Advertisement

A Prograde Gravitational Capture Model for the Origin and Evolution of the Earth-Moon System

Chapter
  • 848 Downloads

Abstract

The origin of the Moon is one of the outstanding unsolved problems in the natural sciences. Cursory examination of college-level textbooks in the Earth and Planetary Sciences leaves one with the impression that the Moon is simply a “night lantern” and that the moon effects the Earth in only minor ways, such as controlling the tidal waters on the planet.

Keywords

Tidal Amplitude Close Encounter Earth Radius Successful Capture Magma Ocean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alfven H (1969) Atom, man, and the universe: the long chain of complications. W. H. Freeman and Company, San Francisco, 110 pGoogle Scholar
  2. Alfven H, Alfven K (1972) Living on the third planet. W. H. Freeman and Company, San Francisco, 187 pGoogle Scholar
  3. Bland PA, Spurny P et al (2009) An anomalous basaltic meteorite from the innermost main belt. Science 325:1525–1527CrossRefGoogle Scholar
  4. Bostrom RC (2000) Tectonic consequences of the Earth’s rotation. Oxford University Press, London, 266 pGoogle Scholar
  5. Cameron AGW (1972) Orbital eccentricity of Mercury and the origin of the moon. Nature 240:299–300CrossRefGoogle Scholar
  6. Cameron AGW (1973) Properties of the solar nebula and the origin of the moon. Moon 7:377–383CrossRefGoogle Scholar
  7. Campbell AJ, Humayun M (2005) Compositions of group IVB iron meteorites and their parent melt. Geochim Cosmochim Acta 69:4733–4744CrossRefGoogle Scholar
  8. Cisowski SM, Collinson DW, Runcorn SK, Stephenson A, Fuller M (1983) A review of lunar paleointensity data and implications for the origin of lunar magnetism. J Geophys Res 88:A691–A704CrossRefGoogle Scholar
  9. Connelly JN, Bizzarro M, Krot AN, Nordlund A, Wielandt D, Ivanova MA (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338:651–655CrossRefGoogle Scholar
  10. Day JMD, Pearson DG, Taylor LA (2007) Highly siderophile element constraints on accretion and differentiation of the Earth-Moon system. Science 315:217–219CrossRefGoogle Scholar
  11. Duffard R, Roig F (2009) Two new V-type asteroids in the outer Main Belt? Planet Space Sci 57:229–234CrossRefGoogle Scholar
  12. Dyal P, Parkin CW (1973) The magnetism of the Moon. Sci Am 225(2):63–73CrossRefGoogle Scholar
  13. Evans WN, Tabachnik S (1999) Possible long-lived asteroid belts in the inner Solar System. Nature 399:41–43CrossRefGoogle Scholar
  14. Evans WN, Tabachnik S (2002) Structure of possible long-lived asteroid belts: Monthly notices. R Astro Soc 333:L1–L5CrossRefGoogle Scholar
  15. Fuller M (1974) Lunar magnetism. Rev Geophys Space Phys 12:23–79CrossRefGoogle Scholar
  16. Goldreich P, Soter S (1966) Q in the solar system. Icarus 5:375–389CrossRefGoogle Scholar
  17. Goldstein JI, Scott ERD, Chabot N L (2009) Iron meteorites. Crystallization, thermal history, parent bodies, and origin. Chem Erde 69:293–325CrossRefGoogle Scholar
  18. Greenwood RC, Franchi IA, Jambon A, Buchanan PC (2005) Widespread magma oceans on asteroidal bodies in the early Solar System. Nature 435:916–918CrossRefGoogle Scholar
  19. Hansen KS (1982) Secular effects of oceanic tidal dissipation on the moon’s orbit and the Earth’s rotation. Rev Geophys Space Phys 30:457–480CrossRefGoogle Scholar
  20. Jeffreys H (1929) The Earth, its origin, history and physical constitution, 2nd edn. Cambridge University Press, Cambridge, 346 pGoogle Scholar
  21. Kaula WM (1971) Dynamics aspects of lunar origin. Rev Geophys 9:117–238CrossRefGoogle Scholar
  22. Kaula WM, Harris AW (1973) Dynamically plausible hypotheses of lunar origin. Nature 245:367–369CrossRefGoogle Scholar
  23. Laskar J (1994) Large-scale chaos in the solar system. Astro Astrophys 287:L9–L12Google Scholar
  24. Laskar J (1995) Large scale chaos and marginal stability in the Solar System: XIth International Congress of Mathematical Physics. International Press, Boston, 120 pGoogle Scholar
  25. Levy EH (1972) Magnetic dynamo in the moon: A comparison with the Earth. Science 178:52–53CrossRefGoogle Scholar
  26. Levy EH (1974) A magnetic dynamo in the Moon? Moon 9:49–56CrossRefGoogle Scholar
  27. Love AEH (1911) Some problems in geodynamics. Cambridge University Press, Cambridge, 180 p (reprinted by Dover, 1967)Google Scholar
  28. Love AEH (1927) A treatise on the mathematical theory of elasticity, 4th edn. Cambridge University Press, Cambridge, 643 pGoogle Scholar
  29. MacDonald GJF (1964) Tidal friction. Rev Geophys 2:467–541CrossRefGoogle Scholar
  30. MacPherson GJ, Simon SB, Davis AM, Grossman L, Krot AN (2005) Calcium-aluminum-rich inclusions. Major unanswered questions. In: Krot AN, Scott ERD, Reipurth B (eds) Chrondrites and the protoplanetary disk. Astronomical Society of the Pacific: San Franciso, pp 225–250Google Scholar
  31. Malcuit RJ, Winters RR (1996) Geometry of stable capture zones for planet Earth and implications for estimating the probability of stable gravitational capture of planetoids from heliocentric orbit. Abstracts Volume, XXVII Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, pp 799–800Google Scholar
  32. Malcuit RJ, Winters RR, Mickelson ME (1977) Is the Moon a captured body? Abstracts Volume, Eighth Lunar Science Conference, pp 608–610Google Scholar
  33. Malcuit RJ, Mehringer DM, Winters RR (1988) Computer simulation of “intact” gravitational capture of a lunar-like body by an Earth-like body: Abstracts Volume, Lunar and Planetary Science XIX. Lunar and Planetary Institute, Houston, pp 718–719Google Scholar
  34. Malcuit RJ, Mehringer DM, Winters RR (1989) Numerical simulation of gravitational capture of a lunar-like body by Earth. In: Proceedings of the 19th Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, pp 581–591Google Scholar
  35. Malcuit RJ, Mehringer DM, Winters RR (1992) A gravitational capture origin for the Earth-Moon system. Implications for the early history of the Earth and Moon. In: Glover JE, Ho SE (eds) Proceedings Volume, 3rd International Archaean Symposium, vol 22. The University of Western Australia, Crawley, pp 223–235Google Scholar
  36. Melchior PJ (1978) The tides of planet Earth. Pergamon Press, New york, 609 pGoogle Scholar
  37. Mittlefehldt DW, McCoy T J, Goodrich C A, Kracher A (1998) Non-chondritic meteorites from asteroidal bodies. In: Papike JJ (ed) Planetary materials: reviews of mineralogy, vol 36. pp 4–1 to 4–195Google Scholar
  38. Munk WH, MacDonald GJF (1960) The rotation of the Earth. Cambridge University Press, London, 323 pGoogle Scholar
  39. Peale SJ, Cassen P (1978) Contributions of tidal dissipation to lunar thermal history. Icarus 36:245–269CrossRefGoogle Scholar
  40. Prichard ME, Stevenson DJ (2000) Thermal aspects of a lunar origin by giant impact. In: Canup RM, Righter K (eds) Origin of the Earth and moon. University of Arizona Press, Tucson, pp 179–196Google Scholar
  41. Ribeiro AO, Roig F, Canada-Assandri M, Carvano JMF, Jasmin FL, Alvarez-Candal A, Gil-Hutton R (2014) The first confirmation of V-type asteroids among the mars-crosser population. Planet Sp Sci 92:57–64Google Scholar
  42. Roig F, Nesvorny D, Gil-Hutton R, Lazzaro D (2008) V-type asteroids in the middle main belt. Icarus 194:125–136CrossRefGoogle Scholar
  43. Ross M, Schubert G (1986) Tidal dissipation in a viscoelastic planet. Proceedings of the 16th Lunar and Planetary Science Conference. J Geophys Res 91:D447–D452CrossRefGoogle Scholar
  44. Roy AE (1965) The foundations of astrodynamics. The Macmillan Company, New York, 385 pGoogle Scholar
  45. Russell CT (1980) Planetary magnetism. Rev Geophys Space Phys 18:77–106CrossRefGoogle Scholar
  46. Ruzicka A, Snyder GA, Taylor LA (1999) Giant impact and fission hypotheses for the origin of the Moon. A critical review of some geochemical evidence. In: Snyder GA, Neal CR, Ernst WG (eds) Planetary petrology and geochemistry. Geological Society of America, International Book Series 2:121–134Google Scholar
  47. Ruzicka A, Snyder GA, Taylor LA (2001) Comparative geochemistry of basalts from the Moon, Earth, HED asteroid, and Mars. Implications for the origin of the Moon. Geochim Cosmochem Acta 65:979–997CrossRefGoogle Scholar
  48. Salmeron R, Ireland TR (2012) Formation of chondrules in magnetic winds blowing through the proto-asteroid belt. Earth Planet Sci Lett 327–328:61–67CrossRefGoogle Scholar
  49. Scott ERD, Greenwood RC, Franchi IA, Sanders IS (2009) Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochim Cosmochim Acta 73:5835–5853CrossRefGoogle Scholar
  50. Sharp LR, Coleman PJ Jr, Lichtenstein BR, Russell CT, Schubert G (1973) Orbital mapping of the lunar magnetic field. Moon 7:322–341CrossRefGoogle Scholar
  51. Shu FH, Shang H, Glassgold AE, Lee T (1997) X-rays and fluctuating X-Winds from protostars. Science 277:1475–1479CrossRefGoogle Scholar
  52. Shu FH, Shang H, Gounelle M, Glassgold AE, Lee T (2001) The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophys J 548:1029–1050CrossRefGoogle Scholar
  53. Singer SF (1968) The origin of the moon and geophysical consequences. Geophys J R Astron Soc 15:205–226CrossRefGoogle Scholar
  54. Singer SF (1970) The origin of the moon and its consequences. Trans Am Geophys Union 51:637–641CrossRefGoogle Scholar
  55. Smoluchowski R (1973a) Lunar tides and magnetism. Nature 242:516–517CrossRefGoogle Scholar
  56. Smoluchowski R (1973b) Magnetism of the moon. The Moon 7:127–131CrossRefGoogle Scholar
  57. Sonett CP, Colburn DS, Schwartz K (1975) Formation of the lunar crust: an electrical source of heating. Icarus 24:231–255CrossRefGoogle Scholar
  58. Stacey FD (1977) Physics of the Earth, 2nd edn. Wiley, London, 414 pGoogle Scholar
  59. Taylor SR (2001) Solar System evolution: a new perspective, 2nd edn. Cambridge University Press, Cambridge, 460 pCrossRefGoogle Scholar
  60. Wasson JT (2013) Vesta and extensively melted asteroids. Why HED meteorites are probably not from Vesta. Earth Planet Sci Lett 381:138–146CrossRefGoogle Scholar
  61. Webb DJ (1982) Tides and the evolution of the Earth-Moon system. Geophys J R Astron Soc 70:261–271CrossRefGoogle Scholar
  62. Winters RR, Malcuit RJ (1977) The lunar capture hypothesis revisited. Moon 17:353–358CrossRefGoogle Scholar
  63. Wood JA (2004) Formation of chondritic refractory inclusions. The astrophysical setting. Geochim Cosmochim Acta 68:4007–4021CrossRefGoogle Scholar
  64. Wood JA, Dickey JS Jr, Marvin UB, Powell BN (1970) Lunar anorthosites and a geophysical model of the moon. Proceedings of the Apollo 11 Lunar Science Conference, Lunar Science Institite, Houston, vol 1, pp 965–988Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Geosciences DepartmentDenison UniversityGranvilleUSA

Personalised recommendations