Skip to main content

AHP and Intuitionistic Fuzzy TOPSIS Methodology for SCM Selection

  • Chapter
  • First Online:
Book cover Advanced Business Analytics
  • 3713 Accesses

Abstract

This research gives an overview of the Analytic Hierarchy Process (AHP) and Intuitionistic Fuzzy TOPSIS (IFT) methods. It deals with an evaluation methodology based on the AHP-IFT where the uncertainties are handled with linguistic values. First, the supplier selection problem is formulated using AHP and, then, is used to determine the weights of the criteria. Later, IFT is used to obtain full-ranking among the alternatives based on the opinion of the Decision Makers (DMs). The present model provides an accurate and easy classification in supplier attributes by chains prioritized in the hybrid model. A numerical example is given to clarify the main developed result in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rouyendegh BD (2011) The DEA and intuitionistic fuzzy TOPSIS approach to departments’ performances: a pilot study. J Appl Math 2011:1–16. doi:10.1155/2011/712194

    Article  Google Scholar 

  2. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96

    Article  Google Scholar 

  3. Gau WL, Buehrer DJ (1993) Vague sets. IEEE Trans Syst Man Cybern 23:610–614

    Article  Google Scholar 

  4. Bustine H, Burillo P (1996) Vague sets are intuitionistic fuzzy sets. Fuzzy Sets Syst 79:403–405

    Article  Google Scholar 

  5. Chen SM, Tan JM (1994) Handling multi criteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst 67:163–172

    Article  Google Scholar 

  6. Hong DH, Choi CH (2000) Multi criteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst 114:103–113

    Article  Google Scholar 

  7. Szmidt E, Kacprzyk J (2002) Using intuitionistic fuzzy sets in group decision making. Control Cybern 31:1037–1053

    Google Scholar 

  8. Atanassov KT, Pasi G, Yager RR (2005) Intuitionistic fuzzy interpretations of multi-criteria multi-person and multi-measurement tool decision making. Int J Syst Sci 36:859–868

    Article  Google Scholar 

  9. Xu ZS, Yager RR (2006) Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst 35:417–433

    Article  Google Scholar 

  10. Liu HW, Wang GJ (2007) Multi-criteria decision-making methods based on intuitionistic fuzzy sets. Eur J Oper Res 179:220–233

    Article  Google Scholar 

  11. De SK, Biswas R, Roy AR (2001) An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst 117:209–213

    Article  Google Scholar 

  12. Szmidt E, Kacprzyk J (2001) Intuitionistic fuzzy sets in some medical applications. Lect Notes Comput Sci 2206:148–151

    Article  Google Scholar 

  13. Szmidt E, Kacprzyk J (2004) A similarity measure for intuitionistic fuzzy sets and its application in supporting medical diagnostic reasoning. Lect Notes Comput Sci 3070:388–393

    Article  Google Scholar 

  14. Li DF (2005) Multi attribute decision making models and methods using intuitionistic fuzzy sets. J Comput Syst Sci 70:73–85

    Article  Google Scholar 

  15. Liu HW, Wang GJ (2007) Multi criteria fuzzy decision-making methods based on intuitionistic fuzzy sets. Eur J Oper Res 179:220–233

    Article  Google Scholar 

  16. Xu ZS (2007) Intuitionistic preference relations and their application in group decision making. Inf Sci 177:2363–2379

    Article  Google Scholar 

  17. Xu ZS (2007) Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making. Fuzzy Optim Decis Making 6:109–121

    Article  Google Scholar 

  18. Xu ZS (2007) Models for multiple attribute decision making with intuitionistic fuzzy information. Int J Uncertainty Fuzziness Knowledge-Based Syst 15:285–297

    Article  Google Scholar 

  19. Lin F, Ying H, MacArthur RD, Cohn JA, Barth-Jones D, Crane LR (2007) Decision making in fuzzy discrete event systems. Inf Sci 177:3749–3763

    Article  Google Scholar 

  20. Xu ZS, Yager RR (2008) Dynamic intuitionistic fuzzy multi-attribute decision making. Int J Approximate Reasoning 48:246–262

    Article  Google Scholar 

  21. Li DF (2008) Extension of the LINMAP for multi attributes decision making under Atanassov’s intuitionistic fuzzy environment. Fuzzy Optim Decis Making 7:17–34

    Article  Google Scholar 

  22. Wei GW (2009) Some geometric aggregation function and their application to dynamic multiple attribute decision making in the intuitionistic fuzzy setting. Int J Uncertainty Fuzziness Knowledge-Based Syst 17:179–196

    Article  Google Scholar 

  23. Xu ZS, Cai XQ (2009) Incomplete interval-valued intuitionistic fuzzy preference relations. Int J Gen Syst 38: 871–886.

    Google Scholar 

  24. Li DF, Wang YC, Liu S, Shan F (2009) Fractional programming methodology for multi-attribute group decision–making using IFS. Appl Soft Comput J 9:219–225

    Article  Google Scholar 

  25. Xia MM, Xu ZS (2010) Some new similarity measures for intuitionistic fuzzy value and their application in group decision making. J Syst Sci Syst Eng 19:430–452

    Article  Google Scholar 

  26. Xu ZS, Hu H (2010) Projection models for intuitionistic fuzzy multiple attribute decision making. Int J Inf Technol Decis Making 9:267–280

    Article  Google Scholar 

  27. Xu ZS, Cai X (2010) Nonlinear optimization models for multiple attribute group decision making with intuitionistic fuzzy information. Int J Intell Syst 25:489–513

    Google Scholar 

  28. Tan C, Chen X (2010) Intuitionistic fuzzy Choquet integral operator for multi-criteria decision-making. Expert Syst Appl 37:149–157

    Article  Google Scholar 

  29. Xu ZS (2010) A deviation-based approach to intuitionistic fuzzy multiple attribute group decision making. Group Decis Negot 19:57–76

    Article  Google Scholar 

  30. Park JH, Park IY, Kwun YC, Tan X (2011) Extension of the TOPSIS method for decision making problem under interval-valued intuitionistic fuzzy environment. Appl Math Modell 35:2544–2556

    Article  Google Scholar 

  31. Chen TY, Wang HP, Lu HP (2011) A multi-criteria group decision-making approach based on interval–valued intuitionistic fuzzy sets: a comparative perspective. Expert Syst Appl 38:7647–7658

    Article  Google Scholar 

  32. Xia MM, Xu ZS (2012) Entropy/cross-entropy based group decision making under intuitionistic fuzzy environment. Inf Fusion 13:31–47

    Article  Google Scholar 

  33. Li DF, Cheng CT (2002) New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern Recognit Lett 23:221–225

    Article  Google Scholar 

  34. Liang ZZ, Shi PF (2003) Similarity measures on intuitionistic fuzzy sets. Pattern Recognit Lett 24:2687–2693

    Article  Google Scholar 

  35. Hung WL, Yang MS (2004) Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance. Pattern Recognit Lett 25:1603–1611

    Article  Google Scholar 

  36. Wang WQ, Xin XL (2005) Distance measure between intuitionistic fuzzy sets. Pattern Recognit Lett 26:2063–2069

    Article  Google Scholar 

  37. Zhang CY, Fu HY (2006) Similarity measures on three kinds of fuzzy sets. Pattern Recognit Lett 27:1307–1317

    Article  Google Scholar 

  38. Vlachos IK, Sergiadis GD (2007) Intuitionistic fuzzy information–applications to pattern recognition. Pattern Recognit Lett 28:197–206

    Article  Google Scholar 

  39. Boran FE, Genç S, Kurt M, Akay D (2009) A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Syst Appl 36:11363–11368

    Article  Google Scholar 

  40. Kavita SP, Kumar Y (2009) A multi-criteria interval-valued intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Comput Sci 5908:303–312

    Google Scholar 

  41. Ye F (2010) An extended TOPSIS method with interval-valued intuitionistic fuzzy numbers for virtual enterprise partner selection. Expert Syst Appl 37(10):7050–7055. doi:10.1016/j.eswa

    Article  Google Scholar 

  42. Boran FE, Genç S, Akay D (2011) Personnel selection based on intuitionistic fuzzy sets. Hum Factors Ergon Manuf Serv Ind 21:493–503

    Article  Google Scholar 

  43. Boran FE, Boran K, Menlik T (2012) The evaluation of renewable energy technologies for electricity generation in Turkey using intuitionistic fuzzy TOPSIS. Ene Sou, Part B: Eco, Plan Pol 7:81–90

    Article  Google Scholar 

  44. Boran FE (2011) An integrated intuitionistic fuzzy multi-criteria decision-making method for facility location selection. Math Comput Appl 16:487–496

    Google Scholar 

  45. Wang P (2009) QoS-aware web services selection with intuitionistic fuzzy set under consumer’s vague perception. Expert Syst Appl 36:4460–4466

    Article  Google Scholar 

  46. Shu MS, Cheng CH, Chang JR (2006) Using intuitionistic fuzzy set for fault-tree analysis on printed circuit board assembly. Microelectron Reliab 46:2139–2148

    Article  Google Scholar 

  47. Gerogiannis VC, Fitsillis P, Kameas AD (2011) Using combined intuitionistic fuzzy set-TOPSIS method for evaluating project and portfolio management information system. IFIP Int Fed Inf Proc 364:67–81

    Google Scholar 

  48. Rouyendegh BD (2012) Evaluating projects based on intuitionistic fuzzy group decision making. J Appl Math 2012:1–16. doi:10.1155/2012/824265

    Article  Google Scholar 

  49. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

    Google Scholar 

  50. Saaty TL, Vargas LG (2006) Decision making with the analytic network process. Spring Science, LLC 1–23

    Google Scholar 

  51. Boroushaki S, Malczewski J (2008) Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS. Comput Geosci 34:399–410

    Article  Google Scholar 

  52. Lin L, Yuan XH, Xia ZQ (2007) Multicriteria fuzzy decision- making methods based on intuitionistic fuzzy sets. J Comput Syst Sci 73:84–88

    Article  Google Scholar 

  53. Vahidnia MH, Alesheika AA, Alimohammadi A (2009) Hospital site selection using AHP and its derivatives. J Environ Manage 90:3048–3056

    Article  Google Scholar 

  54. Zadeh LA (1969) Fuzzy sets. Inf Cont 8:338–353

    Article  Google Scholar 

  55. Kahraman Ç, Ruan D, Doğan I (2003) Fuzzy group decision-making for facility location selection. Inf Sci 157:135–150

    Article  Google Scholar 

  56. Rouyendegh BD, Erol S (2010) The DEA–FUZZY ANP department ranking model applied in Iran Amirkabir university. Acta Polytech Hungarica 7:103–114

    Google Scholar 

  57. Kahraman Ç, Ruan D, Ethem T (2002) Capital budgeting techniques using discounted fuzzy versus probabilistic cash flows. Inf Sci 42:57–76

    Article  Google Scholar 

  58. Xu ZS (2007) Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst 15:1179–1187

    Article  Google Scholar 

  59. Atanassov KT (1999) Intuitionistic fuzzy sets. Springer, Heidelberg

    Book  Google Scholar 

  60. Szmidt E, Kacprzyk J (2003) A consensus-reaching process under intuitionistic fuzzy preference relations. Int J Intell Syst 18:837–852

    Article  Google Scholar 

  61. Grzegorzewski P (2004) Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric. Fuzzy Sets Syst 148:319–328

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Daneshvar Rouyendegh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rouyendegh, B.D. (2015). AHP and Intuitionistic Fuzzy TOPSIS Methodology for SCM Selection. In: García Márquez, F., Lev, B. (eds) Advanced Business Analytics. Springer, Cham. https://doi.org/10.1007/978-3-319-11415-6_9

Download citation

Publish with us

Policies and ethics