Skip to main content

Inverse Problem for a Linearized Jordan–Moore–Gibson–Thompson Equation

  • Chapter
  • First Online:

Part of the book series: Springer INdAM Series ((SINDAMS,volume 10))

Abstract

We consider an inverse problem for the linearized Jordan–Moore–Gibson–Thompson equation, which is a third-order (in time) PDE in the original unknown u that arises in nonlinear acoustic waves modeling high-intensity ultrasound. Both canonical recovery problems are investigated: (i) uniqueness and (ii) stability, by use of just one boundary measurement. Our approach relies on the dynamical decomposition of the Jordan–Moore–Gibson–Thompson equation given in Marchand et al. (Math. Methods Appl. Sci. 35, 1896–1929, 2012), which identified 3 distinct models in the new variable z. By using now z-model 3, we weaken by two units the regularity requirements on the data of the original u-dynamics over our prior effort Liu and Triggiani (J. Inverse Ill-Posed Probl. 21, 825–869, 2013), which instead employed z-model 1.

In memory of Alfredo Lorenzi: scholar, collaborator, friend

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beilina, L., Klibanov, M.: Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems. Springer, New York (2012)

    Book  MATH  Google Scholar 

  2. Bukhgeim, A., Cheng, J., Isakov. V., Yamamoto, M.: Uniqueness in determining damping coefficients in hyperbolic equations. In: Saburou Saitoh, Nakao Hayashi, Masahiro Yamamoto (eds.), Analytic Extension Formulas and Their Applications, pp. 27–46. Kluwer, Dordrecht (2001)

    Chapter  Google Scholar 

  3. Bukhgeim, A., Klibanov, M.: Global uniqueness of a class of multidimensional inverse problem. Sov. Math. Dokl. 24, 244–257 (1981)

    Google Scholar 

  4. Carleman, T.: Sur un problème d’unicité pour les systèmes d’équations aux derivées partielles à deux variables independantes. Ark. Mat. Astr. Fys.2B, 1–9 (1939)

    MathSciNet  Google Scholar 

  5. Ho, L. F.: Observabilite frontiere de l’equation des ondes. Comptes Rendus de l’Academie des Sciences de Paris 302, 443–446 (1986)

    MATH  Google Scholar 

  6. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin/ New York (1985)

    Google Scholar 

  7. Hörmander, L.: The Analysis of Linear Partial Differential Operators II. Springer, Berlin/ New York (1985)

    Google Scholar 

  8. Isakov, V.: Inverse Problems for Partial Differential Equations, 1st edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  9. Isakov, V.: Inverse Problems for Partial Differential Equations, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  10. Isakov, V., Yamamoto, M.: Carleman estimate with the Neumann boundary condition and its application to the observability inequality and inverse hyperbolic problems. Contemp. Math. 268, 191–225 (2000)

    Article  MathSciNet  Google Scholar 

  11. Isakov, V., Yamamoto, M.: Stability in a wave source problem by Dirichlet data on subboundary. J. Inverse Ill-Posed Probl. 11, 399–409 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jordan, P.M.: An analytic study of the Kuznetsov’s equation: diffusive solitons, shock formation, and solution bifurcation. Phys. Lett. A 326, 77–84 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jordan, P.M.: Nonlinear acoustic phenomena in viscous thermally relaxing fluids: shock bifurcation and the emergence of diffusive solitions (A) (Lecture). The 9th International Conference on Theoretical and Computational Acoustics (ICTCA 2009), Dresden, Germany. J. Acoust. Soc. Am. 124, 2491–2491 (2008)

    Google Scholar 

  14. Kaltenbacher, B., Lasiecka, I.: Global existence and exponential decay rates for the Westervelt equation. DCDS Ser. S 2, 503–525 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kaltenbacher, B., Lasiecka, I.: Well-posedness of the Westervelt and the Kuznetsov equations with non homogeneous Neumann boundary conditions. DCDS Suppl., 763–773 (2011)

    Google Scholar 

  16. Kaltenbacher, B., Lasiecka, I., Marchand, R.: Wellposedness and exponential decay rates for the Moore–Gibson–Thompson equation arising in high intensity ultrasound. Control Cybern. (2011)

    Google Scholar 

  17. Kaltenbacher, B., Lasiecka, I., Veljovic, S.: Well-posedness and exponential decay of the Westervelt equation with inhomogeneous Dirichlet boundary data. Progress in Nonlinear Differential Equations and Their Applications, vol. 60. Springer, Basel (2011)

    Google Scholar 

  18. Klibanov, M.: Inverse problems and Carleman estimates. Inverse Probl. 8, 575–596 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Klibanov, M.: Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J. Inverse Ill-Posed Probl. 21(2), (2013)

    Google Scholar 

  20. Klibanov, M., Timonov, A.: Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. VSP, Utrecht (2004)

    Book  MATH  Google Scholar 

  21. Kuznetsov, V.P.: Equations of nonlinear acoustics. Sov. Phys. 16, 467–470 (1971)

    Google Scholar 

  22. Lasiecka, I., Lions, J.L., Triggiani, R.: Non-homogeneous boundary value problems for second-order hyperbolic operators. J. Math. Pures Appl. 65, 149–192 (1986)

    MATH  MathSciNet  Google Scholar 

  23. Lasiecka, I., Triggiani, R.: A cosine operator approach to modeling L 2(0, T; L 2(Ω)) boundary input hyperbolic equations. Appl. Math. Optim. 7, 35–83 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lasiecka, I., Triggiani, R.: Regularity of hyperbolic equations under L 2(0, T; L 2(Γ))-Dirichlet boundary terms. Appl. Math. Optim. 10, 275–286 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lasiecka, I., Triggiani, R.: Exact controllability of the wave equation with Neumann boundary control. Appl. Math. Optim. 19, 243–290 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lasiecka, I., Triggiani, R.: Sharp regularity theory for second-order hyperbolic equations of Neumann type Part I: L 2 non-homogeneous data. Ann. Mat. Pura Appl. (IV) CLVII, 285–367 (1990)

    Google Scholar 

  27. Lasiecka, I., Triggiani, R.: Regularity theory of hyperbolic equations with non-homogeneous Neumann boundary conditions II: General boundary data. J. Differ. Equ. 94, 112–164 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lasiecka, I., Triggiani, R.: Recent advances in regularity of second-order hyperbolic mixed problems and applications. Dynamics Reported, vol. 3, pp. 104–158. Springer, New York (1994)

    Google Scholar 

  29. Lasiecka, I., Triggiani, R.: Carleman estimates and uniqueness for the system of strong coupled PDE’s of spherical shells. Special volume of Zeits. Angerwandte Math. Mech. vol. 76, pp.277–280. Akademie, Berlin (1996)

    Google Scholar 

  30. Lasiecka, I., Triggiani, R.: Carleman estimates and exact controllability for a system of coupled, nonconservative second-order hyperbolic equations. Lect. Notes Pure Appl. Math. 188, 215–245 (1997)

    MathSciNet  Google Scholar 

  31. Lasiecka, I., Triggiani, R.: Exact boundary controllability of a first-order nonlinear hyperbolic equation with non-local in the integral term arising in epidemic modeling. In: Gilbert, R.P., Kajiwara, J., Xu, Y. (eds.) Direct and Inverse Problems of Mathematical Physics, pp. 363–398. ISAAC’97, The First International Congress of the International Society for Analysis, Its Applications and Computations. Kluwer (2000)

    Google Scholar 

  32. Lasiecka, I., Triggiani, R.: Uniform stabilization of the wave equation with Dirichlet or Neumann-feedback control without geometrical conditions. Appl. Math. Optim. 25, 189–224 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lasiecka, I., Triggiani, R., Yao, P.F.: Exact controllability for second-order hyperbolic equations with variable coefficient-principal part and first-order terms. Nonlinear Anal. 30(1), 111–222 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lasiecka, I., Triggiani, R., Yao, P.F.: Inverse/observability estimates for second-order hyperbolic equations with variable coefficients. J. Math. Anal. Appl. 235(1), 13–57 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lasiecka, I., Triggiani, R., Zhang, X.: Nonconservative wave equations with unobserved Neumann B.C.: Global uniqueness and observability in one shot. Contemp. Math. 268, 227–325 (2000)

    Google Scholar 

  36. Lavrentev, M.M., Romanov, V.G., Shishataskii, S.P.: Ill-Posed Problems of Mathematical Physics and Analysis, vol. 64. The American Mathematical Society, Providence (1986)

    Google Scholar 

  37. Lions, J.L.: Controlabilite Exacte, Perturbations et Stabilisation de Systemes Distribues, vol. 1. Masson, Paris (1988)

    Google Scholar 

  38. Liu, S.: Inverse problem for a structural acoustic interaction. Nonlinear Anal. 74, 2647–2662 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. Liu, S., Triggiani, R.: Global uniqueness and stability in determining the damping and potential coefficients of an inverse hyperbolic problem. Nonlinear Anal. Real World Appl. 12, 1562–1590 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  40. Liu, S., Triggiani, R.: Global uniqueness and stability in determining the damping coefficient of an inverse hyperbolic problem with non-homogeneous Neumann B.C. through an additional Dirichlet boundary trace. SIAM J. Math. Anal. 43, 1631–1666 (2011)

    Google Scholar 

  41. Liu, S., Triggiani, R.: Global uniqueness in determining electric potentials for a system of strongly coupled Schrödinger equations with magnetic potential terms. J. Inverse Ill-Posed Probl. 19, 223–254 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  42. Liu, S., Triggiani, R.: Recovering the damping coefficients for a system of coupled wave equations with Neumann BC: uniqueness and stability. Chin. Ann. Math. Ser. B 32, 669–698 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  43. Liu, S., Triggiani, R.: Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: global uniqueness. DCDS Supplement, 1001–1014 (2011)

    Google Scholar 

  44. Liu, S., Triggiani, R.: Global uniqueness and stability in determining the damping coefficient of an inverse hyperbolic problem with non-homogeneous Dirichlet B.C. through an additional localized Neumann boundary trace. Appl. Anal.91(8), 1551–1581 (2012)

    Google Scholar 

  45. Liu, S., Triggiani, R.: Recovering damping and potential coefficients for an inverse non-homogeneous second-order hyperbolic problem via a localized Neumann boundary trace. Discrete Contin. Dyn. Syst. Ser. A 33(11–12), 5217–5252 (2013)

    MATH  Google Scholar 

  46. Liu, S., Triggiani, R.: Boundary control and boundary inverse theory for non-homogeneous second-order hyperbolic equations: a common Carleman estimates approach. HCDTE Lecture notes, AIMS Book Series on Applied Mathematics, vol. 6, pp. 227–343 (2013)

    Google Scholar 

  47. Liu, S., Triggiani, R.: An inverse problem for a third order PDE arising in high-intensity ultrasound: global uniqueness and stability by one boundary measurement. J. Inverse Ill-Posed Probl. 21, 825–869 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  48. Marchand, R., McDevitt, T., R. Triggiani, R.: An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability. Math. Methods Appl. Sci. 35, 1896–1929 (2012)

    Google Scholar 

  49. Mazya, V.G., Shaposhnikova, T.O.: Theory of Multipliers in Spaces of Differentiable Functions, vol. 23. Monographs and Studies in Mathematics, Pitman (1985)

    Google Scholar 

  50. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    Google Scholar 

  51. Tataru, D.: A-priori estimates of Carleman’s type in domains with boundary. J. Math. Pures. et Appl. 73, 355–387 (1994)

    MATH  MathSciNet  Google Scholar 

  52. Tataru, D.: Boundary controllability for conservative PDE’s. Appl. Math. & Optimiz. 31, 257–295 (1995); Based on a Ph.D. dissertation, University of Virginia (1992)

    Google Scholar 

  53. Tataru, D.: Carleman estimates and unique continuation for solutions to boundary value problems. J. Math. Pures Appl. 75, 367–408 (1996)

    MATH  MathSciNet  Google Scholar 

  54. Tataru, D.: On the regularity of boundary traces for the wave equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26, 185–206 (1998)

    Google Scholar 

  55. Taylor, M.: Pseudodifferential Operators. Princeton University Press, Princeton (1981)

    MATH  Google Scholar 

  56. Triggiani, R.: Exact boundary controllability of L 2(Ω) × H −1(Ω) of the wave equation with Dirichlet boundary control acting on a portion of the boundary and related problems. Appl. Math. Optim. 18(3), 241–277 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  57. Triggiani, R.: Wave equation on a bounded domain with boundary dissipation: an operator approach. J. Math. Anal. Appl. 137, 438–461 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  58. Triggiani, R., Yao, P.F.: Carleman estimates with no lower order terms for general Riemannian wave equations: global uniqueness and observability in one shot. Appl. Math. Optim. 46, 331–375 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  59. Yamamoto, M.: Uniqueness and stability in multidimensional hyperbolic inverse problems. J. Math. Pures Appl. 78, 65–98 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank a referee for suggesting to extend their original version to include the global uniqueness of Theorem 15.5 of any damping coefficient. S.L. was supported by a startup grant from Clemson University and R.T. was supported by the National Science Foundation under Grant DMS-0104305 and by the Air Force Office of Scientific Research under Grant FA9550-09-1-0459.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Triggiani .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Admissible Geometrical Configurations in the Neumann B.C. Case

Here we present some examples in connection to the main geometrical assumptions (A.1), (A.2). We refer to Lasiecka et al. [35] for more details.

Example #1 :

(Any dimension ≥ 2): Γ 0 is flat.

Let x 0 ∈ hyperplane containing Γ 0, then.

$$\displaystyle{d(x) =\| x - x_{0}\|^{2};\quad h(x) = \nabla d(x) = 2(x - x_{ 0}).}$$
Example #2 :

(A ball of any dimension ≥ 2): d(x) in [35, Theorem. A.4.1, p. 301]. Measurement on \(\varGamma _{1}> \frac{1} {2}\) circumference (as in the Dirichlet case), same as for controllability.

Example #3 :

(Generalizing Ex #2: a domain Ω of any dimension ≥ 2 with unobserved portion Γ 0 convex, subtended by a common point x 0): d(x) in [35, Theorem. A.4.1, p. 301].

Example #4 :

(A domain Ω of any dimension ≥ 2 with unobserved portion Γ 0 concave, subtended by a common point x 0): d(x) in [35, Theorem. A.4.1, p. 301].

Example #5 :

(dim = 2): Γ 0 neither convex nor concave. Γ 0 is described by graph

$$\displaystyle{y = \left \{\begin{array}{ll} f_{1}(x),x_{0} \leq x \leq x_{1},&y \geq 0; \\ f_{2}(x),x_{2} \leq x \leq x_{1},&y <0,\end{array} \right.}$$

f 1, f 2 logarithmic concave on x 0 < x < x 1, e.g., sinx, \(-\frac{\pi }{2} <x <\frac{\pi } {2}\); cosx,  0 < x < π as the function sinx + 1 and cosx + 1 are lobarithmic concave on the corresponding x-intervals. See [35, Fig. A.3, p. 290]. The corresponding function d(x) is given in [35, (A.2.7), p. 289].

Appendix 2: Sharp Regularity Theory for Second-Order Hyperbolic Equations of Neumann Type

Consider the following second-order hyperbolic equation with non-homogeneous Neumann B.C g and I.C. {w 0, w 1}:

$$\displaystyle{\left \{\begin{array}{ll} w_{\mathit{tt}}(x,t) -\varDelta w(x,t) = F(w) + f(x,t)&\mbox{ in }Q =\varOmega \times [0,T]; \\ w\left (\,\cdot \,,0\right ) = w_{0}(x);\quad w_{t}\left (\,\cdot \,,0\right ) = w_{1}(x) &\mbox{ in }\varOmega; \\ \frac{\partial w} {\partial \nu } (x,t)\vert _{\varSigma } = g(x,t) &\mbox{ in }\varSigma =\varGamma \times [0,T]\end{array} \right.}$$

where the forcing term

$$\displaystyle{ f(x,t) \in L^{2}(Q), }$$

and F(w) is given by

$$\displaystyle{ F(w) = q_{1}(x,t)w + q_{2}(x,t)w_{t} + q_{3}(x,t) \cdot \nabla w, }$$

subject to the following standing assumption on the coefficients: q 1, q 2, | q 3 | ∈ L (Q), so that the following pointwise estimate holds true:

$$\displaystyle{ \vert F(w)\vert \leq C_{T}[w^{2} + w_{ t}^{2} + \vert \nabla w\vert ^{2}],\quad (x,t) \in Q. }$$

We first define the parameters α and β to be the following values:

$$\displaystyle{\left \{\begin{array}{ll} \alpha = \frac{3} {5}-\epsilon,\ \beta = \frac{3} {5}:\ \mbox{ for a general smooth, bounded domain }\varOmega; \\ \alpha =\beta = \frac{2} {3}:\ \mbox{ for a sphere domain }\varOmega; \\ \alpha =\beta = \frac{3} {4}-\epsilon:\ \mbox{ for a parallelepiped domain }\varOmega \end{array} \right.}$$

where ε > 0 is arbitrary. Then we have the following sharp regularity results:

Theorem ([27, Theorem 1.2 (ii), (iii), 1.3, p. 290])

With reference to the above w-mixed problem, the following regularity results hold true, with α and β defined above:

  • (i) [27, Theorem 2.0, (15.21), ( 2.9 ), p. 123; Theorem A, p. 117; Theorem  2.1, p. 124]. Suppose we have f = 0, {w 0 ,w 1 } ∈ H 1 (Ω) × L 2 (Ω) and g ∈ L 2 (Σ). Then we have the unique solution w satisfies

    $$\displaystyle{ w \in H^{\alpha }(Q) = C([0,T];H^{\alpha }(\varOmega )) \cap H^{\alpha }(0,T;L^{2}(\varOmega ));\quad w\vert _{\varSigma }\in H^{2\alpha -1}(\varSigma ). }$$
  • (ii) [27, Theorem  5.1 , (5.4), (5.5), p. 149; Theorem C, p. 118; Theorem 7.1, p. 158]. Suppose now f ∈ L 2 (Q), {w 0 ,w 1 } ∈ H 1 (Ω) × L 2 (Ω) and g = 0. Then we have

    $$\displaystyle{ w \in C([0,T];H^{1}(\varOmega )),\ w_{ t} \in C([0,T];L^{2}(\varOmega ));\quad w\vert _{\varSigma }\in H^{\beta }(\varSigma ). }$$

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, S., Triggiani, R. (2014). Inverse Problem for a Linearized Jordan–Moore–Gibson–Thompson Equation. In: Favini, A., Fragnelli, G., Mininni, R. (eds) New Prospects in Direct, Inverse and Control Problems for Evolution Equations. Springer INdAM Series, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-11406-4_15

Download citation

Publish with us

Policies and ethics