Skip to main content

Dendritic Polymers in Targeted Drug Delivery

  • Chapter
  • First Online:
Targeted Drug Delivery : Concepts and Design

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Dendritic polymers have gained significant attention in the last two decades due to their size, shape, and multifunctionality. They have emerged as potential scaffolds for drug delivery applications. This chapter deals with the many recently developed applications of dendritic polymers in targeted drug delivery. The general properties of the dendritic polymers as drug delivery systems are discussed with special focus on active or passive delivery of conjugated or encapsulated drugs in targeting tumors, brain, skin, and inflammation. Some in vivo studies are discussed where dendrimer–drug conjugates were not only found to be active against aggressive tumor models but also showed better antitumor efficacy over the free drug. We also describe targeted gene delivery for the treatment of different disorders and diseases. Cellular penetration properties of the dendritic polymers without any targeting ligands, specifically in the inflammatory tissues, are highlighted as well. The extreme versatility of dendritic polymers with extensive research efforts is underway, leading to the development of targeted drug delivery systems for wide clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

8-MOP:

8-Methoxypsoralen

Ab:

Antibody

ABP:

Azabisphosphonate

AF:

Alexa Fluor

ApoE:

Apolipoprotein E

BBB:

Blood–brain barrier

BCSFB:

Blood–cerebrospinal fluid barrier

BNCT:

Boron neutron capture therapy

CMS:

Core-multishell

CPT:

Camptothecin

dPG:

Dendritic polyglycerol

dPGS:

Dendritic polyglycerol sulfate

DTX:

Docetaxel

EGF:

Epidermal growth factor

EPR:

Enhanced permeability and retention effect

FA:

Folic acid

FGF:

Fibroblast growth factor

FITC:

Fluorescein isothiocyanate

G5:

Generation 5

hPG:

Hyperbranched polyglycerol

ICC:

Indocarbocyanine

IDCC:

Indodicarbocyanine

kDa:

kiloDalton

LDL:

Low density lipoproteins

Lf:

Lactoferrin

LHRH:

Luteinizing hormone-releasing hormone

MDR:

Multiple drug resistance

MTX:

Methotrexate

NLC:

Nanostructured lipid carrier

OEI:

Oligoethyleneimine

PABC:

para-Aminobenzyloxycarbonyl

PAMAM:

Polyamidoamine

PEHA:

Pentaethylenehexamine

PEI:

Poly(ethylene imine)

P-gp:

P-Glycoprotein

PPI:

Poly(propylene imine)

PSMA:

Prostate-specific membrane antigen

RA:

Rheumatoid arthritis

RGD:

Arginylglycylaspartic acid

SC:

Stratum corneum

SLN:

Solid lipid nanoparticle

TAA:

Tumor associated antigens

TAM:

Tamoxifen

Tf:

Transferrin

References

  1. Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185

    CAS  PubMed  Google Scholar 

  2. Lee CC, MacKay JA, Fréchet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517–1526

    CAS  PubMed  Google Scholar 

  3. Khandare J, Calderón M, Dagia NM, Haag R (2012) Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chem Soc Rev 41:2824–2848

    CAS  PubMed  Google Scholar 

  4. Gingras M, Raimundo JM, Chabre YM (2007) Cleavable dendrimers. Angew Chem Int Ed 46:1010–1017

    CAS  Google Scholar 

  5. Jansen JFGA, de Brabander-van den Berg EMM, Meijer EW (1994) Encapsulation of guest molecules into a dendritic box. Science 266:1226–1229

    CAS  PubMed  Google Scholar 

  6. Gillies ER, Fréchet JMJ (2002) Designing macromolecules for therapeutic applications: polyester dendrimers-poly(ethylene oxide) “Bow-Tie” hybrids with tunable molecular weight and architecture. J Am Chem Soc 124:14137–14146

    CAS  PubMed  Google Scholar 

  7. Gillies ER, Dy E, Fréchet JMJ, Szoka FC (2005) Evaluation of polyester dendrimer: poly(ethylene oxide) “BowTie” hybrids with tunable molecular weight and architecture. Mol Pharm 2:129–138

    CAS  PubMed  Google Scholar 

  8. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132

    CAS  Google Scholar 

  9. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1986) Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules 19:2466–2468

    CAS  Google Scholar 

  10. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R (2000) Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release 65:133–148

    CAS  PubMed  Google Scholar 

  11. Ziemba B, Janaszewska A, Ciepluch K, Krotewicz M, Fogel WA, Appelhans D, Voit B, Bryszewska M, Klajnert B (2011) In vivo toxicity of poly(propyleneimine) dendrimers. J Biomed Mater Res A 99:261–268

    PubMed  Google Scholar 

  12. Rao C, Tam JP (1994) Synthesis of peptide dendrimer. J Am Chem Soc 116:6975–6976

    CAS  Google Scholar 

  13. Hawker CJ, Fréchet JMJ (1990) Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 112:7638–7647

    CAS  Google Scholar 

  14. Grinstaff MW (2002) Biodendrimers: new polymeric biomaterials for tissue engineering. Chemistry 8:2839–2846

    PubMed  Google Scholar 

  15. Boysen MK, Elsner K, Sperling O, Lindhorst TK (2003) Glycerol and glycerol glycol glycodendrimers. Eur J Org Chem 22:4376–4388

    Google Scholar 

  16. Posocco P, Pricl S, Jones S, Barnard A, Smith DK (2010) Less is more - multiscale modelling of self-assembling multivalency and its impact on DNA binding and gene delivery. Chem Sci 1:393–404

    CAS  Google Scholar 

  17. Wilms D, Stiriba SE, Frey H (2010) Hyperbranched polyglycerols: from the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Acc Chem Res 43:129–141

    CAS  PubMed  Google Scholar 

  18. Calderón M, Quadir MA, Strumia M, Haag R (2010) Functional dendritic polymer architectures as stimuli-responsive nanocarriers. Biochimie 92:1242–1251

    PubMed  Google Scholar 

  19. Simanek EE, Abdou H, Lalwani S, Lim J, Mintzer M, Venditto VJ, Vittur B (2010) The 8 year thicket of triazine dendrimers: strategies, targets and applications. Proc R Soc A 466:1445–1468

    CAS  Google Scholar 

  20. Gillies ER, Fréchet JMJ (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43

    CAS  PubMed  Google Scholar 

  21. Esfand R, Tomalia DA (2001) Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6:427–436

    CAS  PubMed  Google Scholar 

  22. Haag R, Sunder A, Stumbé JF (2000) An approach to glycerol dendrimers and pseudo-dendritic polyglycerols. J Am Chem Soc 122:2954–2955

    Google Scholar 

  23. Carnahan MA, Grinstaff MW (2001) Synthesis and characterization of polyether-ester dendrimers from glycerol and lactic Acid. J Am Chem Soc 123:2905–2906

    CAS  PubMed  Google Scholar 

  24. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  25. Grecol F, Vicent MJ (2008) Polymer-drug conjugates: current status and future trends. Front Biosci 13:2744–2756

    Google Scholar 

  26. Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11:812–818

    CAS  PubMed  Google Scholar 

  27. Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131–135

    CAS  PubMed  Google Scholar 

  28. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    CAS  PubMed  Google Scholar 

  29. Sisson AL, Steinhilber D, Rossow T, Welker P, Licha K, Haag R (2009) Biocompatible functionalized polyglycerol microgels with cell penetrating properties. Angew Chem Int Ed 48:7540–7545

    CAS  Google Scholar 

  30. Haag R, Kratz F (2006) Polymere therapeutika: konzepte und anwendungen. Angew Chem 118:1218–1237

    Google Scholar 

  31. Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Ed 45:1198–1215

    CAS  Google Scholar 

  32. Maeda H, Greish K, Fang J (2006) The EPR effect and polymeric drugs: a paradigm shift for cancer chemotherapy in the 21st century. Adv Polym Sci 193:103–121

    CAS  Google Scholar 

  33. Peer D, Karp JM, Hong S, Faro Khzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    CAS  PubMed  Google Scholar 

  34. Khandare J, Mohr A, Calderón M, Welker P, Licha K, Haag R (2010) Structure- biocompatibility relationship of dendritic polyglycerol derivatives. Biomaterials 31:4268–4277

    CAS  PubMed  Google Scholar 

  35. Khandare J, Minko T (2006) Polymer-drug conjugates: progress in polymeric prodrugs. Prog Polym Sci 31:359–397

    CAS  Google Scholar 

  36. Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD (1995) Extra cellular pH distribution in human tumours. Int J Hyperthermia 11:211–216

    CAS  PubMed  Google Scholar 

  37. van Sluis R, Bhujwalla ZM, Ballerteros P, Alverez J, Cerdan S, Galons JP, Gillies RJ (1999) In vivo imaging of extracellular pH using 1H MSRI. Magn Reson Med 41:743–750

    PubMed  Google Scholar 

  38. Ojugo ASE, Mesheehy PMJ, McIntyre DJO, McCoy C, Stubbs M, Leach MO, Judson IR, Griffiths JR (1999) Measurement of the extracellular pH of solid tumors in mice by magnetic resonance spectroscopy: a comparison of exogenous 19F and 31P probes. NMR Biomed 12:495–504

    CAS  PubMed  Google Scholar 

  39. Padilla De Jesús OL, Ihre HR, Gagne L, Fréchet JMJ, Szoka FC Jr (2002) Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug Chem 13:453–461

    PubMed  Google Scholar 

  40. Minko T, Khandare J, Jayant S (2007). In: Macromolecular Engineering: From Precise Macromolecular Synthesis to Macroscopic Material Properties and Application. Matyjaszewski K, Gnanou Y, Leibler L, editors. vol. 4th. Wiley-VCH Verlag GmbH & Co.; Weinheim: pp. 2541–2595

    Google Scholar 

  41. Minko T (2004) Drug targeting to the colon with lectins and neoglycoconjugates. Adv Drug Deliv Rev 56:491–509

    CAS  PubMed  Google Scholar 

  42. Zhang Y, Thomas TP, Desai A, Zong H, Leroueil PR, Majoros IJ, Baker JR Jr (2010) Targeted dendrimeric anticancer prodrug: a methotrexate-folic acid-poly(amidoamine) conjugate and a novel, rapid, “One Pot” synthetic approach. Bioconjug Chem 21:489–495

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Patri AK, Majoros IJ, Baker JR Jr (2002) Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol 6:466–471

    CAS  PubMed  Google Scholar 

  44. Roberts JC, Adams YE, Tomalia D, Mercer-Smith JA, Lavallee DK (1990) Using starburst dendrimers as linker molecules to radiolabel antibodies. Bioconjug Chem 1:305–308

    CAS  PubMed  Google Scholar 

  45. Patri AK, Kukowska-Latallo JF, Baker JR Jr (2005) Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 57:2203–2214

    CAS  PubMed  Google Scholar 

  46. Malik N, Evagorou EG, Duncan R (1999) Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 10:767–776

    CAS  PubMed  Google Scholar 

  47. Kirkpatrick GJ, Plumb JA, Sutcliffe OB, Flint DJ, Wheate NJ (2011) Evaluation of anionic half generation 3.5–6.5 poly(amidoamine) dendrimers as delivery vehicles for the active component of the anticancer drug cisplatin. J Inorg Biochem 105:1115–1122

    CAS  PubMed  Google Scholar 

  48. Majoros IJ, Myc A, Thomas T, Mehta CB, James R, Baker JR Jr (2006) PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7:572–579

    CAS  PubMed  Google Scholar 

  49. Ross JF, Chaudhuri PK, Ratnam M (1994) Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73:2432–2443

    CAS  PubMed  Google Scholar 

  50. Campbell IG, Jones TA, Foulkes WD, Trowsdale J (1991) Folate-binding protein is a marker for ovarian cancer. Cancer Res 5:5329–5338

    Google Scholar 

  51. Cline EN, Li M, Choi SK, Herbstman JF, Kaul N, Meyhöfer E, Skiniotis G, Baker JR, Larson RG, Walter NG (2013) Paclitaxel-onjugated PAMAM dendrimers adversely affect microtubule structure through two independent modes of action. Biomacromolecules 14:654–664

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Mason I (2003) Fibroblast growth factors. Curr Biol 13:R346

    CAS  PubMed  Google Scholar 

  53. Thomas TP, Shukla R, Kotlyar A, Kukowska-Latallo J, Baker JR Jr (2010) Dendrimer-based tumor cell targeting of fibroblast growth factor-1. Bioorg Med Chem Lett 20:700–703

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2:3005.1–3005.12

    Google Scholar 

  55. Dickson C, Spencer-Dene B, Dillon C, Fantl V (2000) Tyrosine kinase signalling in breast cancer Fibroblast growth factors and their receptor. Breast Cancer Res 2:191–196

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Dailey L, Ambrosetti D, Mansukhani A, Basilico C (2005) Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 16:233–247

    CAS  PubMed  Google Scholar 

  57. Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16:159–178

    CAS  PubMed  Google Scholar 

  58. Jeffers M, LaRochelle WJ, Lichenstein HS (2002) Fibroblast growth factors in cancer: therapeutic possibilities. Expert Opin Ther Targets 6:469–482

    CAS  PubMed  Google Scholar 

  59. Russell-Jones G, McTavish K, McEwan J (2004) Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumors. J Inorg Biochem 98:1625–1633

    CAS  PubMed  Google Scholar 

  60. Marek M, Kaiser K, Gruber HJ (1997) Biotinepyrene conjugates with poly(ethylene glycol) spacers are convenient fluorescent probes for avidin and streptavidin. Bioconjug Chem 8:560–566

    CAS  PubMed  Google Scholar 

  61. Cannizzaro SM (1998) A novel biotinylated degradable polymer for cell interactive applications. Biotechnol Bioeng 58:529–535

    CAS  PubMed  Google Scholar 

  62. Na K, Lee TB, Park K-H, Shin E-K, Lee Y-B, Cho H-K (2003) Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur J Pharm Sci 18:165–173

    CAS  PubMed  Google Scholar 

  63. Mishra PR, Jain NK (2002) Biotinylated methotrexate loaded erythrocytes for enhanced liver uptake. ‘a study on the rat’. Int J Pharm 231:145–153

    CAS  PubMed  Google Scholar 

  64. Yang W, Cheng Y, Xu T, Wang X, Wen L-P (2009) Targeting cancer cells with biotin-dendrimer conjugates. Eur J Med Chem 44:862–868

    CAS  PubMed  Google Scholar 

  65. Pasqualini R, Koivunen E, Ruoslahti E (1997) αv Integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15:542–546

    CAS  PubMed  Google Scholar 

  66. Shukla R, Thomas TP, Jennifer Peters J, Alina Kotlyar A, Andrzej Myc A, Baker JR Jr (2005) Tumor angiogenic vasculature targeting with PAMAM dendrimer–RGD conjugates. Chem Commun 46:5739–5741

    Google Scholar 

  67. Laheru D, Jaffee EM (2005) Immunotherapy for pancreatic cancer-science driving clinical progress. Nat Rev Cancer 5:549–567

    Google Scholar 

  68. Harris M (2004) Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol 5:292–302

    CAS  PubMed  Google Scholar 

  69. Lin MZ, Teitell MA, Schiller GJ (2005) The evolution of antibodies into versatile tumor-targeting agents. Clin Cancer Res 11:129–138

    CAS  PubMed  Google Scholar 

  70. Zhang J-Y (2004) Tumor-associated antigen arrays to enhance antibody detection for cancer diagnosis. Cancer Detect Prev 28:114–118

    CAS  PubMed  Google Scholar 

  71. Chang SS, Gaudin PB, Reuter VE, Heston WDW (2000) Prostate-specific membrane antigen: present and future application. Urology 55:622–629

    CAS  PubMed  Google Scholar 

  72. Chang SS, O’Keefe DS, Bacich DJ, Reuter VE, Heston WD, Gaudin PB (1999) Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin Cancer Res 5:2674–2681

    CAS  PubMed  Google Scholar 

  73. Patri AK, Myc A, Beals J, Thomas TP, Bander NH, Baker JR Jr (2004) Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy. Bioconjug Chem 15:1174–1181

    CAS  PubMed  Google Scholar 

  74. Frey H, Haag R (2002) Dendritic polyglycerol: a new versatile biocompatible material. Rev Mol Biotechnol 90:257–267

    CAS  Google Scholar 

  75. Kainthan RK, Brooks DE (2007) In vivo biological evaluation of high molecular weight hyperbranched polyglycerols. Biomaterials 28:4779–4787

    CAS  PubMed  Google Scholar 

  76. Kainthan RK, Hester SR, Levin E, Devine DV, Brooks DE (2007) In vitro biological evaluation of high molecular weight hyperbranched polyglycerols. Biomaterials 28:4581–4590

    CAS  PubMed  Google Scholar 

  77. Kainthan RK, Janzen J, Levin E, Devine DV, Brooks DE (2006) Biocompatibility testing of branched and linear polyglycidol. Biomacromolecules 7:703–709

    CAS  PubMed  Google Scholar 

  78. Kainthan RK, Mugabe C, Burt HM, Brooks DE (2008) Unimolecular micelles based on hydrophobically derivatized hyperbranched polyglycerols: ligand binding properties. Biomacromolecules 9:886–895

    CAS  PubMed  Google Scholar 

  79. Calderón M, Quadir MA, Sharma SK, Haag R (2010) Dendritic polyglycerols for biomedical applications. Adv Mater 22:190–218

    PubMed  Google Scholar 

  80. Calderón M, Reichert S, Welker P, Licha K, Kratz F, Haag R (2014) Receptor mediated cellular uptake of low molecular weight dendritic polyglycerols. J Biomed Nanotechnol 10:92–99

    Google Scholar 

  81. Reichert S, Calderón M, Khandare J, Welker P, Mangoldt D, Licha K, Kainthan RK, Brooks DE, Haag R (2011) Size-dependant cellular uptake of dendritic polyglycerol. Small 7:820–829

    CAS  PubMed  Google Scholar 

  82. Calderón M, Graeser R, Kratz F, Haag R (2009) Development of enzymatically cleavable prodrugs derived from dendritic polyglycerol. Bioorg Med Chem Lett 19:3725–3728

    PubMed  Google Scholar 

  83. Calderón M, Welker P, Licha K, Graeser R, Kratz F, Haag R (2010) Development of efficient macromolecular prodrugs derived from dendritic polyglycerol. J Control Release 148:e21–e56

    Google Scholar 

  84. Calderón M, Welker P, Licha K, Fichtner I, Graeser R, Haag R, Kratz F (2011) Development of efficient acid cleavable multifunctional prodrugs derived from dendritic polyglycerol with a poly(ethylene glycol) shell. J Control Release 151:295–301

    PubMed  Google Scholar 

  85. Hussain A, Krüger HR, Kampmeier F, Weissbach T, Licha K, Kratz F, Haag R, Calderón M, Barth S (2013) Targeted delivery of dendritic polyglycerol-doxorubicin conjugates by scFv-SNAP fusion protein suppresses EGFR+ cancer cell growth. Biomacromolecules 14:2510–2520

    Google Scholar 

  86. Steinhilber D, Sisson AL, Mangoldt D, Welker P, Licha K, Haag R (2010) Synthesis, reductive cleavage, and cellular interaction studies of biodegradable, polyglycerol nanogels. Adv Funct Mater 20:4133–4138

    CAS  Google Scholar 

  87. Soloway AH, Tjarks W, Barnum BA, Rong F-G, Barth RF, Codogni IW, Wilson JG (1998) The chemistry of neutron capture therapy. Chem Rev 98:1515–1562

    CAS  PubMed  Google Scholar 

  88. Hawthorne MF, Maderna A (1999) Applications of radiolabeled boron clusters to the diagnosis and treatment of cancer. Chem Rev 99:3421–3434

    CAS  PubMed  Google Scholar 

  89. Nakanishi A, Guan L, Kane RR, Kasamatsu H, Hawthorne MF (1999) Toward a cancer therapy with boron-rich oligomeric phosphate diesters that target the cell nucleus. Proc Natl Acad Sci U S A 96:238–241

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Barth RF, Adams DM, Soloway AH, Alam F, Darby MV (1994) Boronated starburst dendrimer-monoclonal antibody immunoconjugates: evaluation as a potential delivery system for neutron capture therapy. Bioconjug Chem 5:58–66

    CAS  PubMed  Google Scholar 

  91. Capala J, Barth RF, Bendayan M, Lauzon M, Adams DM, Soloway AH, Robert A, Fenstermaker RA, Carlssonr J (1996) Boronated epidermal growth factor as a potential targeting agent for boron neutron capture therapy of brain tumors. Bioconjug Chem 7:7–15

    CAS  PubMed  Google Scholar 

  92. Yang W, Barth RF, Adams DM, Soloway AH (1997) Intratumoral delivery of boronated epidermal growth factor for neutron capture therapy of brain tumors. Cancer Res 57:4333–4339

    CAS  PubMed  Google Scholar 

  93. Wu G, Barth RF, Weilian Yang W, Chatterjee M, Tjarks W, Ciesielski MJ, Fenstermaker RA (2004) Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjug Chem 15:185–194

    CAS  PubMed  Google Scholar 

  94. Qualmam B, Kessels MM, Musiol H-J, Sierralta WD, Jungblut PW, Moroder L (1996) Synthesis of boron-rich lysine dendrimers as protein labels in electron microscopy. Angew Chem Int Ed 35:909–911

    Google Scholar 

  95. Sheikhi Mehrabadi F, Fischer W, Haag R (2012) Dendritic and lipid-based carriers for gene/siRNA delivery (a review). Curr Opin Solid St M 16:310–322

    CAS  Google Scholar 

  96. Smith DK (2008) Dendrimers and the double helix-from DNA binding towards gene therapy. Curr Top Med Chem 8:1187–1203

    CAS  PubMed  Google Scholar 

  97. Pandita D, Santos JL, Rodrigues J, Pêgo AP, Granja PL, Tomás H (2011) Gene delivery into mesenchymal stem cells: a biomimetic approach using RGD nanoclusters based on poly(amidoamine) dendrimers. Biomacromolecules 12:472–481

    CAS  PubMed  Google Scholar 

  98. Al-Dosari MS, Gao X (2009) Nonviral gene delivery: principle, limitations, and recent progress. AAPS J 11:671–681

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Russ V, Elfberg H, Thoma C, Kloeckner J, Ogris M, Wagner E (2008) Novel degradable oligoethylenimine-acrylate ester-based pseudo dendrimers for in vitro and in vivo gene transfer. Gene Ther 15:18–29

    CAS  PubMed  Google Scholar 

  100. Russ V, Gunther M, Halama A, Ogris M, Wagner E (2008) Oligoethylenimine-grafted polypropylenimine dendrimers as degradable and biocompatible synthetic vectors for gene delivery. J Control Release 132:131–140

    CAS  PubMed  Google Scholar 

  101. Fischer W, Calderón M, Schulz A, Andreou L, Weber M, Haag R (2010) Dendritic polyglycerols with oligoamine shells show low toxicity and high siRNA transfection efficiency in vitro. Bioconjug Chem 21:1744–1752

    CAS  PubMed  Google Scholar 

  102. Waite CL, Roth CM (2009) PAMAM-RGD Conjugates enhance siRNA delivery through a multicellular spheroid model of malignant glioma. Bioconjug Chem 20:1908–1916

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Kaneshiro TL, Lu ZR (2009) Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular carrier. Biomaterials 30:5660–5666

    CAS  PubMed  Google Scholar 

  104. Juliano RL, Ming X, Nakagawa O, Xu R, Yoo H (2011) Integrin targeted delivery of gene therapeutics. Theranostics 1:211–219

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Kang C, Yuan X, Li F, Pu P, Yu S, Shen C, Zhang Z, Zhang Y (2009) Evaluation of folate-PAMAM for the delivery of antisense oligonucleotides to rat C6 glioma cells in vitro and in vivo. J Biomed Mater Res A 93:585–594

    Google Scholar 

  106. Lee H, Larson RG (2009) Molecular dynamics study of the structure and interparticle interactions of polyethylene glycol-conjugated PAMAM dendrimers. J Phys Chem B 113:13202–13207

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Wang W, Xiong W, Wan J, Sun X, Xu H, Yang X (2009) The decrease of PAMAM dendrimer-induced cytotoxicity by PEGylation via attenuation of oxidative stress. Nanotechnology 20:105103

    PubMed  Google Scholar 

  108. Guillaudeu SJ, Fox ME, Haidar YM, Dy EE, Szoka FC, Fréchet JMJ (2008) PEGylated dendrimers with core functionality for biological applications. Bioconjug Chem 19:461–469

    CAS  PubMed  Google Scholar 

  109. Froehlich E, Mandeville JS, Jennings CJ, Sedaghat-Herati R, Tajmir-Riahi HA (2009) Dendrimers bind human serum albumin. J Phys Chem B 113:6986–6993

    CAS  PubMed  Google Scholar 

  110. Kaminskas LM, Wu Z, Barlow N, Krippner GY, Boyd BJ, Porter CJ (2009) Partly-PEGylated poly-L-lysine dendrimers have reduced plasma stability and circulation times compared with fully PEGylated dendrimers. J Pharm Sci 98:3871–3875

    CAS  PubMed  Google Scholar 

  111. Okuda T, Kawakami S, Akimoto N, Okuda T, Kawakami S, Akimoto N, Niidome T, Yamashita F, Hashida M (2006) PEGylated lysine dendrimers for tumor-selective targeting after intravenous injection in tumor-bearing mice. J Control Release 116:330–336

    CAS  PubMed  Google Scholar 

  112. Qi R, Gao Y, Tang Y, He RR, Liu TL, He Y, Sun S, Li BY, Li YB, Liu G (2009) PEG-conjugated PAMAM dendrimers mediate efficient intramuscular gene expression. AAPS J 11:395–405

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Taratula O, Garbuzenko OB, Kirkpatrick P, Pandya I, Savla R, Pozharova VP, He H, Minko T (2009) Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. J Control Release 140:284–293

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Ofek P, Fischer W, Calderón M, Haag R, Satchi-Fainaro R (2012) In vivo delivery of small interfering RNA to tumors and their vasculature by novel dendritic nanocarriers. FASEB J 24:3122–3134

    Google Scholar 

  115. Wan K, Ebert B, Voigt J, Haag R, Kemmer W (2012) In vivo tumor imaging using a novel RNAi-based detection mechanism. Nanomedicine 8:393–398

    CAS  PubMed  Google Scholar 

  116. Eyal S, Hsiao P, Unadkat JD (2009) Drug interactions at blood-brain barrier: fact or fantasy? Pharmacol Ther 123:80–104

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Alam MI, Beg S, Samad A, Baboota S, Kohli K, Ali J, Ahuja A, Akbar M (2010) Strategy for effective brain drug delivery. Eur J Pharm Sci 5:385–403

    Google Scholar 

  118. Jones AR, Shusta EV (2009) Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res 24:1759–1771

    Google Scholar 

  119. Pardridge W (1995) Transport of small molecules through the blood- brain barrier: biology and methodology. Adv Drug Deliv Rev 15:5–36

    CAS  Google Scholar 

  120. Terasaki T, Hosoya K (1999) The blood-brain barrier efflux transporters as a detoxifying system for the brain. Adv Drug Deliv Rev 36:195–209

    CAS  PubMed  Google Scholar 

  121. Suzuki H, Terasaki T, Sugiyama Y (1997) Role of efflux transport across the blood-brain barrier and blood–cerebrospinal fluid barrier on the disposition of xenobiotics in the CNS. Adv Drug Deliv Rev 25:257–285

    CAS  Google Scholar 

  122. Tsuji A, Tamai I (1999) Carrier-mediated or specialized transport of drugs across the blood-brain barrier. Adv Drug Deliv Rev 36:277–290

    CAS  PubMed  Google Scholar 

  123. Kusuhara H, Sugiyama Y (2001) Efflux transport systems for drugs at the blood-brain barrier and blood-cerebrospinal fluid barrier (Part 1). Drug Discov Today 6:150–156

    CAS  PubMed  Google Scholar 

  124. Pardridge WM (2001) Crossing the blood–brain barrier: are we getting it right? Drug Discov Today 6:1–2

    PubMed  Google Scholar 

  125. Pardridge WM (2002) The lack of BBB research. Drug Discov Today 7:223–226

    PubMed  Google Scholar 

  126. Kaiser S, Toborek M (2001) Liposome-mediated high-efficiency transfection of human endothelial cells. J Vasc Res 2:133–143

    Google Scholar 

  127. Torchilin VP, Levchenko TS, Rammohan R, Volodina N, Papahadjopoulos-Sternberg B, D′Souza GGM (2003) Cell transfection in vitro and in vivo with nontoxic tat peptide-liposome-DNA complexes. Proc Natl Acad Sci U S A 100:1972–1977

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Bartlett JS, Wilcher R, Samulski RJ (2000) Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J Virol 74:2777–2785

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Zhou J, Wu J, Hafdi N, Behr JP, Erbacher P, Peng L (2006) PAMAM dendrimers for efficient siRNA delivery and potent gene silencing. Chem Commun (Camb) 22:2362–2364

    Google Scholar 

  130. Lechardeur D, Verkman AS, Lukacs GL (2005) Intracellular routing of plasmid DNA during non-viral gene transfer. Adv Drug Deliv Rev 57:755–767

    CAS  PubMed  Google Scholar 

  131. Ke W, Shao K, Huang R, Han L, Liu Y, Li J, Kuang Y, Ye L, Lou J, Jiang C (2009) Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials 30:6976–6985

    CAS  PubMed  Google Scholar 

  132. Ying X, Wen H, Lu W, Du J, Guo J, Tian W, Mena Y, Zhang Y, Li R-J, Yang T-Y, Shang D-W, Lou J-N, Zhang L-R, Zhang Q (2010) Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release 141:183–192

    CAS  PubMed  Google Scholar 

  133. Carroll RT, Bhatia D, Geldenhuys W, Bhatia R, Miladore N, Bishayee A, Sutariya V (2010) Brain-targeted delivery of Tempol-loaded nanoparticles for neurological disorders. J Drug Target 18:665–674

    CAS  PubMed  Google Scholar 

  134. Wu G, Barth RF, Yang W, Kawabata S, Zhang L, Green-Church K (2006) Targeted delivery of methotrexate to epidermal growth factor receptor-positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Mol Cancer Ther 25:52–59

    Google Scholar 

  135. Ren Y, Kang CS, Yuan XB, Zhou X, Xu P, Han L, Wang GX, Jia Z, Zhong Y, Yu S, Sheng J, Pu PY (2010) Co-delivery of as-miR-21and 5-FU by poly(amidoamine) dendrimer attenuates human glioma cell growth in vitro. J Biomater Sci Polym Ed 21:303–314

    CAS  PubMed  Google Scholar 

  136. Visser CC, Voorwinden LH, Crommelin DJ, Danhof M, de Boer AG (2004) Characterization and modulation of the transferrin receptor on brain capillary endothelial cells. Pharm Res 5:761–769

    Google Scholar 

  137. Pardridge WM (2005) Tyrosine hydroxylase replacement in experimental Parkinson’s disease with transvascular gene therapy. NeuroRx 2:129–138

    PubMed Central  PubMed  Google Scholar 

  138. Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C (2007) Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev 59:454–477

    CAS  PubMed  Google Scholar 

  139. Gajbhiye V, Jain NK (2011) The treatment of glioblastoma xenografts by surfactant conjugated dendritic nanoconjugates. Biomaterials 32:6213–6225

    CAS  PubMed  Google Scholar 

  140. Pardridge WM (2002) Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 2:131–139

    Google Scholar 

  141. Li HY, Qian ZM (2002) Transferrin/transferrin receptoremediated drug delivery. Med Res Rev 3:225–250

    Google Scholar 

  142. Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312:162–163

    CAS  PubMed  Google Scholar 

  143. Hall WA (1991) Transferrin receptor on glioblastoma multiforme. J Neurosurg 74:313–314

    CAS  PubMed  Google Scholar 

  144. Ferretti C, Blengio M, Ghi P, Racca S, Genazzani E, Portaleone P (1988) Tamoxifen counteracts estradiol induced effects on striatal and hypophyseal dopamine receptors. Life Sci 42:2457–2465

    CAS  PubMed  Google Scholar 

  145. Kayyali R, Marriott C, Wiseman H (1994) Tamoxifen decreases drug efflux from liposomes: relevance to its ability to reverse multidrug resistance in cancer cells? FEBS Lett 344:221–224

    CAS  PubMed  Google Scholar 

  146. Li Y, He H, Jia X, Lu WL, Lou J, Wei Y (2012) A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials 33:3899–3908

    CAS  PubMed  Google Scholar 

  147. Dai H, Navath RS, Balakrishnan B, Guru BR, Mishra MK, Romero R, Kannan RM, Kannan S (2010) Intrinsic targeting of inflame matory cells in the brain by polyamidoamine dendrimers upon subarachnoid administration. Nanomedicine (Lond) 5:1317–1329

    CAS  Google Scholar 

  148. Qian ZM, Li H, Sun H, Ho K (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54(4):561–587

    CAS  PubMed  Google Scholar 

  149. Hatakeyama H, Akita H, Maruyama K, Suharac T, Harashima H (2004) Factors governing the in vivo tissue uptake of transferrin-coupled polyethylene glycol liposomes in vivo. Int J Pharm 281:25–33

    CAS  PubMed  Google Scholar 

  150. Huang R, Ke W, Han L, Liu Y, Shao K, Ye L, Lou J, Jiang C, Pei Y (2009) Brain-targeting mechanisms of lactoferrin-modified DNA-loaded nanoparticles. J Cereb Blood Flow Metab 29:1914–1923

    CAS  PubMed  Google Scholar 

  151. Huang R, Ke W, Liu Y, Jiang C, Pei Y (2008) The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials 29:238–246

    CAS  PubMed  Google Scholar 

  152. Sarin H, Kanevsky AS, Wu H, Brimacombe KR, Fung SH, Sousa AA, Auh S, Wilson CM, Sharma K, Aronova MA, Leapman RD, Griffiths GL, Hall MD (2008) Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J Transl Med 6:80

    PubMed Central  PubMed  Google Scholar 

  153. Cevc G (2004) Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev 56:675–711

    CAS  PubMed  Google Scholar 

  154. Choi MJ, Maibach HI (2005) Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol Physiol 18:209–219

    CAS  PubMed  Google Scholar 

  155. Schäfer-Korting M, Mehnert W, Korting HC (2007) Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 59:427–443

    PubMed  Google Scholar 

  156. Müller RH, Radtke M, Wissing SA (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54(Suppl 1):S131–S155

    PubMed  Google Scholar 

  157. Kogan A, Garti N (2006) Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci 123–126:369–385

    PubMed  Google Scholar 

  158. Lopes LB, Ferreira DA, de Paula D, Garcia MT, Thomazini JA, Fantini MC, Bentley MV (2006) Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporin A. Pharm Res 23:1332–1342

    CAS  PubMed  Google Scholar 

  159. Bouwstra JA, Honeywell-Nguyen PL (2002) Skin structure and mode of action of vesicles. Adv Drug Deliv Rev 54(Suppl 1):S41–S55

    CAS  PubMed  Google Scholar 

  160. Shi X, Lee I, Chen X, Shen M, Xiao S, Zhu M, Baker JR Jr, Wang SH (2010) Influence of dendrimer surface charge on the bioactivity of 2-methoxyestradiol complexed with dendrimers. Soft Matter 6:2539–2545

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Sun M, Fan A, Wang Z, Zhao Y (2012) Dendrimer-mediated drug delivery to the skin. Soft Matter 8:4301–4305

    CAS  Google Scholar 

  162. Yang Y, Sunoqrot S, Stowell C, Yang Y, Sunoqrot S, Stowell C, Ji J, Lee C-W, Kim JW, Khan SA, Hong S (2012) Effect of size, surface charge, and hydrophobicity of poly(amidoamine) dendrimers on their skin penetration. Biomacromolecules 13:2154–2162

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Venuganti VVK, Perumal OP (2009) Poly(amidoamine) dendrimers as skin penetration enhancers: influence of charge, generation, and concentration. J Pharm Sci 98:2345–2356

    CAS  PubMed  Google Scholar 

  164. Borowskaa K, Wołowieca S, Rubaj A, Głowniakc K, Sieniawskac E, Radej S (2012) Effect of polyamidoamine dendrimer G3 and G4 on skin permeation of 8-methoxypsoralene-In vivo study. Int J Pharm 426:280–283

    Google Scholar 

  165. Haag R (2004) Supramolecular drug-delivery systems based on polymeric core-shell architectures. Angew Chem Int Ed 43:278–282

    CAS  Google Scholar 

  166. Radowski MR, Shukla A, von Berlepsch H, Böttcher C, Pickaert G, Rehage H, Haag R (2007) Supramolecular aggregates of dendritic multishell architectures as universal nanocarriers. Angew Chem Int Ed 46:1265–1269

    CAS  Google Scholar 

  167. Küchler S, Radowski MR, Blaschke T, Dathe M, Plendl J, Haag R, Schäfer-Korting M, Kramer KD (2009) Nanoparticles for skin penetration enhancement-A comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur J Pharm Biopharm 71:243–250

    PubMed  Google Scholar 

  168. Küchler S, Abdel-Mottaleb M, Lamprecht A, Radowski MR, Haag R, Schäfer-Korting M (2009) Influence of nanocarrier type and size on skin delivery of hydrophilic agents. Int J Pharm 377:169–172

    PubMed  Google Scholar 

  169. Iezzi R, Guruc BR, Glybinaa IV, Mishra MK, Kennedy A, Kannan RM (2012) Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials 33:979–988

    CAS  PubMed  Google Scholar 

  170. Chandrasekar D, Sistla R, Ahmad FJ, Khar RK, Diwan PV (2007) Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery. J Biomed Mater Res A 82A:92–103

    CAS  Google Scholar 

  171. Hayder M, Poupot M, Baron M, Nigon D, Turrin CO, Caminade AM, Majoral JP, Eisenberg RA, Fournié JJ, Cantagrel A, Poupot R, Davignon JL (2011) A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. Sci Transl Med 3:81ra35

    PubMed  Google Scholar 

  172. Bosch X (2011) Dendrimers to treat rheumatoid arthritis. ACS Nano 5:6779–6785

    CAS  PubMed  Google Scholar 

  173. Shaunak S, Thomas S, Gianasi E, Godwin A, Jones E, Teo I, Mireskandari K, Luthert P, Duncan R, Patterson S, Khaw P, Brocchini S (2004) Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol 22:977–984

    CAS  PubMed  Google Scholar 

  174. Thomas TP, Goonewardena SN, Majoros IJ, Kotlyar A, Cao Z, Leroueil PR, Baker JR Jr (2011) Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum 63:2671–2680

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Dernedde J, Rausch A, Weinhart M, Enders S, Tauber R, Licha K, Schirner M, Zügel U, von Bonin A, Haag R (2010) Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation. Proc Natl Acad Sci U S A 107:19679–19684

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Licha K, Welker P, Weinhart M, Wegner N, Kern S, Reichert S, Gemeinhardt I, Weissbach C, Ebert B, Haag R, Schirner M (2011) Fluorescence imaging with multifunctional polyglycerol sulfates: novel polymeric near-IR probes targeting inflammation. Bioconjug Chem 22:2453–2460

    CAS  PubMed  Google Scholar 

  177. Fasting C, Schalley C, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp E-W, Haag R (2012) Multivalency as a chemical organization and action principle. Angew Chem Int Ed 51:10472–10498

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Haag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Controlled Release Society

About this chapter

Cite this chapter

Bhatia, S., Haag, R. (2015). Dendritic Polymers in Targeted Drug Delivery. In: Devarajan, P., Jain, S. (eds) Targeted Drug Delivery : Concepts and Design. Advances in Delivery Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-11355-5_17

Download citation

Publish with us

Policies and ethics