (2012b) Bone marrow-derived stromal cell therapy for traumatic brain injury is neuroprotective via stimulation of non-neurologic organ systems. Surgery 152:790–793

    PubMed  Google Scholar 

  • Wang Z, Yao W, Deng Q, Zhang X, Zhang J (2013) Protective effects of BDNF overexpression bone marrow stromal cell transplantation in rat models of traumatic brain injury. J Mol Neurosci 49:409–416

    CAS  PubMed  Google Scholar 

  • Watanabe J, Shetty AK, Hattiangady B, Kim D-K, Foraker JE, Nishida H, Prockop DJ (2013) Administration of TSG-6 improves memory after traumatic brain injury in mice. Neurobiol Dis 59:86–99

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wisniewski HG, Vilcek J (1997) TSG-6: an IL-1/TNF-inducible protein with anti-inflammatory activity. Cytokine Growth Factor Rev 8:143–156

    CAS  PubMed  Google Scholar 

  • Wolpe SD, Sherry B, Juers D, Davatelis G, Yurt RW, Cerami A (1989) Identification and characterization of macrophage inflammatory protein 2. Proc Natl Acad Sci U S A 86:612–616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xin H, Li Y, Shen LH, Liu X, Wang X, Zhang J, Pourabdollah-Nejad D S, Zhang C, Zhang L, Jiang H, Zhang ZG, Chopp M (2010) Increasing tPA activity in astrocytes induced by multipotent mesenchymal stromal cells facilitate neurite outgrowth after stroke in the mouse. PloS ONE 5:e9027

    PubMed Central  PubMed  Google Scholar 

  • Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M (2013a) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33:1711–1715

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, Gang Zhang Z, Chopp M (2013b) Mir-133b Promotes Neural Plasticity and Functional Recovery after Treatment of Stroke with Multipotent Mesenchymal Stromal Cells in Rats Via Transfer of Exosome-Enriched Extracellular Particles. Stem Cells (Dayt Ohio)

    Google Scholar 

  • Xiong Y, Qu C, Mahmood A, Liu Z, Ning R, Li Y, Kaplan DL, Schallert T, Chopp M (2009) Delayed transplantation of human marrow stromal cell-seeded scaffolds increases transcallosal neural fiber length, angiogenesis, and hippocampal neuronal survival and improves functional outcome after traumatic brain injury in rats. Brain Res 1263:183–191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Y, Malladi P, Wagner DR, Longaker MT (2005) Adipose-derived mesenchymal cells as a potential cell source for skeletal regeneration. Curr Opin Mol Ther 7:300–305

    PubMed  Google Scholar 

  • Yang C-C, Shih Y-H, Ko M-H, Hsu S-Y, Cheng H, Fu Y-S (2008) Transplantation of human umbilical mesenchymal stem cells from Wharton’s jelly after complete transection of the rat spinal cord. PloS ONE 3:e3336

    PubMed Central  PubMed  Google Scholar 

  • Yang J, Han Y, Ye W, Liu F, Zhuang K, Wu G (2013) Alpha tocopherol treatment reduces the expression of Nogo-A and NgR in rat brain after traumatic brain injury. J Surg Res 182:e69–77

    CAS  PubMed  Google Scholar 

  • Yasuda H, Kuroda S, Shichinohe H, Kamei S, Kawamura R, Iwasaki Y (2010) Effect of biodegradable fibrin scaffold on survival, migration, and differentiation of transplanted bone marrow stromal cells after cortical injury in rats. J Neurosurg 112:336–344

    CAS  PubMed  Google Scholar 

  • Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809

    CAS  PubMed  Google Scholar 

  • Zanier ER, Montinaro M, Vigano M, Villa P, Fumagalli S, Pischiutta F, Longhi L, Leoni ML, Rebulla P, Stocchetti N, Lazzari L, De Simoni M-G (2011) Human umbilical cord blood mesenchymal stem cells protect mice brain after trauma. Crit Care Med 39:2501–2510

    PubMed  Google Scholar 

  • Zanier RE, Pischiutta F, Riganti L, Marchesi F, Turola E, Fumagalli S, Perego C, Parotto E, Vinci P, Veglianese P, D’Amico G, Verderio C, De Simoni M-G (2014) Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma. Neurother J Am Soc Exp Neurother 11:679–695

    Google Scholar 

  • Zhang R, Liu Y, Yan K, Chen L, Chen X-R, Li P, Chen F-F, Jiang X-D (2013) Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 10:106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    CAS  PubMed  Google Scholar 

  • Zhu Y-G, Feng X-M, Abbott J, Fang X-H, Hao Q, Monsel A, Qu J-M, Matthay MA, Lee JW (2014) Human Mesenchymal Stem Cell Microvesicles for Treatment of Escherichia coli Endotoxin-Induced Acute Lung Injury in Mice. Stem Cells (Dayt Ohio) 32:116–125

    CAS  Google Scholar 

  • Zigova T, Pencea V, Wiegand SJ, Luskin MB (1998) Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci 11:234–245

    CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    CAS  PubMed  Google Scholar 

  • Zygun DA, Zuege DJ, Boiteau PJE, Laupland KB, Henderson EA, Kortbeek JB, Doig CJ (2006) Ventilator-associated pneumonia in severe traumatic brain injury. Neurocrit Care 5:108–114

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Eliana Sammali and Federica Marchesi for the artwork.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elisa R. Zanier MD or Maria-Grazia De Simoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zanier, E., Pischiutta, F., Parotto, E., Caruso, M., Parolini, O., De Simoni, MG. (2015). The Contribution of Mesenchymal Stromal Cells in Traumatic Brain Injury. In: Zhao, LR., Zhang, J. (eds) Cellular Therapy for Stroke and CNS Injuries. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-11481-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11481-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11480-4

  • Online ISBN: 978-3-319-11481-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics