Skip to main content

Intrinsic Decay Rate Estimates for Semilinear Abstract Second Order Equations with Memory

  • Chapter
  • First Online:

Part of the book series: Springer INdAM Series ((SINDAMS,volume 10))

Abstract

Semilinear abstract second order equation with a memory is considered. The memory kernel g(t) is subject to a general assumption, introduced for the first time in Alabau-Boussouira and Cannarsa (C. R. Acad. Sci. Paris Ser. I 347, 867–872, 2009), g′ ≤ −H(g), where the function \(H(\cdot ) \in C^{1}(R^{+})\) is positive, increasing and convex with H(0) = 0. The corresponding result announced in Alabau-Boussouira and Cannarsa (C. R. Acad. Sci. Paris Ser. I 347, 867–872, 2009) (with a brief idea about the proof) provides the decay rates expressed in terms of the relaxation kernel in the case relaxation kernel satisfies the equality \(g' = -H(g)\) (Theorem 2.2 in Alabau-Boussouira and Cannarsa, C. R. Acad. Sci. Paris Ser. I 347, 867–872, 2009). In the case of inequality g′ ≤ −H(g), Alabau-Boussouira and Cannarsa (C. R. Acad. Sci. Paris Ser. I 347, 867–872, 2009) claims uniform decay of the energy without specifying the rate (Theorem 2.1 in Alabau-Boussouira and Cannarsa, C. R. Acad. Sci. Paris Ser. I 347, 867–872, 2009). The result presented in this paper establishes the decay rate estimates for the general case of inequality g′ ≤−H(g). The decay rates are expressed (Theorem 2) in terms of the solution to a given nonlinear dissipative ODE governed by H(s). Applications to semilinear elasto-dynamic systems with memory are also provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this work, we use \(\mathbb{R}_{+}\) for [0, ), which is different from (0, ). Hence \(C^{1}(\mathbb{R}_{+})\) is for C 1([0, )), meaning that it contains functions whose first derivatives can be continuously extended to the boundary. Similar to \(C^{2}(\mathbb{R}_{+})\) and so on.

  2. 2.

    Here we can take s(0) = E(0) for notational convenience, since \(E(T)\leq E(0)\).

References

  1. Alabau-Boussouira, F., Cannarsa, P., Sforza, D.: Decay estimates for second order evolution equations with memory. J. Funct. Anal. 254, 1342–1372 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alabau-Boussouira, F., Cannarsa, P.: A general method for proving sharp energy decay rates for memory-dissipative evolution equations. C. R. Acad. Sci. Paris Ser. I 347, 867–872 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alabau-Boussouira, F.: Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim. 51, 61–105 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alabau-Boussouira, F.: A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional vibrating damped systems with applications to semi-discretized vibrating damped systems. J. Differ. Equ. 248, 1473–1517 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alabau-Boussouira, F.: On some recent advances on stabilization for hyperbolic equations. Lecture Note in Mathematics, CIME Foundation Subseries, Control of Partial Differential Equations, vol. 2048, pp.1–100. Springer, New York (2012)

    Google Scholar 

  6. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Book  Google Scholar 

  7. Barreto, R., Lapa, E.C., Munoz Rivera, J.E.: Decay rates for viscoelastic plates with memory. J. Elast. 44(1), 61–87 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Berrimi, S., Messaoudi, S.A.: Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping. Electronic J. Differ. Equ. 88, 1–10 (2004)

    MathSciNet  Google Scholar 

  9. Berrimi S., Messaoudi, S. A.: Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Anal. 64, 2314–2331 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Barreto, R., Munoz Rivera, J.E.: Uniform rates of decay in nonlinear viscoelasticity for polynomial decaying kernels. Appl. Anal. 60, 263–283 (1996)

    MathSciNet  Google Scholar 

  11. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Martinez, P.: General decay rate estimates for viscoelastic dissipative systems. Nonlinear Anal. 68(1), 177–193 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Soriano, J.A.: Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping. Electronic J. Differ. Equ. 44, 1–14 (2002)

    MathSciNet  Google Scholar 

  13. Cavalcanti, M.M., Oquendo, H.P.: Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim. 42(4), 1310–1324 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cabanillas, E.L., Munoz Rivera, J.E.: Decay rates of solutions of an anisotropic inhomogeneous n-dimensional viscoelastic equation with polynomial decaying kernels. Commun. Math. Phys. 177, 583–602 (1996)

    Article  MATH  Google Scholar 

  15. Chueshov, I., Lasiecka, I.: Attracors for second order evolution equations with nonlinear damping. J. Dyn. Differ. Equ. 16(2), 469–512 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Rational Mech. Anal. 37, 297–308 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fabrizio, M., Polidoro, S.: Asymptotic decay for some differential systems with fading memory. Appl. Anal. 81(6), 1245–1264 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Han, X., Wang, M.: General decay of energy for a viscoelastic equation with nonlinear damping. Math. Methods Appl. Sci. 32(3), 346–358 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Han, X., Wang, M.: General decay rates of energy for the second order evolutions equations with memory. Acta Appl. Math. 110, 195–207 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lasiecka, I., Messaoudi, S. A., Mustafa, M.I.: Note on intrinsic decay rates for abstract wave equations with memory. J. Math. Phys. 54, 031504 (2013). doi:10.1063/1.4793988

    Article  MathSciNet  Google Scholar 

  21. Lasiecka, I., Toundykov, D.: Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms. Nonlinear Anal. 64(8), 1757–1797 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lasiecka, I., Tataru, D.: Uniform boundary stabilization of semilinear wave equation with nonlinear boundary dissipation. Differ. Integral Equ. 6, 507–533 (1993)

    MATH  MathSciNet  Google Scholar 

  23. Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)

    Google Scholar 

  24. Martinez, P.: A new method to obtain decay rate estimates for dissipatve systems. ESAIM Control Optim. Calc. 4, 419–444 (1999)

    Article  MATH  Google Scholar 

  25. Messaoudi, S.A.: General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341, 1457–1467 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Messaoudi, S.A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal. 69, 2589–2598 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Messaoudi, S., Mustafa, S.: General stability result for viscoelastic wave equations. J. Math. Phys. 53, (2012)

    Google Scholar 

  28. Muñoz Rivera, J., Peres Salvatierra A.: Asymptotic behaviour of the energy in partially viscoelastic materials. Q. Appl. Math. 59, 557–578 (2001)

    MATH  Google Scholar 

  29. Muñoz Rivera, J., Lapa E.C., Barreto, R.: Decay rates for viscoelastic plates with memory. J. Elast. 44(1), 61–87 (1996)

    Article  MATH  Google Scholar 

  30. Prüss, J.: Evolutionary Integral Equations and Applications. Monography Math. vol 87. Birkhäuser (1993)

    Google Scholar 

  31. Renardy, M., Hrusa, W., Nohel, J.: Mathematical problems in viscoelasticity. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 35. Longman Scientific & Technical, Harlow. Wiley, New York (1987)

    Google Scholar 

  32. Xiao, T., Liang, J.: Coupled second order semilinear evolution equations indirectly damped via memory effects. J. Differ. Equ. 254(5), 2128–2157 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Research of I. Lasiecka and X. Wang partially supported by DMS Grant 0104305 and AFOSR Grant FA9550-09-1-0459.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Lasiecka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lasiecka, I., Wang, X. (2014). Intrinsic Decay Rate Estimates for Semilinear Abstract Second Order Equations with Memory. In: Favini, A., Fragnelli, G., Mininni, R. (eds) New Prospects in Direct, Inverse and Control Problems for Evolution Equations. Springer INdAM Series, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-11406-4_14

Download citation

Publish with us

Policies and ethics