Planet OrbitLunar Orbit Resonances and the History of the Earth-Moon System

Some Special Perks for Earth by Having Jupiter and Venus in the Neighborhood


After reviewing a number of geology and astronomy textbooks, a reader gets the feeling that the Moon is not all that important in the development of our habitable planet. The Moon raises ocean tides on the planet and it serves as a “night lantern” and these features of the Moon have been important for some human endeavors (e.g., in production of food crops in coastal areas and, in some special circumstances, in military campaigns at specific times in human history). But the question posed here is: HAS THE MOON BEEN IMPORTANT IN THE DEVELOPMENT OF PLANET EARTH INTO THE ONLY PLANET THAT WE KNOW OF THAT IS HABITABLE TODAY, AFTER NEARLY 4.6 BILLION YEARS OF GEOLOGICAL EVOLUTION?


Semimajor Axis Planet Orbit Lunar Orbit Tidal Regime Earth Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alfven H (1969) Atom, man, and the Universe. The long chain of complications. W. H. Freeman, San Francisco, p 110Google Scholar
  2. Bailey CM, Peters SE, Morton J, Shotwell NL (2007) The Mechum river formation, Virginia Blue Ridge: a record of neoproterozoic and paleozoic tectonics in southeastern Laurentia. Am J Sci 307:1–22CrossRefGoogle Scholar
  3. Banks NL (1973) Tide-dominated offshore sedimentation, Lower Cambrian, north Norway. Sedimentology 20:213–228CrossRefGoogle Scholar
  4. Bazso A, Dvorak R, Pilat-Lohinger E, Eybl V, Lhotka Ch (2010) A survey of near-mean-motion resonances between Venus and Earth. Celest Mech Dyn Astr 107:63–76CrossRefGoogle Scholar
  5. Bostrom RC (2000) Tectonic consequences of Earth’s rotation. Oxford University Press, London, p 266Google Scholar
  6. Bekker A, Holland HD (2012) Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet Sci Lett 317-318:295–304Google Scholar
  7. Canup RN (2013) Lunar conspiracies. Nature 504:27–29Google Scholar
  8. Chapman DMF (1986) Recurrent phenomena of Venus and the Venus/Earth orbital resonance. J R Astron Soc Canada 80:336–343Google Scholar
  9. Condie KC, Pease V (2008) When did plate tectonics begin on planet Earth? Geological Society of America Special Paper 440, pp 294Google Scholar
  10. Conway-Morris S (1990) Late Precambrian-Early Cambrian metazoan diversification. In: Briggs DEG, Crowther PR (eds) Paleobiology: a synthesis. Oxford Press, Oxford, pp 30–36Google Scholar
  11. Cuk M (2007) Excitation of lunar eccentricity by planetary resonances. Science 318:244CrossRefGoogle Scholar
  12. Cuk M, Stewart ST (2012) Making the Moon from a fast-spinning Earth: A giant impact followed by resonant despinning. Science 338:1047–1052Google Scholar
  13. Davies GF (1992) On the emergence of plate tectonics. Geology 20:963–966CrossRefGoogle Scholar
  14. Deynoux M, Duringer P, Khatib R, Villeneuve M (1993) Laterally and vertically accreted tidal deposits in the Upper Proterozoic Madina-Kauto Basin, southeastern Senegal, West Africa. Sedimen Geol 84:179–188CrossRefGoogle Scholar
  15. Driese SG (1987) An analysis of large-scale ebb-dominated tidal bedforms: evidence for tidal bundles in the Lower Silurian Clinch Sandstone of east Tennessee. Southeast Geol 27:121–140Google Scholar
  16. Driese SG, Byers CW, Dott RH Jr (1981) Tidal deposition in the basal Upper Cambrian Mt. Simon Formation in Wisconsin. J Sediment Petrol 51:367–381Google Scholar
  17. Ehlers TA, Chan MA (1999) Tidal sedimentology and estuarine deposition of the Proterozoic Big Cottonwood Formation, Utah. J Sediment Res 69:1169–1180CrossRefGoogle Scholar
  18. Eyles N, Januszczak N (2004) ‘Zipper-rift’: a tectonic model for neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth Sci Rev 65:1–73CrossRefGoogle Scholar
  19. Eyles N, Young GM (1994) Geodynamic controls on glaciation in Earth history. In: Deynoux M, Miller JMG, Domack EW, Eyles N, Fairchild IJ, Young GM (eds) Earth’s glacial record. Cambridge University Press, Cambridge, pp 1–28CrossRefGoogle Scholar
  20. Gould SJ (1994) The evolution of life on the Earth. Sci Am 271(4):85–91CrossRefGoogle Scholar
  21. Grinspoon DH (1997) Venus revealed: a new look below the clouds of our mysterious twin planet. Addison-Wesley, Reading, p 355Google Scholar
  22. Halverson GP, Shields-Zhou G (2011) Chemostratigraphy and the neoproterozoic glaciations. In: Arnaud E, Halverson GP, Shields-Zhou G (eds) The geological record of neoproterozoic glaciations, vol 36. The Geological Society of London, Memoir, London, pp 51–66Google Scholar
  23. Hansen KS (1982) Secular effects of oceanic tidal dissipation on the moon’s orbit and earth’s rotation. Rev Geophys Space Phys 20:457–480CrossRefGoogle Scholar
  24. Hiscott RN (1982) Tidal deposits of the Lower Cambrian Random Formation, eastern Newfoundland: facies and paleoenvironments. Canadian J Earth Sci 19:2028–2042CrossRefGoogle Scholar
  25. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic s curves from marin nowball earth. Science 281:1342–1346CrossRefGoogle Scholar
  26. Holland CH (ed) (1971) Cambrian of the new world. Wiley, New York, p 456Google Scholar
  27. Holland CH (ed) (1974) Cambrian of the British Isles, Norden, and Spitsbergen. Wiley, New York, p 300Google Scholar
  28. Holland HD (2002) Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta 66:3811–3826CrossRefGoogle Scholar
  29. Holland HD (2009) Why the atmosphere became oxygenated: a proposal. Geochim Cosmochim Acta 73:5241–5255CrossRefGoogle Scholar
  30. Imbrie J, Imbrie KP (1979) Ice ages; solving the mystery. Enslow Publishers, Short Hills (NJ) pp 224Google Scholar
  31. Jordan TH (1974) Some comments on tidal drag as a mechanism for driving plate motion. J Geophy Res 79:2141–2142CrossRefGoogle Scholar
  32. Kasting J (2010) How to find a habitable planet. Princeton University Press, New Jersey, p 326Google Scholar
  33. Kessler LG, Gallop IG (1988) Inner shelf/shoreface intertidal transition, upper Precambrian, Port Askaig Tillite, Isle of Islay, Argyll. In: de Boer PL, van Gelder A, Nio SD (eds) Tide-influenced sedimentary environments and facies. D. Reidell, Dordrecht, pp 341–358CrossRefGoogle Scholar
  34. Knoll AD (1991) End of the Proterozoic eon. Sci Am 265(4):64–73CrossRefGoogle Scholar
  35. Laskar J (1994) Large-scale chaos in the solar system. Astron Astrophys 287:L9–L12Google Scholar
  36. Laskar J (1995) Large scale chaos and marginal stability in the solar system. In: Proceedings Volume, XIth International Congress of Mathematical Physics, pp 75–120Google Scholar
  37. Laskar J (1996) Large scale chaos and marginal stability in the solar system. Celest Mech Dyn Astron 64:115–162CrossRefGoogle Scholar
  38. Link PK, Miller JMG, Christie-Blick N (1994) Glacial-marine facies in a continental rift environment: neoproterozoic rocks of the western United States Cordillera. In: Deynoux M, Miller JMG, Domack EW, Eyles N, Fairchild IJ, Young GM (eds) Earth’s glacial record. University of Cambridge Press, Cambridge, pp 29–46CrossRefGoogle Scholar
  39. Lochman-Balk C (1970) Upper Cambrian faunal patterns on the craton. Geol Soc Am Bull 81:3197–3224CrossRefGoogle Scholar
  40. Lochman-Balk C (1971) The Cambrian of the craton of the United States. In: Holland CH (ed) Cambrian of the new world. Wiley, New York pp 79–167Google Scholar
  41. Macdonald JGF (1963) The internal constitutions of the inner planets and the Moon. Sp Sci Rev 2:473–557Google Scholar
  42. Miller JMG (1994) The neoproterozoic Konnarock formation, southwestern Virginia, USA: glaciolacustrine facies in a continental rift. In: Deynoux M, Miller JMG, Domack EW, Eyles N, Fairchild IJ, Young GM (eds) Earth’s glacial record. University of Cambridge Press, Cambridge, pp 47–59CrossRefGoogle Scholar
  43. Miller DJ, Eriksson KA (1997) Late Mississippian prodeltaic rhythmites in the Appalachian Basin: a hierarchical record of tidal and climatic periodicities. J Sedi Res 67:653–660Google Scholar
  44. Nelson TH, Temple PG (1972) Mainstream mantle convection: a geologic analysis of plate motion. Am Assoc Petrol Geol Bull 56:226–246Google Scholar
  45. Palmer AR (1971) The cambrian of the appalachian and eastern New England regions, eastern United States. In: Holland CH (ed) Cambrian of the new world. Wiley, New York, pp 169–217Google Scholar
  46. Peale SJ, Cassen P (1978) Contribution of tidal dissipation to lunar thermal history. Icarus 36:245–269CrossRefGoogle Scholar
  47. Powell CM, Preiss WV, Gatehouse CG, Krapaz B, Li ZX (1994) South Australian record of a Rodinian epicontinental basin and its mid-neoproterozoic breakup (~ 700 Ma) to form the Palaeo-Pacific ocean. Tectonophysics 237:113–140CrossRefGoogle Scholar
  48. Priess WV (ed) (1987) The adelaide geosyncline-late proterozoic stratigraphy: sedimentatikon, palaeontology and tectonics. Geol Surv S Aust Bull 53:438Google Scholar
  49. Rankin DW (1975) The continental margin of eastern North America in the southern Appalachians: the opening and closing of the Proto-Atlantic ocean. Am J Sci 275-A:298–336Google Scholar
  50. Rankin DW (1993) The volcanogenic Mount Rogers formation and the overlying glaciogenic Konnarock formation—two late proterozoic units in southwestern Virginia. U. S. Geol Surv Bull 2029:26Google Scholar
  51. Reinhard CT, Ralswell R, Scott C, Anbar AD, Lyons TW (2009) A late archean sulfidic sea simulated by early oxidative weathering of the continents. Science 326:713–716CrossRefGoogle Scholar
  52. Ricard Y, Doglioni C, Sabadina R (1991) Differential rotation between lithosphere and mantle: a consequence of lateral mantle viscosity variations. J Geophys Res 96:8407–8415CrossRefGoogle Scholar
  53. Ross MN, Schubert G (1989) Evolution of the lunar orbit with temperature and frequency-dependent dissipation. J Geophys Res 94(B7):9533–9544CrossRefGoogle Scholar
  54. Saeed A, Evans JE (1999) Subsurface facies analysis of the late cambrian Mt. Simon Sandstone in western Ohio (midcontinent North America). Open J Geol 2:35–47CrossRefGoogle Scholar
  55. Saunders RS (1999) Venus. In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system, 4th edn. Sky Publishing Company and Cambridge University Press, Cambridge, pp 97–110Google Scholar
  56. Schultz PH, Spudis PD (1983) Beginning and end of lunar mare volcanism. Nature 302:233–236CrossRefGoogle Scholar
  57. Scoppola B, Boccaletti D, Bevis M, Carminati E, Doglioni C (2006) The westward drift of the lithosphere: a rotational drag? Geol Soc Am Bull 118:199–209CrossRefGoogle Scholar
  58. Shields-Zhou G, Och L (2011) The case for a neoproterozoic oxygenation event: geochemical evidence and biological consequences. GSA Today 21(3):4–11CrossRefGoogle Scholar
  59. Sonett CP, Chan MA (1998) Meoproterozoic Earth-Moon dynamics: rework of the 900 Ma big Cottonwood Canyon tidal laminae. Geophys Res Lett 25:539–542CrossRefGoogle Scholar
  60. Sonett CP, Kvale EP, Zakharian A, Chan MA, Demko TM (1996) Late proterozoic and paleozoic tides, retreat of the moon, and rotation of the earth. Science 273:100–104CrossRefGoogle Scholar
  61. Stern RJ (2005) Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in neoproterozoic time. Geology 33:557–560CrossRefGoogle Scholar
  62. Stewart JH (1970) Upper precambrian and lower Cambrian strata in the Southern Great Basin, California and Nevada. United States Geological Survey Professional Paper 620, p 206Google Scholar
  63. Tape CH, Cowan CA, Runkel AC (2003) Tidal-bundle sequences in the jordan sandstone (Upper Cambrian), southeastern Minnesota, U. S. A.: evidence for tides along inboard shorelines of the Sauk epicontinental sea. J Sediment Res 73:354–366CrossRefGoogle Scholar
  64. Touma J, Wisdon J (1994) Evolution of the Earth-Moon system. Astron Jour 108:1943–1961Google Scholar
  65. Touma J, Wisdom J (1998) Resonances in the early evolution of the Earth-Moon system. Astron Jour 115:1653–1663Google Scholar
  66. Uyeda S, Kanamori H (1979) Back-arc opening and the mode of subduction. J Geophys Res 84:1049–1061CrossRefGoogle Scholar
  67. Webb DH (1982) Tides and the evolution of the Earth-Moon system. Geophys J R Astron Soc 70:261–271CrossRefGoogle Scholar
  68. Whitmeyer SJ, Karlstrom KE (2007) Tectonic model for the proterozoic growth of North America. Geosphere 3:220–259. doi:10-1130/GES00055.1CrossRefGoogle Scholar
  69. Williams GE (1989a) Tidal rhythmites: geochronometers for the ancient Earth-Moon system. Episodes 12(3):162–171Google Scholar
  70. Williams GE (1989b) Precambrian tidal sedimentary cycles and earth’s palorotation. EOS (Am Geophys Union) 70(33):40–41Google Scholar
  71. Williams GE (1997) Precambrian length of day and the validity of tidal rhythmite paleotidal values. Geophys Res Lett 24:421–424CrossRefGoogle Scholar
  72. Windley BR (1995) The evolving continents, 3rd edn. Wiley, New York, p 526Google Scholar
  73. Young GM, Nesbitt HW (1985) The Gowganda formation in the sourhern part of the Huronian outcrop bets, Ontario, Canada: statigraphy, depositional environments and the regional tectonic significance. Precambrian Res 29:265–301CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Geosciences DepartmentDenison UniversityGranvilleUSA

Personalised recommendations