Advertisement

Mean-Payoff Games with Partial-Observation

(Extended Abstract)
  • Paul Hunter
  • Guillermo A. Pérez
  • Jean-François Raskin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8762)

Abstract

Mean-payoff games are important quantitative models for open reactive systems. They have been widely studied as games of perfect information. In this paper we investigate the algorithmic properties of several subclasses of mean-payoff games where the players have asymmetric information about the state of the game. These games are in general undecidable and not determined according to the classical definition. We show that such games are determined under a more general notion of winning strategy. We also consider mean-payoff games where the winner can be determined by the winner of a finite cycle-forming game. This yields several decidable classes of mean-payoff games of asymmetric information that require only finite-memory strategies, including a generalization of perfect information games where positional strategies are sufficient. We give an exponential time algorithm for determining the winner of the latter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aminof, B., Rubin, S.: First cycle games. In: Mogavero, F., Murano, A., Vardi, M.Y. (eds.) SR. EPTCS, vol. 146, pp. 91–96 (2014)Google Scholar
  2. 2.
    Berwanger, D., Chatterjee, K., Doyen, L., Henzinger, T.A., Raje, S.: Strategy construction for parity games with imperfect information. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 325–339. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Berwanger, D., Doyen, L.: On the power of imperfect information. In: FSTTCS, pp. 73–82 (2008)Google Scholar
  4. 4.
    Björklund, H., Sandberg, S., Vorobyov, S.: Memoryless determinacy of parity and mean payoff games: a simple proof. TCS 310(1), 365–378 (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chatterjee, K., Doyen, L.: Partial-observation stochastic games: How to win when belief fails. In: LICS, pp. 175–184. IEEE (2012)Google Scholar
  6. 6.
    Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-payoff automaton expressions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 269–283. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-payoff and energy games. In: FSTTCS, pp. 505–516 (2010)Google Scholar
  9. 9.
    Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and mean-payoff games with imperfect information. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. International Journal of Game Theory 8, 109–113 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hunter, P., Pérez, G.A., Raskin, J.-F.: Mean-payoff games with partial-observation (extended abstract). CoRR (2014)Google Scholar
  12. 12.
    Jurdziński, M.: Deciding the winner in parity games is in UPcoUP. IPL 68(3), 119–124 (1998)CrossRefGoogle Scholar
  13. 13.
    Kupferman, O., Vardi, M.Y.: Synthesis with incomplete informatio. Advances in Temporal Logic 16, 109–127 (2000)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Martin, D.A., Steel, J.R.: Projective determinacy. Proceedings of the National Academy of Sciences of the United States of America 85(18), 6582 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Papadimitriou, C.H.: Computational complexity. John Wiley and Sons Ltd. (2003)Google Scholar
  16. 16.
    Reif, J.H.: The complexity of two-player games of incomplete information. Journal of Computer and System Sciences 29(2), 274–301 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. TCS 158(1), 343–359 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Paul Hunter
    • 1
  • Guillermo A. Pérez
    • 1
  • Jean-François Raskin
    • 1
  1. 1.Départament d’InformatiqueUniversité Libre de Bruxelles (U.L.B.)Belgium

Personalised recommendations