Skip to main content

Inhalation Therapy for Pulmonary Tuberculosis

  • Chapter
  • First Online:
Targeted Drug Delivery : Concepts and Design

Part of the book series: Advances in Delivery Science and Technology ((ADST))

  • 4114 Accesses

Abstract

Tuberculosis (TB) is one of the worst infectious diseases worldwide, and the pathogen causing it, Mycobacterium tuberculosis (Mtb), has infected one-third of the population in the world. The recent increase in the emergence of drug-resistant strains of Mtb is threatening public health in developing countries as well as in developed ones. The latest advances in particle engineering have provided the possibility of inhalation therapy for pulmonary TB. Delivery of anti-TB drugs directly via the respiratory tract deep into the lung leads to a higher drug concentration in the alveolar macrophages infected with Mtb. This chapter deals with the recent developments in the area of inhalation therapy for pulmonary TB, including current clinical and experimental issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gler MT, Skripconoka V, Sanchez-Garavito E, Xiao H, Cabrera-Rivero JL, Vargas-Vasquez DE, Gao M, Awad M, Park SK, Shim TS, Suh GY, Danilovits M, Ogata H, Kurve A, Chang J, Suzuki K, Tupasi T, Koh WJ, Seaworth B, Geiter LJ, Wells CD (2012) Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med 366:2151–2160

    Article  CAS  PubMed  Google Scholar 

  2. Tasneen R, Li SY, Peloquin CA, Taylor D, Williams KN, Andries K, Mdluli KE, Nuermberger EL (2011) Sterilizing activity of novel TMC207- and PA-824-containing regimens in a murine model of tuberculosis. Antimicrob Agents Chemother 55:5485–5492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Global Tuberculosis Report (2012) World Health Organization. http://apps.who.int/iris/bitstream/10665/75938/1/9789241564502_eng.pdf. Accessed 15 Apr 2013

  4. Barnes PF, Cave MD (2003) Molecular epidemiology of tuberculosis. N Engl J Med 349:1149–1156

    Article  CAS  PubMed  Google Scholar 

  5. Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C (2003) Tuberculosis. Lancet 362:887–899

    Article  PubMed  Google Scholar 

  6. HIV/TB Facts (2011) World Health Organization. http://www.who.int/hiv/topics/tb/hiv_tb_factsheet_june_2011.pdf. Accessed 15 Apr 2013

  7. Armstrong JA, Hart PD (1971) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134:713–740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG (1994) Lack of acidification in mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678–681

    Article  CAS  PubMed  Google Scholar 

  9. Ferrari G, Langen H, Naito M, Pieters J (1999) A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97:435–447

    Article  CAS  PubMed  Google Scholar 

  10. Manca C, Paul S, Barry CE 3rd, Freedman VH, Kaplan G (1999) Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect Immun 67:74–79

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Voskuil MI, Bartek IL, Visconti K, Schoolnik GK (2011) The response of mycobacterium tuberculosis to reactive oxygen and nitrogen species. Front Microbiol 2:105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Russell DG, Cardona PJ, Kim MJ, Allain S, Altare F (2009) Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 10:943–948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Russell DG, Barry CE 3rd, Flynn JL (2010) Tuberculosis: what we don’t know can, and does, hurt us. Science 328:852–856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ramakrishnan L (2012) Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 12:352–366

    CAS  PubMed  Google Scholar 

  15. Kim MJ, Wainwright HC, Locketz M, Bekker LG, Walther GB, Dittrich C, Visser A, Wang W, Hsu FF, Wiehart U, Tsenova L, Kaplan G, Russell DG (2010) Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2:258–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lee W, VanderVen BC, Fahey RJ, Russell DG (2013) Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J Biol Chem 288:6788–6800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Eum SY, Kong JH, Hong MS, Lee YJ, Kim JH, Hwang SH, Cho SN, Via LE, Barry CE 3rd (2010) Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest 137:122–128

    Article  PubMed Central  PubMed  Google Scholar 

  18. Migliori GB, Hopewell PC, Blasi F, Spanevello A, Raviglione MC (2006) Improving the TB case management: the international standards for tuberculosis care. Eur Respir J 28:687–690

    Article  CAS  PubMed  Google Scholar 

  19. Nuermberger EL, Yoshimatsu T, Tyagi S, Williams K, Rosenthal I, O’Brien RJ, Vernon AA, Chaisson RE, Bishai WR, Grosset JH (2004) Moxifloxacin-containing regimens of reduced duration produce a stable cure in murine tuberculosis. Am J Respir Crit Care Med 170:1131–1134

    Article  PubMed  Google Scholar 

  20. Shargie EB, Lindtjorn B (2005) DOTS improves treatment outcomes and service coverage for tuberculosis in South Ethiopia: a retrospective trend analysis. BMC Public Health 5:62

    Article  PubMed Central  PubMed  Google Scholar 

  21. Gordon S, Rabinowitz S (1989) Macrophages as targets for drug delivery. Adv Drug Deliv Rev 4:27–47

    Article  Google Scholar 

  22. Sacks LV, Pendle S, Orlovic D, Andre M, Popara M, Moore G, Thonell L, Hurwitz S (2001) Adjunctive salvage therapy with inhaled aminoglycosides for patients with persistent smear-positive pulmonary tuberculosis. Clin Infect Dis 32:44–49

    Article  CAS  PubMed  Google Scholar 

  23. Roy CJ, Sivasubramani SK, Dutta NK, Mehra S, Golden NA, Killeen S, Talton JD, Hammoud BE, Didier PJ, Kaushal D (2012) Aerosolized gentamicin reduces the burden of tuberculosis in a murine model. Antimicrob Agents Chemother 56:883–886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hirota K, Hasegawa T, Hinata H, Ito F, Inagawa H, Kochi C, Soma G, Makino K, Terada H (2007) Optimum conditions for efficient phagocytosis of rifampicin-loaded PLGA microspheres by alveolar macrophages. J Control Release 119:69–76

    Article  CAS  PubMed  Google Scholar 

  25. Weibel ER (1963) Morphometry of the human lung. Springer, Berlin

    Book  Google Scholar 

  26. Hickey AJ (2002) Delivery of drugs by the pulmonary route. In: Banker GS, Rhodes CT (eds) Modern pharmaceutics. Marcel Dekker, New York

    Google Scholar 

  27. Gonda I (1981) A semi-empirical model of aerosol deposition in the human respiratory tract for mouth inhalation. J Pharm Pharmacol 33:692–696

    Article  CAS  PubMed  Google Scholar 

  28. Byron PR (1986) Some future perspectives for unit dose inhalation aerosols. Drug Dev Ind Pharm 12:993–1015

    Article  CAS  Google Scholar 

  29. Batycky RP, Hanes J, Langer R, Edwards DA (1997) A theoretical model of erosion and macromolecular drug release from biodegrading microspheres. J Pharm Sci 86:1464–1477

    Article  CAS  PubMed  Google Scholar 

  30. O’Hara P, Hickey AJ (2000) Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization. Pharm Res 17:955–961

    Article  PubMed  Google Scholar 

  31. Makino K, Nakajima T, Shikamura M, Ito F, Ando S, Kochi C, Inagawa H, Soma G, Terada H (2004) Efficient intracellular delivery of rifampicin to alveolar macrophages using rifampicin-loaded PLGA microspheres: effects of molecular weight and composition of PLGA on release of rifampicin. Colloids Surf B Biointerfaces 36:35–42

    Article  CAS  PubMed  Google Scholar 

  32. Sharma R, Saxena D, Dwivedi AK, Misra A (2001) Inhalable microparticles containing drug combinations to target alveolar macrophages for treatment of pulmonary tuberculosis. Pharm Res 18:1405–1410

    Article  CAS  PubMed  Google Scholar 

  33. Ito F, Makino K (2004) Preparation and properties of monodispersed rifampicin-loaded poly(lactide-co-glycolide) microspheres. Colloids Surf B Biointerfaces 39:17–21

    Article  CAS  PubMed  Google Scholar 

  34. Atkins PJ (2005) Dry powder inhalers: an overview. Respir Care 50:1304–1312

    PubMed  Google Scholar 

  35. Owens DR, Zinman B, Bolli G (2003) Alternative routes of insulin delivery. Diabet Med 20:886–898

    Article  CAS  PubMed  Google Scholar 

  36. Suarez S, O’Hara P, Kazantseva M, Newcomer CE, Hopfer R, McMurray DN, Hickey AJ (2001) Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: screening in an infectious disease model. Pharm Res 18:1315–1319

    Article  CAS  PubMed  Google Scholar 

  37. Suarez S, O’Hara P, Kazantseva M, Newcomer CE, Hopfer R, McMurray DN, Hickey AJ (2001) Airways delivery of rifampicin microparticles for the treatment of tuberculosis. J Antimicrob Chemother 48:431–434

    Article  CAS  PubMed  Google Scholar 

  38. Tomoda K, Kojima S, Kajimoto M, Watanabe D, Nakajima T, Makino K (2005) Effects of pulmonary surfactant system on rifampicin release from rifampicin-loaded PLGA microspheres. Colloids Surf B Biointerfaces 45:1–6

    Article  CAS  PubMed  Google Scholar 

  39. Muttil P, Kaur J, Kumar K, Yadav AB, Sharma R, Misra A (2007) Inhalable microparticles containing large payload of anti-tuberculosis drugs. Eur J Pharm Sci 32:140–150

    Article  CAS  PubMed  Google Scholar 

  40. Sung JC, Garcia-Contreras L, Verberkmoes JL, Peloquin CA, Elbert KJ, Hickey AJ, Edwards DA (2009) Dry powder nitroimidazopyran antibiotic PA-824 aerosol for inhalation. Antimicrob Agents Chemother 53:1338–1343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Sharma R, Muttil P, Yadav AB, Rath SK, Bajpai VK, Mani U, Misra A (2007) Uptake of inhalable microparticles affects defence responses of macrophages infected with Mycobacterium tuberculosis H37Ra. J Antimicrob Chemother 59:499–506

    Article  CAS  PubMed  Google Scholar 

  42. Fiegel J, Garcia-Contreras L, Thomas M, VerBerkmoes J, Elbert K, Hickey A, Edwards D (2008) Preparation and in vivo evaluation of a dry powder for inhalation of capreomycin. Pharm Res 25:805–811

    Article  CAS  PubMed  Google Scholar 

  43. Dharmadhikari AS, Kabadi M, Gerety B, Hickey AJ, Fourie PB, Nardell E (2013) Phase I, single-dose, dose-escalating study of inhaled dry powder capreomycin: a new approach to therapy of drug-resistant tuberculosis. Antimicrob Agents Chemother 57:2613–2619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Wong YL, Sampson S, Germishuizen WA, Goonesekera S, Caponetti G, Sadoff J, Bloom BR, Edwards D (2007) Drying a tuberculosis vaccine without freezing. Proc Natl Acad Sci U S A 104:2591–2595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Rogers TL, Johnston KP, Williams RO (2001) Solution-based particle formation of pharmaceutical powders by supercritical or compressed fluid CO2 and cryogenic spray-freezing technologies. Drug Dev Ind Pharm 27:1003–1015

    Article  CAS  PubMed  Google Scholar 

  46. Yu ZS, Rogers TL, Hu JH, Johnston KP, Williams RO (2002) Preparation and characterization of microparticles containing peptide produced by a novel process: spray freezing into liquid. Eur J Pharm Biopharm 54:221–228

    Article  CAS  PubMed  Google Scholar 

  47. Meers P, Neville M, Malinin V, Scotto AW, Sardaryan G, Kurumunda R, Mackinson C, James G, Fisher S, Perkins WR (2008) Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J Antimicrob Chemother 61:859–868

    Article  CAS  PubMed  Google Scholar 

  48. Vyas SP, Kannan ME, Jain S, Mishra V, Singh P (2004) Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm 269:37–49

    Article  CAS  PubMed  Google Scholar 

  49. Fujiwara T, Konishi M, Chida S, Okuyama K, Ogawa Y, Takeuchi Y, Nishida H, Kito H, Fujimura M, Nakamura H, Hashimoto T, Surfactant-TA Study Group (1990) Surfactant replacement therapy with a single postventilatory dose of a reconstituted bovine surfactant in preterm neonates with respiratory distress syndrome: final analysis of a multicenter, double-blind, randomized trial and comparison with similar trials. Pediatrics 86:753–764

    Google Scholar 

  50. Pandey R, Khuller GK (2005) Antitubercular inhaled therapy: opportunities, progress and challenges. J Antimicrob Chemother 55:430–435

    Article  CAS  PubMed  Google Scholar 

  51. Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623

    Article  CAS  PubMed  Google Scholar 

  52. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44

    Article  CAS  PubMed  Google Scholar 

  53. Hansen CG, Nichols BJ (2009) Molecular mechanisms of clathrin-independent endocytosis. J Cell Sci 122:1713–1721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145:182–195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Swanson JA, Watts C (1995) Macropinocytosis. Trends Cell Biol 5:424–428

    Article  CAS  PubMed  Google Scholar 

  56. Tamaru M, Akita H, Fujiwara T, Kajimoto K, Harashima H (2010) Leptin-derived peptide, a targeting ligand for mouse brain-derived endothelial cells via macropinocytosis. Biochem Biophys Res Commun 394:587–592

    Article  CAS  PubMed  Google Scholar 

  57. Bhattacharya S, Roxbury D, Gong X, Mukhopadhyay D, Jagota A (2012) DNA conjugated SWCNTs enter endothelial cells via Rac1 mediated macropinocytosis. Nano Lett 12:1826–1830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Mukhopadhyay S, Herre J, Brown GD, Gordon S (2004) The potential for toll-like receptors to collaborate with other innate immune receptors. Immunology 112:521–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Prescribing information. Janssen Products, LP, http://www.doxil.com/shared/product/doxil/prescribing-information.pdf. Accessed 6 Sept 2013

  60. Dams ET, Laverman P, Oyen WJ, Storm G, Scherphof GL, van Der Meer JW, Corstens FH, Boerman OC (2000) Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther 292:1071–1079

    CAS  PubMed  Google Scholar 

  61. Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, Kiwada H (2006) Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release 112:15–25

    Article  CAS  PubMed  Google Scholar 

  62. Ishida T, Masuda K, Ichikawa T, Ichihara M, Irimura K, Kiwada H (2003) Accelerated clearance of a second injection of PEGylated liposomes in mice. Int J Pharm 255:167–174

    Article  CAS  PubMed  Google Scholar 

  63. Hirota K, Hasegawa T, Nakajima T, Inagawa H, Kohchi C, Soma G, Makino K, Terada H (2010) Delivery of rifampicin-PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis. J Control Release 142:339–346

    Article  CAS  PubMed  Google Scholar 

  64. Hirota K, Terada H (2012) Endocytosis of particle formulations by macrophages and its application to clinical treatment. In: Ceresa B (ed) Molecular regulation of endocytosis. InTech, Rijeka

    Google Scholar 

  65. Phalen RF (1976) Inhalation exposure of animals. Environ Health Perspect 16:17–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Dorato MA (1990) Overview of inhalation toxicology. Environ Health Perspect 85:163–170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Warheit DB, Carakostas MC, Hartsky MA, Hansen JF (1991) Development of a short-term inhalation bioassay to assess pulmonary toxicity of inhaled particles: comparisons of pulmonary responses to carbonyl iron and silica. Toxicol Appl Pharmacol 107:350–368

    Article  CAS  PubMed  Google Scholar 

  68. Costa DL, Lehmann JR, Harold WM, Drew RT (1986) Transoral tracheal intubation of rodents using a fiberoptic laryngoscope. Lab Anim Sci 36:256–261

    CAS  PubMed  Google Scholar 

  69. Remie R, Bertens APMG, van Dongen JJ, Rensema JW, van Wunnik GHJ (1990) Anaesthesia of the laboratory rat. In: van Dongen JJ, Remie R, Rensema JW, van Wunnik GHJ (eds) Manual of microsurgery on the laboratory rat, part I. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  70. Bivas-Benita M, Zwier R, Junginger HE, Borchard G (2005) Non-invasive pulmonary aerosol delivery in mice by the endotracheal route. Eur J Pharm Biopharm 61:214–218

    Article  CAS  PubMed  Google Scholar 

  71. Tronde A, Baran G, Eirefelt S, Lennernäs H, Bengtsson UH (2002) Miniaturized nebulization catheters: a new approach for delivery of defined aerosol doses to the rat lung. J Aerosol Med 15:283–296

    Article  CAS  PubMed  Google Scholar 

  72. Cannon WC, Blanton EF, McDonald KE (1983) The flow-past chamber: an improved nose-only exposure system for rodents. Am Ind Hyg Assoc J 44:923–928

    Article  CAS  PubMed  Google Scholar 

  73. Kaur J, Muttil P, Verma RK, Kumar K, Yadav AB, Sharma R, Misra A (2008) A hand-held apparatus for “nose-only” exposure of mice to inhalable microparticles as a dry powder inhalation targeting lung and airway macrophages. Eur J Pharm Sci 34:56–65

    Article  CAS  PubMed  Google Scholar 

  74. Wong BA (2007) Inhalation exposure systems: design, methods and operation. Toxicol Pathol 35:3–14

    Article  CAS  PubMed  Google Scholar 

  75. Garcia-Contreras L, Sung JC, Muttil P, Padilla D, Telko M, Verberkmoes JL, Elbert KJ, Hickey AJ, Edwards DA (2010) Dry powder PA-824 aerosols for treatment of tuberculosis in guinea pigs. Antimicrob Agents Chemother 54:1436–1442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Verma RK, Kaur J, Kumar K, Yadav AB, Misra A (2008) Intracellular time course, pharmacokinetics, and biodistribution of isoniazid and rifabutin following pulmonary delivery of inhalable microparticles to mice. Antimicrob Agents Chemother 52:3195–3201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Lombry C, Bosquillon C, Preat V, Vanbever R (2002) Confocal imaging of rat lungs following intratracheal delivery of dry powders or solutions of fluorescent probes. J Control Release 83:331–341

    Article  CAS  PubMed  Google Scholar 

  78. Kawamoto T (2003) Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch Histol Cytol 66:123–143

    Article  PubMed  Google Scholar 

  79. Hirota K, Kawamoto T, Nakajima T, Makino K, Terada H (2013) Distribution and deposition of respirable PLGA microspheres in lung alveoli. Colloids Surf B Biointerfaces 105:92–97

    Article  CAS  PubMed  Google Scholar 

  80. Dolovich M, Labiris R (2004) Imaging drug delivery and drug responses in the lung. Proc Am Thorac Soc 1:329–337

    Article  CAS  PubMed  Google Scholar 

  81. Pitcairn GR, Newman SP (1998) Radiolabellling of dry powder formulations. In: Dalby RN, Byron PR, Farr SJ (eds) Respiratory drug delivery VI. Interpharm Press, Buffalo Grove

    Google Scholar 

  82. Garcia-Contreras L, Sethuraman V, Kazantseva M, Godfrey V, Hickey AJ (2006) Evaluation of dosing regimen of respirable rifampicin biodegradable microspheres in the treatment of tuberculosis in the guinea pig. J Antimicrob Chemother 58:980–986

    Article  CAS  PubMed  Google Scholar 

  83. Yoshida A, Matumoto M, Hshizume H, Oba Y, Tomishige T, Inagawa H, Kohchi C, Hino M, Ito F, Tomoda K, Nakajima T, Makino K, Terada H, Hori H, Soma G (2006) Selective delivery of rifampicin incorporated into poly(DL-lactic-co-glycolic) acid microspheres after phagocytotic uptake by alveolar macrophages, and the killing effect against intracellular Mycobacterium bovis calmette-guerin. Microbes Infect 8:2484–2491

    Article  CAS  PubMed  Google Scholar 

  84. Garcia-Contreras L, Fiegel J, Telko MJ, Elbert K, Hawi A, Thomas M, VerBerkmoes J, Germishuizen WA, Fourie PB, Hickey AJ, Edwards D (2007) Inhaled large porous particles of capreomycin for treatment of tuberculosis in a guinea pig model. Antimicrob Agents Chemother 51:2830–2836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Verma RK, Germishuizen WA, Motheo MP, Agrawal AK, Singh AK, Mohan M, Gupta P, Gupta UD, Cholo M, Anderson R, Fourie PB, Misra A (2013) Inhaled microparticles containing clofazimine are efficacious in treatment of experimental tuberculosis in mice. Antimicrob Agents Chemother 57:1050–1052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Helke KL, Mankowski JL, Manabe YC (2006) Animal models of cavitation in pulmonary tuberculosis. Tuberculosis (Edinb) 86:337–348

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Terada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Controlled Release Society

About this chapter

Cite this chapter

Hirota, K., Tomoda, K., Makino, K., Terada, H. (2015). Inhalation Therapy for Pulmonary Tuberculosis. In: Devarajan, P., Jain, S. (eds) Targeted Drug Delivery : Concepts and Design. Advances in Delivery Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-11355-5_5

Download citation

Publish with us

Policies and ethics