Skip to main content

Navigation of Autonomous Underwater Vehicles Using Acoustic and Visual Data Processing

  • Chapter
  • First Online:
Computer Vision in Control Systems-2

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 75))

Abstract

A navigation model for an Autonomous Underwater Vehicle (AUV) combines acoustic and vision-based navigation principles. The acoustic guidance is based on the Time-Of-Flight (TOF) measurements carried out in a one-way asynchronous mode. Vision-based positioning employs a digital image processing approach using the log-polar transformations for a temporal series of on-board camera images. A proportional-integral-derivative controller is used to change a vehicle’s position and course. The corresponding control and error functions are provided. The model is implemented and tested numerically. The experiments confirmed a high reliability of the developed algorithms, which can be further applied in autonomous vehicle navigation and docking systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Research Council (1996) Underwater vehicles and national needs. National Academies Press, Washington DC

    Google Scholar 

  2. Sangekar M, Thornton B, Ura T (2012) Wide area seafloor observation using an autonomous landing vehicle with adaptive resolution capability. In: MTS/IEEE OCEANS International Conference, pp 1–9

    Google Scholar 

  3. Wyber RJ (2010) Overview of Australian R&D in mine imaging. In: MTS/IEEE OCEANS International Conference, pp 1–9

    Google Scholar 

  4. Paim PK, Jouvencel B, Lapierre (2005) A reactive control approach for pipeline inspection with an AUV. In: MTS/IEEE OCEANS International Conference 1:201–206

    Google Scholar 

  5. Butler L (1987) Underwater radio communication. Amateur Radio

    Google Scholar 

  6. Desset S, Damus R, Morash J. Bechaz, C (2003) Use of GIBs in AUVs for underwater archaeology. Sea Technol 44(12):22–27

    Google Scholar 

  7. Stokey R, Roup A, von Alt C, Allen B et al (2005) Development of the REMUS 600 autonomous underwater vehicle. In: MTS/IEEE OCEANS International Conference 2:1301–1304

    Google Scholar 

  8. Williams S, Dissanayake G, Durrant-Whyte H (2001) Towards terrain-aided navigation for underwater robotics. Adv Robot 15(5):533–549

    Article  Google Scholar 

  9. Newman P, Leonard J, Rikoski R (2003) Towards constant-time SLAM on an autonomous underwater vehicle using synthetic aperture sonar. In: international symposium on robotics research, pp 409–420

    Google Scholar 

  10. Eustice RM, Whitcomb LL, Singh H, Grund M (2006) Recent advances in synchronous-clock one-way-travel-time acoustic navigation. In: MTS/IEEE OCEANS international conference, pp 1–6

    Google Scholar 

  11. Park JY, Jun BH, Lee PM, Oh J (2009) Experiments on vision guided docking of an autonomous underwater vehicle using one camera. Ocean Eng 36(1):48–61

    Google Scholar 

  12. Burdinsky IN (2012) Guidance Algorithm for an Autonomous Unmanned Underwater vehicle to a Given Target. Optoelectronics Instrum Data Process 48(1):69–74

    Article  Google Scholar 

  13. Rice J (2005) Seaweb acoustic communication and navigation networks. In: International conference underwater acoustic measurements: technologies and results, pp 1–7

    Google Scholar 

  14. Christ RD, Wernli RL (2007) The ROV Manual. A user guide for observation class remotely operating vehicles. Elsevier Ltd, Butterworth-Heinemann, MA

    Google Scholar 

  15. Burdinskiy IN, Karabanov IV, Linnik MA (2010) Threshold methods of sonar pseudonoise phase-shift signal detection. In: 1st Russia and Pacific conference on computer technology and applications (Russia Pacific Computer 2010), pp 404–408

    Google Scholar 

  16. Virtex-4 Family Overview. http://xilinx.com/support/documentation/data_sheets/ds112.pdf. Accessed 15 June 2014

  17. Burdinkiy IN, Mironov AS, Myagotin AV (2009) A multichannel correlational detector of pseudonoise hydroacoustic signals. In: 16th St Petersburg international conference on integrated navigation systems, pp 218–219

    Google Scholar 

  18. Bezruchko F, Burdinky I, Myagotin A (2011) Global extremum searching algorithm for the AUV guidance toward an acoustic buoy. In: MTS/IEEE OCEANS international conference, pp 1–7

    Google Scholar 

  19. Garcia R, Batlle J, Cufi X, Amat J (2001) Positioning an underwater vehicle through image mosaicking. In: IEEE international conference on robotics and automation, vol. 3. Seoul, Korea, pp 2779–2784

    Google Scholar 

  20. Branca A, Stella E, Distante A (1998) Autonomous navigation of underwater vehicles. In: MTS/IEEE OCEANS international conference 1:61–65

    Google Scholar 

  21. Eustice RM, Pizarro O, Singh H (2008) Visually augmented navigation for autonomous underwater vehicles. IEEE J of Oceanic Engineering 33(2):103–122

    Article  Google Scholar 

  22. Yu SC, Kim TW, Asada A, Weatherwax S, Collins B, Yuh J (2006) Development of high-resolution acoustic camera based real-time object recognition system by using autonomous underwater vehicles. In: MTS/IEEE OCEANS international conference, pp 1–6

    Google Scholar 

  23. Cole L, Austin D, Cole L (2004) Visual object recognition using template matching. Indian J Comput Sci Eng 1(2):98–107

    Google Scholar 

  24. Keller Y, Shkolnisky Y, Averbuch A (2005) The angular difference function and its application to image registration. IEEE Trans Pattern Anal Mach Intell 27(6):969–976

    Article  Google Scholar 

  25. Schmid C, Mohr R, Bauckhage C (2000) Evaluation of interest point detectors. Int J Comput Vision 37(2):151–172

    Article  MATH  Google Scholar 

  26. Dufournaud Y, Schmid C, Horaud R (2004) Image matching with scale adjustment. Comput Vis Image Underst 93(2):175–194

    Article  Google Scholar 

  27. Young D (2000) Straight lines and circles in the log-polar image. In: 11th british machine vision conference, pp 426–435

    Google Scholar 

  28. Myagotin A, Burdinsky I (2010) AUV positioning model employing acoustic and visual data processing. In: MTS/IEEE OCEANS international conference, pp 1–6

    Google Scholar 

  29. Pringle KK (1969) Visual perception by a computer. Automatic interpretation and classification of images. Academic Press, New York

    Google Scholar 

  30. Silva GJ, Datta A, Bhattacharyya SP (2005) PID controllers for time-delay systems. Birkhauser Boston, New York

    MATH  Google Scholar 

  31. Gornak VE, Inzartsev AV, Lvov OYu, Matvienko YV, Scherbatyuk APh (2006) MMT 3000—Small AUV of new series of IMTP FEB RAS. In: MTS/IEEE OCEANS international conference, pp 1–6

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the staff of the Laboratory for intellectual technologies and systems at Pacific National University, namely Ivan Karabanov, Mikhail Linnik, and Fedor Bezruchko, for the fruitful discussions and suggestions during the chapter preparation stage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Burdinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burdinsky, I., Myagotin, A. (2015). Navigation of Autonomous Underwater Vehicles Using Acoustic and Visual Data Processing. In: Favorskaya, M., Jain, L. (eds) Computer Vision in Control Systems-2. Intelligent Systems Reference Library, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-319-11430-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11430-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11429-3

  • Online ISBN: 978-3-319-11430-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics