Skip to main content

Carbon-Based Nanomaterials for Targeted Drug Delivery and Imaging

  • Chapter
  • First Online:

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

The progress in nanotechnology has witnessed the emergence of several types and forms of nanomaterials for biomedical applications. Amidst the myriad of nanocarriers currently being investigated, carbon nanotubes (CNTs) emerge as a unique and novel class of nanomaterials which have shown considerable promise in cancer therapy and diagnosis. Their unusually large surface area has enabled engineering of the surface topography of CNTs making them biocompatible and providing therapeutic benefits. Having the ability to encapsulate small molecules, being amiable for stacking interactions and conjugation, several reports indicate that nanotubes have improved the profiles of anticancer agents. Photothermal and photoacoustic therapy are new avenues which have been facilitated by CNTs due their ability to absorb near infrared (NIR) radiation, which has a high depth of penetration in human tissue. The current review aims to familiarize reader with the concept of carbon nanotubes and their role in cancer therapy and diagnosis based on recent reports.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fabbro C, Ali-Boucetta H, Da Ros T, Kostarelos K, Bianco A, Prato M (2012) Targeting carbon nanotubes against cancer. Chem Commun 48:3911–3926

    Article  CAS  Google Scholar 

  2. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    Article  CAS  PubMed  Google Scholar 

  3. Thakare VS, Das M, Jain AK, Patil S, Jain S (2010) Carbon nanotubes in cancer theragnosis. Nanomedicine 5:1277–1301

    Article  CAS  PubMed  Google Scholar 

  4. Vashist SK, Zheng D, Pastorin G, Al-Rubeaan K, Luong JH, Sheu F-S (2011) Delivery of drugs and biomolecules using carbon nanotubes. Carbon 49:4077–4097

    Article  CAS  Google Scholar 

  5. Joselevich E (2004) Electronic structure and chemical reactivity of carbon nanotubes: a chemist’s view. Chemphyschem 5:619–624

    Article  CAS  PubMed  Google Scholar 

  6. Peigney A, Laurent C, Flahaut E, Bacsa R, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39:507–514

    Article  CAS  Google Scholar 

  7. Ye Y, Ahn C, Witham C, Fultz B, Liu J, Rinzler A, Colbert D, Smith K, Smalley R (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl Phys Lett 74:2307–2309

    Article  CAS  Google Scholar 

  8. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22

    Article  CAS  PubMed  Google Scholar 

  9. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

    Article  CAS  PubMed  Google Scholar 

  10. Foldvari M, Bagonluri M (2008) Carbon nanotubes as functional excipients for nanomedicines: I. Pharmaceutical properties. Nanomedicine 4:173–182

    Article  CAS  PubMed  Google Scholar 

  11. Foldvari M, Bagonluri M (2008) Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine 4:183–200

    Article  CAS  PubMed  Google Scholar 

  12. Lucente-Schultz RM, Moore VC, Leonard AD, Price BK, Kosynkin DV, Lu M, Partha R, Conyers JL, Tour JM (2009) Antioxidant single-walled carbon nanotubes. J Am Chem Soc 131:3934–3941

    Article  CAS  PubMed  Google Scholar 

  13. Jia N, Lian Q, Shen H, Wang C, Li X, Yang Z (2007) Intracellular delivery of quantum dots tagged antisense oligodeoxynucleotides by functionalized multiwalled carbon nanotubes. Nano Lett 7:2976–2980

    Article  CAS  PubMed  Google Scholar 

  14. Prakash S, Malhotra M, Shao W, Tomaro-Duchesneau C, Abbasi S (2011) Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv Drug Deliv Rev 63:1340–1351

    Article  CAS  PubMed  Google Scholar 

  15. Niyogi S, Hamon M, Hu H, Zhao B, Bhowmik P, Sen R, Itkis M, Haddon R (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105–1113

    Article  CAS  PubMed  Google Scholar 

  16. Jain AK, Dubey V, Mehra NK, Lodhi N, Nahar M, Mishra DK, Jain NK (2009) Carbohydrate-conjugated multiwalled carbon nanotubes: development and characterization. Nanomedicine 5:432–442

    Article  CAS  PubMed  Google Scholar 

  17. Tasis D, Tagmatarchis N, Georgakilas V, Gamboz C, Soranzo M-R, Prato M (2003) Supramolecular organized structures of fullerene-based materials and organic functionalization of carbon nanotubes. C R Chim 6:597–602

    Article  CAS  Google Scholar 

  18. Ren Y, Pastorin G (2008) Incorporation of hexamethylmelamine inside capped carbon nanotubes. Adv Mater 20:2031–2036

    Article  CAS  Google Scholar 

  19. Chen Z, Pierre D, He H, Tan S, Pham-Huy C, Hong H, Huang J (2011) Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes. Int J Pharm 405:153–161

    Article  CAS  PubMed  Google Scholar 

  20. Tripisciano C, Kraemer K, Taylor A, Borowiak-Palen E (2009) Single-wall carbon nanotubes based anticancer drug delivery system. Chem Phys Lett 478:200–205

    Article  CAS  Google Scholar 

  21. de Leon A, Jalbout AF, Basiuk VA (2008) SWNT–amino acid interactions: a theoretical study. Chem Phys Lett 457:185–190, http://dx.doi.org/10.1016/j.cplett.2008.03.079

    Article  Google Scholar 

  22. Hilder TA, Hill JM (2008) Carbon nanotubes as drug delivery nanocapsules. Curr Appl Phys 8:258–261

    Article  Google Scholar 

  23. Ma P-C, Zhang Y (2014) Perspectives of carbon nanotubes/polymer nanocomposites for wind blade materials. Renew Sustain Energy Rev 30:651–660

    Article  CAS  Google Scholar 

  24. Yang D, Yang F, Hu J, Long J, Wang C, Fu D, Ni Q (2009) Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicles. Chem Commun:4447–4449. doi: 10.1039/b908012k

  25. Gordon KB, Tajuddin A, Guitart J, Kuzel TM, Eramo LR, Vonroenn J (1995) Hand‐foot syndrome associated with liposome‐encapsulated doxorubicin therapy. Cancer 75:2169–2173

    Article  CAS  PubMed  Google Scholar 

  26. Gabizon A, Isacson R, Libson E, Kaufman B, Uziely B, Catane R, Ben-Dor CG, Rabello E, Cass Y, Peretz T (1994) Clinical studies of liposome-encapsulated doxorubicin. Acta Oncol 33:779–786

    Article  CAS  PubMed  Google Scholar 

  27. Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K (2008) Multiwalled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun:459–461. doi: 10.1039/B712350G

  28. Heister E, Neves V, Tîlmaciu C, Lipert K, Beltrán VS, Coley HM, Silva SRP, McFadden J (2009) Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 47:2152–2160

    Article  CAS  Google Scholar 

  29. Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ (2009) Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30:6041–6047

    Article  CAS  PubMed  Google Scholar 

  30. Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1:50–56

    Article  PubMed  Google Scholar 

  31. Chen M-L, He Y-J, Chen X-W, Wang J-H (2012) Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. Langmuir 28:16469–16476

    Article  CAS  PubMed  Google Scholar 

  32. Wen S, Liu H, Cai H, Shen M, Shi X (2013) Drug delivery: targeted and ph-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes (Adv. Healthcare Mater. 9/2013). Adv Healthc Mater 2:1181. doi:10.1002/adhm.201370045

    Article  Google Scholar 

  33. Modi CD, Patel SJ, Desai AB, Murthy R (2011) Functionalization and evaluation of PEGylated carbon nanotubes as novel drug delivery for methotrexate. J Appl Pharm Sci 1:103–108

    Google Scholar 

  34. Das M, Singh RP, Datir SR, Jain S (2013) Surface chemistry dependent “switch” regulates the trafficking and therapeutic performance of drug-loaded carbon nanotubes. Bioconjug Chem 24:626–639

    Article  CAS  PubMed  Google Scholar 

  35. Guan H, McGuire MJ, Li S, Brown KC (2008) Peptide-targeted polyglutamic acid doxorubicin conjugates for the treatment of αvβ6-positive cancers. Bioconjug Chem 19:1813–1821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Pastorin G, Wu W, Wieckowski S, Briand J-P, Kostarelos K, Prato M, Bianco A (2006) Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem Commun:1182–1184. doi: 10.1039/B516309A

  37. Samorì C, Ali-Boucetta H, Sainz R, Guo C, Toma FM, Fabbro C, da Ros T, Prato M, Kostarelos K, Bianco A (2010) Enhanced anticancer activity of multi-walled carbon nanotube–methotrexate conjugates using cleavable linkers. Chem Commun 46:1494–1496

    Article  Google Scholar 

  38. Stanton RA, Gernert KM, Nettles JH, Aneja R (2011) Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 31:443–481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68:6652–6660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Sobhani Z, Dinarvand R, Atyabi F, Ghahremani M, Adeli M (2011) Increased paclitaxel cytotoxicity against cancer cell lines using a novel functionalized carbon nanotube. Int J Nanomedicine 6:705–719

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Yang F, Fu DL, Long J, Ni QX (2008) Magnetic lymphatic targeting drug delivery system using carbon nanotubes. Med Hypotheses 70:765–767

    Article  CAS  PubMed  Google Scholar 

  42. Oberoi HS, Nukolova NV, Kabanov AV, Bronich TK (2013) Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev 65:1667–1685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ (2008) Targeted single-wall carbon nanotube-mediated Pt (IV) prodrug delivery using folate as a homing device. J Am Chem Soc 130:11467–11476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ (2007) Soluble single-walled carbon nanotubes as longboat delivery systems for platinum (IV) anticancer drug design. J Am Chem Soc 129:8438–8439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Wu W, Li R, Bian X, Zhu Z, Ding D, Li X, Jia Z, Jiang X, Hu Y (2009) Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano 3:2740–2750

    Article  CAS  PubMed  Google Scholar 

  46. Murakami T, Fan J, Yudasaka M, Iijima S, Shiba K (2006) Solubilization of single-wall carbon nanohorns using a PEG-doxorubicin conjugate. Mol Pharm 3:407–414

    Article  CAS  PubMed  Google Scholar 

  47. Weng X, Wang M, Ge J, Yu S, Liu B, Zhong J, Kong J (2009) Carbon nanotubes as a protein toxin transporter for selective HER2-positive breast cancer cell destruction. Mol Biosyst 5:1224–1231

    Article  CAS  PubMed  Google Scholar 

  48. Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR (2006) PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7:572–579

    Article  CAS  PubMed  Google Scholar 

  49. Shi X, Wang SH, Shen M, Antwerp ME, Chen X, Li C, Petersen EJ, Huang Q, Weber WJ Jr, Baker JR Jr (2009) Multifunctional dendrimer-modified multiwalled carbon nanotubes: synthesis, characterization, and in vitro cancer cell targeting and imaging. Biomacromolecules 10:1744–1750

    Article  CAS  PubMed  Google Scholar 

  50. Meng J, Duan J, Kong H, Li L, Wang C, Xie S, Chen S, Gu N, Xu H, Yang XD (2008) Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy. Small 4:1364–1370

    Article  CAS  PubMed  Google Scholar 

  51. Xiao Y, Gao X, Taratula O, Treado S, Urbas A, Holbrook RD, Cavicchi RE, Avedisian CT, Mitra S, Savla R (2009) Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer 9:351

    Article  PubMed Central  PubMed  Google Scholar 

  52. Villa CH, Dao T, Ahearn I, Fehrenbacher N, Casey E, Rey DA, Korontsvit T, Zakhaleva V, Batt CA, Philips MR (2011) Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano 5:5300–5311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3:307–316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Njardarson JT, Brentjens R, Scheinberg DA (2007) Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 48:1180–1189

    Article  CAS  PubMed  Google Scholar 

  55. Chakravarty P, Marches R, Zimmerman NS, Swafford AD-E, Bajaj P, Musselman IH, Pantano P, Draper RK, Vitetta ES (2008) Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc Natl Acad Sci 105:8697–8702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Kam NWS, O'Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 102:11600–11605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2:47–52

    Article  CAS  PubMed  Google Scholar 

  58. Ou Z, Wu B, Xing D, Zhou F, Wang H, Tang Y (2009) Functional single-walled carbon nanotubes based on an integrin αvβ3 monoclonal antibody for highly efficient cancer cell targeting. Nanotechnology 20:105102

    Article  PubMed  Google Scholar 

  59. Seow Y, Wood MJ (2009) Biological gene delivery vehicles: beyond viral vectors. Mol Ther 17:767–777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Gao K, Huang L (2008) Nonviral methods for siRNA delivery. Mol Pharm 6:651–658

    Article  Google Scholar 

  61. El-Aneed A (2004) Current strategies in cancer gene therapy. Eur J Pharmacol 498:1–8

    Article  CAS  PubMed  Google Scholar 

  62. Albertorio F, Hughes ME, Golovchenko JA, Branton D (2009) Base dependent DNA–carbon nanotube interactions: activation enthalpies and assembly–disassembly control. Nanotechnology 20:395101

    Article  PubMed Central  PubMed  Google Scholar 

  63. Krajcik R, Jung A, Hirsch A, Neuhuber W, Zolk O (2008) Functionalization of carbon nanotubes enables non-covalent binding and intracellular delivery of small interfering RNA for efficient knock-down of genes. Biochem Biophys Res Commun 369:595–602

    Article  CAS  PubMed  Google Scholar 

  64. Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem 116:5354–5358

    Article  Google Scholar 

  65. Zhang Z, Yang X, Zhang Y, Zeng B, Wang S, Zhu T, Roden RB, Chen Y, Yang R (2006) Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin Cancer Res 12:4933–4939

    Article  CAS  PubMed  Google Scholar 

  66. Zhou F, Resasco DE, Chen WR, Xing D, Ou Z, Wu B (2009) Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt 14:021009

    Article  PubMed  Google Scholar 

  67. Ghosh S, Dutta S, Gomes E, Carroll D, D’Agostino R Jr, Olson J, Guthold M, Gmeiner WH (2009) Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano 3:2667–2673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. König K (2000) Multiphoton microscopy in life sciences. J Microsc 200:83–104

    Article  PubMed  Google Scholar 

  69. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317

    Article  CAS  PubMed  Google Scholar 

  70. Levi-Polyachenko NH, Merkel EJ, Jones BT, Carroll DL, Stewart JH IV (2009) Rapid photothermal intracellular drug delivery using multiwalled carbon nanotubes. Mol Pharm 6:1092–1099

    Article  CAS  PubMed  Google Scholar 

  71. Kim P, Odom TW, Huang J-L, Lieber CM (1999) Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularities and end states. Phys Rev Lett 82:1225

    Article  CAS  Google Scholar 

  72. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298:2361–2366

    Article  CAS  PubMed  Google Scholar 

  73. Govorov AO, Richardson HH (2007) Generating heat with metal nanoparticles. Nano Today 2:30–38

    Article  Google Scholar 

  74. Gannon CJ, Cherukuri P, Yakobson BI, Cognet L, Kanzius JS, Kittrell C, Weisman RB, Pasquali M, Schmidt HK, Smalley RE (2007) Carbon nanotube‐enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110:2654–2665

    Article  CAS  PubMed  Google Scholar 

  75. Torti SV, Byrne F, Whelan O, Levi N, Ucer B, Schmid M, Torti FM, Akman S, Liu J, Ajayan PM (2007) Thermal ablation therapeutics based on CNx multi-walled nanotubes. Int J Nanomedicine 2:707

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Burke A, Ding X, Singh R, Kraft RA, Levi-Polyachenko N, Rylander MN, Szot C, Buchanan C, Whitney J, Fisher J (2009) Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci 106:12897–12902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Kang B, Yu D, Dai Y, Chang S, Chen D, Ding Y (2009) Cancer‐cell targeting and photoacoustic therapy using carbon nanotubes as “Bomb” agents. Small 5:1292–1301

    Article  CAS  PubMed  Google Scholar 

  78. Hecht D (2009) “Nanobombs” shock cancer cells: nanomedicine. Mater Today 12:8, http://dx.doi.org/10.1016/S1369-7021(09)70099-9

    Article  Google Scholar 

  79. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand J-P, Prato M, Bianco A, Kostarelos K (2005) Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.J Am Chem Soc 127:4388–4396

    Article  CAS  PubMed  Google Scholar 

  80. Manne U, Srivastava R-G, Srivastava S (2005) Keynote review: recent advances in biomarkers for cancer diagnosis and treatment. Drug Discov Today 10:965–976

    Article  CAS  PubMed  Google Scholar 

  81. Xue Y, Bao L, Xiao X, Ding L, Lei J, Ju H (2011) Noncovalent functionalization of carbon nanotubes with lectin for label-free dynamic monitoring of cell-surface glycan expression. Anal Biochem 410:92–97

    Article  CAS  PubMed  Google Scholar 

  82. Ananta JS, Matson ML, Tang AM, Mandal T, Lin S, Wong K, Wong ST, Wilson LJ (2009) Single-walled carbon nanotube materials as T 2-weighted MRI contrast agents. J Phys Chem C 113:19369–19372

    Article  CAS  Google Scholar 

  83. Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS (2013) Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev 65:1933–1950

    Article  CAS  PubMed  Google Scholar 

  84. Pramanik M, Song KH, Swierczewska M, Green D, Sitharaman B, Wang LV (2009) In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node. Phys Med Biol 54:3291

    Article  PubMed Central  PubMed  Google Scholar 

  85. Pramanik M, Swierczewska M, Wang LV, Green D, Sitharaman B (2009) Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent. J Biomed Opt 14:034018

    Article  PubMed Central  PubMed  Google Scholar 

  86. Adl Z, Liu Z, Bodapati S, Teed R, Vaithilingam S, Khuri-Yakub BT, Chen X, Dai H, Gambhir SS (2010) Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett 10:2168–2172

    Article  Google Scholar 

  87. de la Zerda A, Bodapati S, Teed R, May SY, Tabakman SM, Liu Z, Khuri-Yakub BT, Chen X, Dai H, Gambhir SS (2012) Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice. ACS Nano 6:4694–4701

    Article  PubMed Central  PubMed  Google Scholar 

  88. Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E (2007) Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem 79:782–787

    Article  CAS  PubMed  Google Scholar 

  89. Panchapakesan B, Cesarone G, Liu S, Teker K, Wickstrom E (2005) Single-wall carbon nanotubes with adsorbed antibodies detect live breast cancer cells. Nanobiotechnology 1:353–360

    Article  CAS  Google Scholar 

  90. Teker K (2008) Bioconjugated carbon nanotubes for targeting cancer biomarkers. Mater Sci Eng B 153:83–87

    Article  CAS  Google Scholar 

  91. Loeb S, Catalona WJ (2007) Prostate-specific antigen in clinical practice. Cancer Lett 249:30–39

    Article  CAS  PubMed  Google Scholar 

  92. Kim JP, Lee BY, Lee J, Hong S, Sim SJ (2009) Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors. Biosens Bioelectron 24:3372–3378

    Article  CAS  PubMed  Google Scholar 

  93. Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong JD, Kim SN, Gillespie J, Gutkind JS, Papadimitrakopoulos F (2006) Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc 128:11199–11205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Bareket L, Rephaeli A, Berkovitch G, Nudelman A, Rishpon J (2010) Carbon nanotubes based electrochemical biosensor for detection of formaldehyde released from a cancer cell line treated with formaldehyde-releasing anticancer prodrugs. Bioelectrochemistry 77:94–99

    Article  CAS  PubMed  Google Scholar 

  95. Dukovic G, White BE, Zhou Z, Wang F, Jockusch S, Steigerwald ML, Heinz TF, Friesner RA, Turro NJ, Brus LE (2004) Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes. J Am Chem Soc 126:15269–15276

    Article  CAS  PubMed  Google Scholar 

  96. Heller DA, Jin H, Martinez BM, Patel D, Miller BM, Yeung T-K, Jena PV, Höbartner C, Ha T, Silverman SK (2009) Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat Nanotechnol 4:114–120

    Article  CAS  PubMed  Google Scholar 

  97. Bi S, Zhou H, Zhang S (2009) Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker. Biosens Bioelectron 24:2961–2966

    Article  CAS  PubMed  Google Scholar 

  98. Wang C-H, Chiou S-H, Chou C-P, Chen Y-C, Huang Y-J, Peng C-A (2011) Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody. Nanomedicine 7:69–79

    Article  CAS  PubMed  Google Scholar 

  99. Zhou F, Xing D, Wu B, Wu S, Ou Z, Chen WR (2010) New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett 10:1677–1681

    Article  CAS  PubMed  Google Scholar 

  100. Zhou F, Wu S, Wu B, Chen WR, Xing D (2011) Mitochondria‐targeting single‐walled carbon nanotubes for cancer photothermal therapy. Small 7:2727–2735

    Article  CAS  PubMed  Google Scholar 

  101. Galanzha EI, Kim JW, Zharov VP (2009) Nanotechnology‐based molecular photoacoustic and photothermal flow cytometry platform for in‐vivo detection and killing of circulating cancer stem cells. J Biophotonics 2:725–735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanyog Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Controlled Release Society

About this chapter

Cite this chapter

Thakare, V.S., Prendergast, D., Pastorin, G., Jain, S. (2015). Carbon-Based Nanomaterials for Targeted Drug Delivery and Imaging. In: Devarajan, P., Jain, S. (eds) Targeted Drug Delivery : Concepts and Design. Advances in Delivery Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-11355-5_19

Download citation

Publish with us

Policies and ethics