Skip to main content

Polymeric Micelles in Targeted Drug Delivery

  • Chapter
  • First Online:

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

One of the most widely studied subjects in nanoscience technology is the creation of supramolecular architectures with well-defined structures and functionalities. These supramolecular structures are generated as a result of self-assembly of amphiphilic block polymers. Self-assembly of block polymers via hydrophobic and hydrophilic effects, electrostatic interactions, hydrogen bonding, and metal complexation has shown tremendous potential for creating such supramolecular structures with a wide array of applications. Polymeric micelles have gathered considerable attention in the field of drug and gene delivery due to their excellent biocompatibility, low toxicity, enhanced blood circulation time, and ability to solubilize a large number of drugs in their micellar core.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

ATRA:

All-trans retinoic acid

AUC:

Area under the curve

CMC:

Critical micellar concentration

CMT:

Critical micellization temperature

CPT:

Camptothecin

CsA:

Cyclosporine A

DNA:

Deoxy ribonucleic acid

DOX:

Doxorubicin

DSPE:

Distearoyl phosphatidyl ethanolamine

EPR:

Enhanced permeability and retention

F-5-CADA:

Fluorescein-5-carbonyl azide diacetate

FA:

Folic acid

Gd:

Gadolinium

HEMAm:

N-(2-hydroxyethyl) methacrylamide

HLB:

Hydrophilic–lipophilic balance

LCST:

Low critical solution temperature

MHC:

Minimal hydrotrope concentration

MRI:

Magnetic resonance imaging

PAsp:

Poly(aspartic acid)

PBLA:

Poly(benzyl-l-aspartate)

PCL:

Poly(e-caprolactone)

PDLLA:

PEG-b-poly(d,l-lactic acid)

PEG:

Poly(ethylene glycol)

PEO:

Polyethylene oxide

PET:

Positron emission tomography

P-gp:

P-glycoprotein

PICMs:

Polyion complex micelles

PM:

Polymeric micelle

PMMA:

Poly(methacrylate)

PPO:

Poly(propylene oxide)

PTX:

Paclitaxel

PVA:

Poly(vinyl alcohol)

RNA:

Ribonucleic acid

RT:

Room temperature

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

References

  1. Zana R (2005) Dynamics of surfactant self-assemblies: micelles, microemulsions, vesicles and lyotropic phases. CRC press, Florida

    Google Scholar 

  2. Sinko PJ, Allen LV Jr, Popovich NG, Ansel HC (2006) Martin’s physical pharmacy and pharmaceutical sciences, 5th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  3. Adams ML, Lavasanifar A, Kwon GS (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci 92:1343–1355. doi:10.1002/jps.10397

    CAS  PubMed  Google Scholar 

  4. Moroi Y (1992) Micelles: theoretical and applied aspects. Springer, New York

    Google Scholar 

  5. Tuzar Z, Kratochvil P (1976) Block and graft copolymer micelles in solution. Adv Colloid Interface Sci 6:201–232. doi:10.1016/0001-8686(76)80009-7

    CAS  Google Scholar 

  6. Hickok RS, Wedge SA, Hansen AL, Morris KF, Billiot FH, Warner IM (2002) Pulsed field gradient NMR investigation of solubilization equilibria in amino acid and dipeptide terminated micellar and polymeric surfactant solutions. Magn Reson Chem 40:755–761. doi:10.1002/mrc.1099

    CAS  Google Scholar 

  7. Jones M, Leroux J (1999) Polymeric micelles—a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48:101–111. doi:10.1016/S0939-6411(99)00039-9

    CAS  PubMed  Google Scholar 

  8. Erhardt R, Böker A, Zettl H, Kaya H, Pyckhout-Hintzen W, Krausch G, Abetz V, Müller AH (2001) Janus micelles. Macromolecules 34:1069–1075. doi:10.1021/ma000670p

    CAS  Google Scholar 

  9. Riess G, Hurtrez G, Bohadur P (1985) Block copolymers. Wiley-Interscience, Encyclopedia of Polymer Science and Engineering 2: 324–434

    Google Scholar 

  10. Xu J, Ge Z, Zhu Z, Luo S, Liu H, Liu S (2006) Synthesis and micellization properties of double hydrophilic A2BA2 and A4BA4 non-linear block copolymers. Macromolecules 39: 8178–8185. doi:10.1021/ma061934w

    CAS  Google Scholar 

  11. Bouchemal K, Agnely F, Koffi A, Ponchel G (2009) A concise analysis of the effect of temperature and propanediol-1, 2 on Pluronic F127 micellization using isothermal titration microcalorimetry. J Colloid Interface Sci 338:169–176. doi:10.1016/j.jcis.2009.05.075

    CAS  PubMed  Google Scholar 

  12. Ranger M, Jones MC, Yessine MA, Leroux JC (2001) From well‐defined diblock copolymers prepared by a versatile atom transfer radical polymerization method to supramolecular assemblies. J Polym Sci A Polym Chem 39:3861–3874. doi:10.1002/pola.10029

    CAS  Google Scholar 

  13. Zhang J, Ma PX (2009) Host-guest interaction mediated polymeric core-shell assemblies: versatile nanocarriers for drug delivery. Angew Chem Int Ed Engl 48:964. doi:10.1002/anie.200804135

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Liu YL, Lin GC, Wu CS (2008) Preparation of polysulfone‐g‐poly (N‐isopropylacrylamide) graft copolymers through atom transfer radical polymerization and formation of temperature‐responsive nanoparticles. J Polym Sci A Polym Chem 46:4756–4765. doi:10.1002/pola.22809

    CAS  Google Scholar 

  15. Peng X, Zhang L (2007) Formation and morphologies of novel self-assembled micelles from chitosan derivatives. Langmuir 23:10493–10498

    CAS  PubMed  Google Scholar 

  16. Kriz J, Pleštil J, Tuzar Z, Pospíšil H, Brus J, Jakeš J, Masar B, Vlcek P, Doskocilova D (1999) Interface affected polymer dynamics: NMR, SANS, and DLS study of the influence of shell-core interactions on the core chain mobility of poly (2-ethylhexyl acrylate)-block-poly (acrylic acid) micelles in water. Macromolecules 32:397–410. doi:10.1021/ma9809334

    CAS  Google Scholar 

  17. Procházka K, Martin TJ, Munk P, Webber SE (1996) Polyelectrolyte poly (tert-butyl acrylate)-block-poly (2-vinylpyridine) micelles in aqueous media. Macromolecules 29:6518–6525. doi:10.1021/ma960630e

    Google Scholar 

  18. Geng Y, Discher DE (2005) Hydrolytic degradation of poly (ethylene oxide)-block-polycaprolactone worm micelles. J Am Chem Soc 127:12780–12781

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Hu Y, Zhang L, Cao Y, Ge H, Jiang X, Yang C (2004) Degradation behavior of poly (ε-caprolactone)-b-poly (ethylene glycol)-b-poly (ε-caprolactone) micelles in aqueous solution. Biomacromolecules 5:1756–1762

    CAS  PubMed  Google Scholar 

  20. Xu B, Yuan J, Ding T, Gao Q (2010) Amphiphilic biodegradable poly (ε-caprolactone)-poly (ethylene glycol)-poly (ε-caprolactone) triblock copolymers: synthesis, characterization and their use as drug carriers for folic acid. Polym Bull 64:537–551. doi:10.1007/s00289-009-0157-5

    CAS  Google Scholar 

  21. Lee SC, Kim KJ, Jeong Y-K, Chang JH, Choi J (2005) pH-Induced reversible complexation of poly (ethylene glycol) and poly (ε-caprolactone)-b-poly (methacrylic acid) copolymer micelles. Macromolecules 38:9291–9297. doi:10.1021/ma051380h

    CAS  Google Scholar 

  22. Danhier F, Magotteaux N, Ucakar B, Lecouturier N, Brewster M, Préat V (2009) Novel self-assembling PEG-p-(CL-< i> co-TMC) polymeric micelles as safe and effective delivery system for Paclitaxel. Eur J Pharm Biopharm 73:230–238

    Google Scholar 

  23. Arimura H, Ohya Y, Ouchi T (2004) The formation of biodegradable polymeric micelles from newly synthesized poly (aspartic acid)‐block‐polylactide AB‐type diblock copolymers. Macromol Rapid Commun 25:743–747

    CAS  Google Scholar 

  24. Alani AW, Bae Y, Rao DA, Kwon GS (2010) Polymeric micelles for the pH-dependent controlled, continuous low dose release of paclitaxel. Biomaterials 31:1765–1772

    CAS  PubMed  Google Scholar 

  25. Huang CK, Lo CL, Chen HH, Hsiue GH (2007) Multifunctional micelles for cancer cell targeting, distribution imaging, and anticancer drug delivery. Adv Funct Mater 17:2291–2297. doi:10.1002/adfm.200600818

    CAS  Google Scholar 

  26. Hu F-Q, Liu L-N, Du Y-Z, Yuan H (2009) Synthesis and antitumor activity of doxorubicin conjugated stearic acid-< i> g-chitosan oligosaccharide polymeric micelles. Biomaterials 30:6955–6963

    Google Scholar 

  27. Webber S (1998) Polymer micelles: an example of self-assembling polymers. J Phys Chem B 102:2618–2626. doi:10.1021/jp980386o

    CAS  Google Scholar 

  28. Gohy JF (2005) Block copolymer micelles. Adv Polym Sci 190:65–136. doi:10.1007/12_048

  29. Jette KK, Law D, Schmitt EA, Kwon GS (2004) Preparation and drug loading of poly (ethylene glycol)-block-poly (ε-caprolactone) micelles through the evaporation of a cosolvent azeotrope. Pharm Res 21:1184–1191. doi:10.1023/B:PHAM.0000033005.25698.9c

    CAS  PubMed  Google Scholar 

  30. Fournier E, Dufresne MH, Smith DC, Ranger M, Leroux JC (2004) A novel one-step drug-loading procedure for water-soluble amphiphilic nanocarriers. Pharm Res 21:962–968. doi:10.1023/B:PHAM.0000029284.40637.69

    CAS  PubMed  Google Scholar 

  31. La SB, Okano T, Kataoka K (1996) Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(beta-benzyl L-aspartate) block copolymer micelles. J Pharm Sci 85:85–90. doi:10.1021/js950204r

    CAS  PubMed  Google Scholar 

  32. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249. doi:10.1016/S1056-8719(00)00107-6

    CAS  PubMed  Google Scholar 

  33. Attwood D, Booth C, Yeates SG, Chaibundit C, Ricardo NM (2007) Block copolymers for drug solubilisation: relative hydrophobicities of polyether and polyester micelle-core-forming blocks. Int J Pharm 345:35–41. doi:10.1016/j.ijpharm.2007.07.039

    CAS  PubMed  Google Scholar 

  34. Hildebrand JH (1949) A critique of the theory of solubility of non-electrolytes. Chem Rev 44:37–45. doi:10.1021/cr60137a003

    CAS  PubMed  Google Scholar 

  35. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New York

    Google Scholar 

  36. Liu RR, Forrest ML, Kwon GS (2008) 13 Micellization and drug solubility enhancement part II: polymeric micelles. Water-Insoluble Drug Formulation, 307

    Google Scholar 

  37. Letchford K, Liggins R, Burt H (2008) Solubilization of hydrophobic drugs by methoxy poly(ethylene glycol)-block-polycaprolactone diblock copolymer micelles: theoretical and experimental data and correlations. J Pharm Sci 97:1179–1190. doi:10.1002/jps.21037

    CAS  PubMed  Google Scholar 

  38. Ooya T, Sang CL, Kang MH, Park K (2006) Hydrotropic nanocarriers for poorly soluble drugs. In: Mozafari MR (ed) Nanocarrier technologies. Springer, Netherlands

    Google Scholar 

  39. Coffman RE, Kildsig DO (1996) Hydrotropic solubilization—mechanistic studies. Pharm Res 13:1460–1463. doi:10.1023/A:1016011125302

    CAS  PubMed  Google Scholar 

  40. Bauduin P, Renoncourt A, Kopf A, Touraud D, Kunz W (2005) Unified concept of solubilization in water by hydrotropes and cosolvents. Langmuir 21:6769–6775. doi:10.1021/la050554l

    CAS  PubMed  Google Scholar 

  41. Charman W, Lai C, Craik D, Finnin B, Reed B (1993) Self-association of nicotinamide in aqueous-solution: NMR studies of nicotinamide and the mono-and di-methyl-substituted amide analogs. Aust J Chem 46:377–385. doi:10.1071/CH9930377

    CAS  Google Scholar 

  42. Landauer J, McConnell H (1952) A study of molecular complexes formed by aniline and aromatic nitrohydrocarbons1, 2. J Am Chem Soc 74:1221–1224. doi:10.1021/ja01125a025

    CAS  Google Scholar 

  43. Quina FH, Alonso EO, Farah JP (1995) Incorporation of nonionic solutes into aqueous micelles: a linear solvation free energy relationship analysis. J Phys Chem 99:11708–11714. doi:10.1021/j100030a014

    CAS  Google Scholar 

  44. Rasool AA, Hussain AA, Dittert LW (1991) Solubility enhancement of some water‐insoluble drugs in the presence of nicotinamide and related compounds. J Pharm Sci 80:387–393. doi:10.1002/jps.2600800422

    CAS  PubMed  Google Scholar 

  45. Sanghvi R, Evans D, Yalkowsky SH (2007) Stacking complexation by nicotinamide: a useful way of enhancing drug solubility. Int J Pharm 336:35–41. doi:10.1016/j.ijpharm.2006.11.025

    CAS  PubMed  Google Scholar 

  46. Calderara F, Hruska Z, Hurtrez G, Lerch J, Nugay T, Riess G (1994) Investigation of polystyrene-poly (ethylene oxide) block copolymer micelle formation in organic and aqueous solutions by nonradiative energy transfer experiments. Macromolecules 27:1210–1215. doi:10.1021/ma00083a020

    CAS  Google Scholar 

  47. Wang Y, Kausch CM, Chun M, Quirk RP, Mattice WL (1995) Exchange of chains between micelles of labeled polystyrene-block-poly (oxyethylene) as monitored by nonradiative singlet energy transfer. Macromolecules 28:904–911. doi:10.1021/ma00108a016

    CAS  Google Scholar 

  48. Wilhelm M, Zhao CL, Wang Y, Xu R, Winnik MA, Mura JL, Riess G, Croucher MD (1991) Poly (styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 24:1033–1040. doi:10.1021/ma00005a010

    CAS  Google Scholar 

  49. Desjardins A, Eisenberg A (1991) Colloidal properties of block ionomers. 1. Characterization of reverse micelles of styrene-b-metal methacrylate diblocks by size-exclusion chromatography. Macromolecules 24:5779–5790

    CAS  Google Scholar 

  50. Trivedi R, Kompella UB (2010) Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine (Lond) 5:485–505. doi:10.2217/nnm.10.10

    CAS  Google Scholar 

  51. Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648. doi:10.1016/j.pharmthera.2006.05.006

    CAS  PubMed  Google Scholar 

  52. Thurmond KB, Kowalewski T, Wooley KL (1996) Water-soluble knedel-like structures: the preparation of shell-cross-linked small particles. J Am Chem Soc 118:7239–7240. doi:10.1021/ja961299h

    CAS  Google Scholar 

  53. Li T, Ning F, Xie J, Chen D, Jiang M (2002) Preparation and morphologies of shell cross-linked micelles based on commercial poly (styrene-block-ethylene-co-butene-block-styrene). Polym J 34:529–533. doi:10.1295/polymj.34.529

    CAS  Google Scholar 

  54. Zhang JX, Yan MQ, Li XH, Qiu LY, Li XD, Li XJ, Jin Y, Zhu KJ (2007) Local delivery of indomethacin to arthritis-bearing rats through polymeric micelles based on amphiphilic polyphosphazenes. Pharm Res 24:1944–1953. doi:10.1007/s11095-007-9322-4

    CAS  PubMed  Google Scholar 

  55. Kakizawa Y, Harada A, Kataoka K (1999) Environment-sensitive stabilization of core-shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond. J Am Chem Soc 121:11247–11248. doi:10.1021/ja993057y

    CAS  Google Scholar 

  56. Hu X, Chen X, Wei J, Liu S, Jing X (2009) Core crosslinking of biodegradable block copolymer micelles based on poly(ester carbonate). Macromol Biosci 9:456–463. doi:10.1002/mabi.200800158

    CAS  PubMed  Google Scholar 

  57. Rapoport N (1999) Stabilization and activation of Pluronic micelles for tumor-targeted drug delivery. Colloids Surf B: Biointerfaces 16:93–111. doi:10.1016/S0927-7765(99)00063-6

    CAS  Google Scholar 

  58. Bogdanov AA Jr, Mt L, Weissleder R (1999) Approaches and agents for imaging the vascular system. Adv Drug Deliv Rev 37:279–293. doi:10.1016/S0169-409X(98)00098-2

    CAS  PubMed  Google Scholar 

  59. Yokoyama M, Okano T, Sakurai Y, Ekimoto H, Shibazaki C, Kataoka K (1991) Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res 51:3229–3236

    CAS  PubMed  Google Scholar 

  60. Lebduskova P, Kotek J, Hermann P, Vander Elst L, Muller RN, Lukes I, Peters JA (2004) A gadolinium(III) complex of a carboxylic-phosphorus acid derivative of diethylenetriamine covalently bound to inulin, a potential macromolecular MRI contrast agent. Bioconjug Chem 15:881–889. doi:10.1021/bc049966g

    CAS  PubMed  Google Scholar 

  61. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352. doi:10.1021/cr980440x

    CAS  PubMed  Google Scholar 

  62. Pathak AP, Gimi B, Glunde K, Ackerstaff E, Artemov D, Bhujwalla ZM (2004) Molecular and functional imaging of cancer: advances in MRI and MRS. Methods Enzymol 386:3–60

    Google Scholar 

  63. Jeong JH, Park TG (2001) Novel polymer-DNA hybrid polymeric micelles composed of hydrophobic poly (D, L-lactic-co-glycolic acid) and hydrophilic oligonucleotides. Bioconjug Chem 12:917–923

    CAS  PubMed  Google Scholar 

  64. Jeong YI, Cheon JB, Kim SH, Nah JW, Lee YM, Sung YK, Akaike T, Cho CS (1998) Clonazepam release from core-shell type nanoparticles in vitro. J Control Release 51:169–178. doi:10.1016/S0168-3659(97)00163-6

    CAS  PubMed  Google Scholar 

  65. Teng Y, Morrison M, Munk P, Webber S, Procházka K (1998) Release kinetics studies of aromatic molecules into water from block polymer micelles. Macromolecules 31:3578–3587. doi:10.1021/ma971721u

    CAS  Google Scholar 

  66. Rösler A, Vandermeulen GW, Klok H-A (2012) Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev 64:270–279. doi:10.1016/j.addr.2012.09.026

    Google Scholar 

  67. Shi B, Fang C, You MX, Zhang Y, Fu S, Pei Y (2005) Stealth MePEG-PCL micelles: effects of polymer composition on micelle physicochemical characteristics, in vitro drug release, in vivo pharmacokinetics in rats and biodistribution in S180 tumor bearing mice. Colloid Polym Sci 283:954–967. doi:10.1007/s00396-004-1243-8

    CAS  Google Scholar 

  68. Savic R, Azzam T, Eisenberg A, Maysinger D (2006) Assessment of the integrity of poly (caprolactone)-b-poly(ethylene oxide) micelles under biological conditions: a fluorogenic-based approach. Langmuir 22:3570–3578. doi:10.1021/la0531998

    CAS  PubMed  Google Scholar 

  69. Burt HM, Zhang X, Toleikis P, Embree L, Hunter WL (1999) Development of copolymers of poly (D, L-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel. Colloids Surf B: Biointerfaces 16:161–171. doi:10.1016/S0927-7765(99)00067-3

    CAS  Google Scholar 

  70. Chen H, Kim S, He W, Wang H, Low PS, Park K, Cheng JX (2008) Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo forster resonance energy transfer imaging. Langmuir 24:5213–5217. doi:10.1021/la703570m

    CAS  PubMed  Google Scholar 

  71. Gao Z, Fain HD, Rapoport N (2004) Ultrasound-enhanced tumor targeting of polymeric micellar drug carriers. Mol Pharm 1:317–330. doi:10.1021/mp049958h

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Gao ZG, Fain HD, Rapoport N (2005) Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J Control Release 102:203–222. doi:10.1016/j.jconrel.2004.09.021

    CAS  PubMed  Google Scholar 

  73. Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373–4384

    CAS  PubMed  Google Scholar 

  74. Schild HG, Tirrell DA (1991) Microheterogeneous solutions of amphiphilic copolymers of N-isopropylacrylamide. An investigation via fluorescence methods. Langmuir 7:1319–1324

    CAS  Google Scholar 

  75. Gillies ER, Frechet JM (2005) pH-Responsive copolymer assemblies for controlled release of doxorubicin. Bioconjug Chem 16:361–368. doi:10.1021/bc049851c

    CAS  PubMed  Google Scholar 

  76. Gillies ER, Jonsson TB, Frechet JM (2004) Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J Am Chem Soc 126:11936–11943. doi:10.1021/ja0463738

    CAS  PubMed  Google Scholar 

  77. Chung J, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T (1999) Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly (N-isopropylacrylamide) and poly (butylmethacrylate). J Control Release 62:115–127

    Google Scholar 

  78. Chung J, Yokoyama M, Aoyagi T, Sakurai Y, Okano T (1998) Effect of molecular architecture of hydrophobically modified poly (N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J Control Release 53:119–130. doi:10.1016/S0168-3659(97)00244-7

    CAS  PubMed  Google Scholar 

  79. Chen G, Hoffman AS (1995) Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373:49–52

    CAS  PubMed  Google Scholar 

  80. Nakayama M, Okano T (2005) Polymer terminal group effects on properties of thermoresponsive polymeric micelles with controlled outer-shell chain lengths. Biomacromolecules 6:2320–2327

    CAS  PubMed  Google Scholar 

  81. Taillefer J, Jones MC, Brasseur N, van Lier JE, Leroux JC (2000) Preparation and characterization of pH-responsive polymeric micelles for the delivery of photosensitizing anticancer drugs. J Pharm Sci 89:52–62. doi:10.1002/(SICI)1520-6017(200001)89:1<52:: AID-JPS6>3.0.CO;2-D

  82. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867. doi:10.1038/nature01322

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Rehor A, Schmoekel H, Tirelli N, Hubbell JA (2008) Functionalization of polysulfide nanoparticles and their performance as circulating carriers. Biomaterials 29:1958–1966. doi:10.1016/j.biomaterials.2007.12.035

    CAS  PubMed  Google Scholar 

  84. Rehor A, Hubbell JA, Tirelli N (2005) Oxidation-sensitive polymeric nanoparticles. Langmuir 21:411–417. doi:10.1021/la0478043

    CAS  PubMed  Google Scholar 

  85. Kim SH, Jeong JH, Lee SH, Kim SW, Park TG (2006) PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. J Control Release 116:123–129

    CAS  PubMed  Google Scholar 

  86. Lee SH, Kim SH, Park TG (2007) Intracellular siRNA delivery system using polyelectrolyte complex micelles prepared from VEGF siRNA-PEG conjugate and cationic fusogenic peptide. Biochem Biophys Res Commun 357:511–516. doi:10.1016/j.bbrc.2007.03.185

    CAS  PubMed  Google Scholar 

  87. Allen C, Yu Y, Eisenberg A, Maysinger D (1999) Cellular internalization of PCL20-b-PEO44 block copolymer micelles. BBA Biomembranes 1421:32–38. doi:10.1016/S0005-2736(99)00108-X

    CAS  PubMed  Google Scholar 

  88. Poon GM, Gariepy J (2007) Cell-surface proteoglycans as molecular portals for cationic peptide and polymer entry into cells. Biochem Soc Trans 35:788–793. doi:10.1042/BST0350788

    CAS  PubMed  Google Scholar 

  89. Miller DW, Batrakova EV, Waltner TO, Alakhov V, Kabanov AV (1997) Interactions of pluronic block copolymers with brain microvessel endothelial cells: evidence of two potential pathways for drug absorption. Bioconjug Chem 8:649–657. doi:10.1021/bc970118d

    CAS  PubMed  Google Scholar 

  90. Rapoport N, Marin A, Luo Y, Prestwich GD, Muniruzzaman MD (2002) Intracellular uptake and trafficking of Pluronic micelles in drug-sensitive and MDR cells: effect on the intracellular drug localization. J Pharm Sci 91:157–170. doi:10.1002/jps.10006

    CAS  PubMed  Google Scholar 

  91. Zastre JA, Jackson JK, Wong W, Burt HM (2008) P-glycoprotein efflux inhibition by amphiphilic diblock copolymers: relationship between copolymer concentration and substrate hydrophobicity. Mol Pharm 5:643–653. doi:10.1021/mp7001347

    CAS  PubMed  Google Scholar 

  92. Mikhail AS, Allen C (2009) Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J Control Release 138:214–223. doi:10.1016/j.jconrel.2009.04.010

    CAS  PubMed  Google Scholar 

  93. Park YJ, Lee JY, Chang YS, Jeong JM, Chung JK, Lee MC, Park KB, Lee SJ (2002) Radioisotope carrying polyethylene oxide–polycaprolactone copolymer micelles for targetable bone imaging. Biomaterials 23:873–879. doi:10.1016/s0142-9612(01)00196-x

    CAS  PubMed  Google Scholar 

  94. Liu J, Zeng F, Allen C (2007) In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration. Eur J Pharm Biopharm 65:309–319. doi:10.1016/j.ejpb.2006.11.010

    CAS  PubMed  Google Scholar 

  95. Lin WJ, Chen YC, Lin CC, Chen CF, Chen JW (2006) Characterization of pegylated copolymeric micelles and in vivo pharmacokinetics and biodistribution studies. J Biomed Mater Res B Appl Biomater 77:188–194. doi:10.1002/jbm.b.30418

    PubMed  Google Scholar 

  96. Aliabadi HM, Brocks DR, Lavasanifar A (2005) Polymeric micelles for the solubilization and delivery of cyclosporine A: pharmacokinetics and biodistribution. Biomaterials 26:7251–7259. doi:10.1016/j.biomaterials.2005.05.042

    CAS  PubMed  Google Scholar 

  97. Novakova K, Laznicek M, Rypacek F, Machova L (2003) Pharmacokinetics and distribution of 125I-PLA-b-PEO block copolymers in rats. Pharm Dev Technol 8:153–161. doi:10.1081/PDT-120018484

    CAS  PubMed  Google Scholar 

  98. Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Wan Kim S, Seo MH (2001) In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release 72:191–202. doi:10.1016/S0168-3659(01)00275-9

    CAS  PubMed  Google Scholar 

  99. Yamamoto Y, Nagasaki Y, Kato Y, Sugiyama Y, Kataoka K (2001) Long-circulating poly(ethylene glycol)–poly(d, l-lactide) block copolymer micelles with modulated surface charge. J Control Release 77:27–38. doi:10.1016/s0168-3659(01)00451-5

    CAS  PubMed  Google Scholar 

  100. Hu Z, Luo F, Pan Y, Hou C, Ren L, Chen J, Wang J, Zhang Y (2008) Arg-Gly-Asp (RGD) peptide conjugated poly(lactic acid)-poly(ethylene oxide) micelle for targeted drug delivery. J Biomed Mater Res A 85:797–807. doi:10.1002/jbm.a.31615

    PubMed  Google Scholar 

  101. Kawano K, Watanabe M, Yamamoto T, Yokoyama M, Opanasopit P, Okano T, Maitani Y (2006) Enhanced antitumor effect of camptothecin loaded in long-circulating polymeric micelles. J Control Release 112:329–332. doi:10.1016/j.jconrel.2006.03.012

    CAS  PubMed  Google Scholar 

  102. Kawakami S, Opanasopit P, Yokoyama M, Chansri N, Yamamoto T, Okano T, Yamashita F, Hashida M (2005) Biodistribution characteristics of all-trans retinoic acid incorporated in liposomes and polymeric micelles following intravenous administration. J Pharm Sci 94: 2606–2615. doi:10.1002/jps.20487

    CAS  PubMed  Google Scholar 

  103. Batrakova EV, Li S, Li Y, Alakhov VY, Elmquist WF, Kabanov AV (2004) Distribution kinetics of a micelle-forming block copolymer Pluronic P85. J Control Release 100:389–397. doi:10.1016/j.jconrel.2004.09.002

    CAS  PubMed  Google Scholar 

  104. Wang Y, Li Y, Zhang L, Fang X (2008) Pharmacokinetics and biodistribution of paclitaxel-loaded pluronic P105 polymeric micelles. Arch Pharm Res 31:530–538. doi:10.1007/s12272-001-1189-2

    CAS  PubMed  Google Scholar 

  105. Le Garrec D, Gori S, Luo L, Lessard D, Smith D, Yessine M-A, Ranger M, Leroux J-C (2004) Poly (N-vinylpyrrolidone)-block-poly (d, l-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. J Control Release 99:83–101. doi:10.1016/j.jconrel.2004.06.018

    PubMed  Google Scholar 

  106. Bae Y, Nishiyama N, Kataoka K (2007) In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjug Chem 18:1131–1139. doi:10.1021/bc060401p

    CAS  PubMed  Google Scholar 

  107. Tian HY, Deng C, Lin H, Sun J, Deng M, Chen X, Jing X (2005) Biodegradable cationic PEG-PEI-PBLG hyperbranched block copolymer: synthesis and micelle characterization. Biomaterials 26:4209–4217. doi:10.1016/j.biomaterials.2004.11.002

    CAS  PubMed  Google Scholar 

  108. Rijcken CJ, Snel CJ, Schiffelers RM, van Nostrum CF, Hennink WE (2007) Hydrolysable core-crosslinked thermosensitive polymeric micelles: Synthesis, characterisation and in vivo studies. Biomaterials 28:5581–5593. doi:10.1016/j.biomaterials.2007.08.047

    CAS  PubMed  Google Scholar 

  109. Yokoyama M, Kwon GS, Okano T, Sakurai Y, Seto T, Kataoka K (1992) Preparation of micelle-forming polymer-drug conjugates. Bioconjug Chem 3:295–301. doi:10.1021/bc00016a007

    CAS  PubMed  Google Scholar 

  110. Hoes C, Potman W, Van Heeswijk W, Mud J, De Grooth B, Greve J, Feijen J (1985) Optimization of macromolecular prodrugs of the antitumor antibiotic adriamycin. J Control Release 2:205–213. doi:10.1016/0168-3659(85)90046-X

    CAS  Google Scholar 

  111. Duncan R, Kopeckova-Rejmanova P, Strohalm J, Hume I, Cable HC, Pohl J, Lloyd JB, Kopecek J (1987) Anticancer agents coupled to N-(2-hydroxypropyl)methacrylamide copolymers. I. Evaluation of daunomycin and puromycin conjugates in vitro. Br J Cancer 55:165–174

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Endo N, Umemoto N, Kato Y, Takeda Y, Hara T (1987) A novel covalent modification of antibodies at their amino groups with retention of antigen-binding activity. J Immunol Methods 104:253–258. doi:10.1016/0022-1759(87)90512-6

    CAS  PubMed  Google Scholar 

  113. Zunino F, Pratesi G, Micheloni A (1989) Poly (carboxylic acid) polymers as carriers for anthracyclines. J Control Release 10:65–73. doi:10.1016/0168-3659(89)90018-7

    CAS  Google Scholar 

  114. Harada A, Kataoka K (1998) Novel polyion complex micelles entrapping enzyme molecules in the core: preparation of narrowly-distributed micelles from lysozyme and poly (ethylene glycol)-poly (aspartic acid) block copolymer in aqueous medium. Macromolecules 31:288–294. doi:10.1021/ma971277v

    CAS  Google Scholar 

  115. Kataoka K, Togawa H, Harada A, Yasugi K, Matsumoto T, Katayose S (1996) Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline. Macromolecules 29:8556–8557. doi:10.1021/ma961217+

    CAS  Google Scholar 

  116. Yokoyama M, Okano T, Sakurai Y, Suwa S, Kataoka K (1996) Introduction of cisplatin into polymeric micelle. J Control Release 39:351–356. doi:10.1016/0168-3659(95)00165-4

    CAS  Google Scholar 

  117. Nishiyama N, Okazaki S, Cabral H, Miyamoto M, Kato Y, Sugiyama Y, Nishio K, Matsumura Y, Kataoka K (2003) Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res 63:8977–8983

    CAS  PubMed  Google Scholar 

  118. Nakamura E, Makino K, Okano T, Yamamoto T, Yokoyama M (2006) A polymeric micelle MRI contrast agent with changeable relaxivity. J Control Release 114:325–333. doi:10.1016/j.jconrel.2006.05.030

    CAS  PubMed  Google Scholar 

  119. Shiraishi K, Kawano K, Maitani Y, Yokoyama M (2010) Polyion complex micelle MRI contrast agents from poly(ethylene glycol)-b-poly(l-lysine) block copolymers having Gd-DOTA; preparations and their control of T1-relaxivities and blood circulation characteristics. J Control Release 148:160–167. doi:10.1016/j.jconrel.2010.08.018

    CAS  PubMed  Google Scholar 

  120. Clark SL, Crowley AJ, Schmidt PG, Donoghue AR, Piché CA (2004) Long-term delivery of ivermectin by use of poly (D, L-lactic-co-glycolic) acid microparticles in dogs. Am J Vet Res 65:752–757. doi:10.2460/ajvr.2004.65.752

    CAS  PubMed  Google Scholar 

  121. Sartor O (2003) Eligard: leuprolide acetate in a novel sustained-release delivery system. Urology 61:25–31. doi:10.1016/S0090-4295(02)02396-8

    PubMed  Google Scholar 

  122. Singh SR, Grossniklaus HE, Kang SJ, Edelhauser HF, Ambati BK, Kompella UB (2009) Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV. Gene Ther 16:645–659. doi:10.1038/gt.2008.185

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Raghuvanshi RS, Singh O, Panda AK (2001) Formulation and characterization of immunoreactive tetanus toxoid biodegradable polymer particles. Drug Deliv 8:99–106. doi:10.1080/107175401750177089

    CAS  PubMed  Google Scholar 

  124. Forrest ML, Yanez JA, Remsberg CM, Ohgami Y, Kwon GS, Davies NM (2008) Paclitaxel prodrugs with sustained release and high solubility in poly(ethylene glycol)-b-poly(epsilon-caprolactone) micelle nanocarriers: pharmacokinetic disposition, tolerability, and cytotoxicity. Pharm Res 25:194–206. doi:10.1007/s11095-007-9451-9

    CAS  PubMed  Google Scholar 

  125. Zhang N, Guo SR, Li HQ, Liu L, Li ZH, Gu JR (2006) Synthesis of Three Types of Amphiphilic Poly (ethylene glycol)‐block‐Poly (sebacic anhydride) Copolymers and Studies of their Micellar Solutions. Macromol Chem Phys 207:1359–1367. doi:10.1002/macp.200600100

    CAS  Google Scholar 

  126. Gaber NN, Darwis Y, Peh KK, Tan YT (2006) Characterization of polymeric micelles for pulmonary delivery of beclomethasone dipropionate. J Nanosci Nanotechnol 6:3095–3101. doi:10.1166/jnn.2006.426

    CAS  PubMed  Google Scholar 

  127. Lavasanifar A, Samuel J, Kwon GS (2002) The effect of fatty acid substitution on the in vitro release of amphotericin B from micelles composed of poly(ethylene oxide)-block-poly(N-hexyl stearate-l-aspartamide). J Control Release 79:165–172. doi:10.1016/S0168-3659(01)00537-5

    CAS  PubMed  Google Scholar 

  128. Dong H, Li Y, Cai S, Zhuo R, Zhang X, Liu L (2008) A facile one-pot construction of supramolecular polymer micelles from alpha-cyclodextrin and poly(epsilon-caprolactone). Angew Chem Int Ed Engl 47:5573–5576. doi:10.1002/anie.200800952

    CAS  PubMed  Google Scholar 

  129. Yang X, Zhu B, Dong T, Pan P, Shuai X, Inoue Y (2008) Interactions between an anticancer drug and polymeric micelles based on biodegradable polyesters. Macromol Biosci 8:1116–1125. doi:10.1002/mabi.200800085

    CAS  PubMed  Google Scholar 

  130. Yokoyama M, Okano T (1996) Targetable drug carriers: present status and a future perspective. Adv Drug Deliv Rev 21:77–80. doi:10.1016/S0169-409X(96)00439-5

    CAS  Google Scholar 

  131. Sugiyama Y (1996) Importance of pharmacokinetic considerations in the development of drug delivery systems. Adv Drug Deliv Rev 19:333–334. doi:10.1016/0169-409X(96)00007-5

    CAS  Google Scholar 

  132. Litzinger DC, Buiting AM, van Rooijen N, Huang L (1994) Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim Biophys Acta 1190:99–107. doi:10.1016/0005-2736(94)90038-8

    CAS  PubMed  Google Scholar 

  133. Takakura Y, Hashida M (1996) Macromolecular carrier systems for targeted drug delivery: pharmacokinetic considerations on biodistribution. Pharm Res 13:820–831. doi:10.1023/A:1016084508097

    CAS  PubMed  Google Scholar 

  134. Illum L, Davis S, Müller R, Mak E, West P (1987) The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized with a blockcopolymer-poloxamine 908. Life Sci 40:367–374. doi:10.1016/0024-3205(87)90138-X

    CAS  PubMed  Google Scholar 

  135. Yokoyama M, Inoue S, Kataoka K, Yui N, Sakurai Y (1987) Preparation of adriamycin‐conjugated poly (ethylene glycol)‐poly (aspartic acid) block copolymer. A new type of polymeric anticancer agent. Die Makromolekulare Chemie, Rapid Commun 8:431–435

    CAS  Google Scholar 

  136. Yokoyama M, Miyauchi M, Yamada N, Okano T, Sakurai Y, Kataoka K, Inoue S (1990) Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res 50:1693–1700

    CAS  PubMed  Google Scholar 

  137. Yokoyama M, Okano T, Sakurai Y, Fukushima S, Okamoto K, Kataoka K (1999) Selective delivery of adiramycin to a solid tumor using a polymeric micelle carrier system. J Drug Target 7:171–186. doi:10.3109/10611869909085500

    CAS  PubMed  Google Scholar 

  138. Shiraishi K, Kawano K, Minowa T, Maitani Y, Yokoyama M (2009) Preparation and in vivo imaging of PEG-poly(L-lysine)-based polymeric micelle MRI contrast agents. J Control Release 136:14–20. doi:10.1016/j.jconrel.2009.01.010

    CAS  PubMed  Google Scholar 

  139. Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD (1995) Extracellular pH distribution in human tumours. Int J Hyperthermia 11:211–216. doi:10.3109/02656739509022457

    CAS  PubMed  Google Scholar 

  140. Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182. doi:10.1038/nm0297-177

    CAS  PubMed  Google Scholar 

  141. Bae Y, Diezi TA, Zhao A, Kwon GS (2007) Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents. J Control Release 122:324–330. doi:10.1016/j.jconrel.2007.05.038

    CAS  PubMed  Google Scholar 

  142. Chung J, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T (1999) Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly (N-isopropylacrylamide) and poly (butylmethacrylate). J Control Release 62:115–127. doi:10.1016/S0168-3659(99)00029-2

    CAS  PubMed  Google Scholar 

  143. Jaeghere F, Allemann E, Feijen J, Kissel T, Doelker E, Gurny R (2000) Cellular uptake of PEO surface-modified nanoparticles: evaluation of nanoparticles made of PLA: PEO diblock and triblock copolymers. J Drug Target 8:143–153. doi:10.3109/10611860008996860

    PubMed  Google Scholar 

  144. Ross JF, Chaudhuri PK, Ratnam M (1994) Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73:2432–2443

    CAS  PubMed  Google Scholar 

  145. Ulbrich K, Etrych T, Chytil P, Jelinkova M, Rihova B (2003) HPMA copolymers with pH-controlled release of doxorubicin: in vitro cytotoxicity and in vivo antitumor activity. J Control Release 87:33–47. doi:10.1016/S0168-3659(02)00348-6

    CAS  PubMed  Google Scholar 

  146. Merdan T, Callahan J, Petersen H, Kunath K, Bakowsky U, Kopečková P, Kissel T, Kopecek J (2003) Pegylated polyethylenimine-Fab′ antibody fragment conjugates for targeted gene delivery to human ovarian carcinoma cells. Bioconjug Chem 14:989–996, 10.1021/bc0340767

    CAS  PubMed  Google Scholar 

  147. Vinogradov S, Batrakova E, Li S, Kabanov A (1999) Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells. Bioconjug Chem 10:851–860. doi:10.1021/bc990037c

    CAS  PubMed  Google Scholar 

  148. Nah J-W, Yu L, S-o H, Ahn C-H, Kim SW (2002) Artery wall binding peptide-poly(ethylene glycol)-grafted-poly(l-lysine)-based gene delivery to artery wall cells. J Control Release 78:273–284. doi:10.1016/S0168-3659(01)00499-0

    CAS  PubMed  Google Scholar 

  149. Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64:7668–7672. doi:10.1158/0008-5472.CAN-04-2550

    CAS  PubMed  Google Scholar 

  150. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103:6315–6320. doi:10.1073/pnas.0601755103

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Lim DW, Yeom YI, Park TG (2000) Poly (DMAEMA-NVP)-b-PEG-galactose as gene delivery vector for hepatocytes. Bioconjug Chem 11:688–695. doi:10.1021/bc000014u

    CAS  PubMed  Google Scholar 

  152. Yoo HS, Lee EA, Park TG (2002) Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J Control Release 82:17–27. doi:10.1016/S0168-3659(02)00088-3

    CAS  PubMed  Google Scholar 

  153. Danson S, Ferry D, Alakhov V, Margison J, Kerr D, Jowle D, Brampton M, Halbert G, Ranson M (2004) Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 90:2085–2091. doi:10.1038/sj.bjc.6601856

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Alakhov V, Klinski E, Li S, Pietrzynski G, Venne A, Batrakova E, Bronitch T, Kabanov A (1999) Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials. Colloids Surf B: Biointerfaces 16:113–134

    CAS  Google Scholar 

  155. Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, Shirao K, Okusaka T, Ueno H, Ikeda M, Watanabe N (2004) Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 91:1775–1781. doi:10.1038/sj.bjc.6602204

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Venne A, Li S, Mandeville R, Kabanov A, Alakhov V (1996) Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells. Cancer Res 56:3626–3629

    CAS  PubMed  Google Scholar 

  157. Yoo HS, Park TG (2004) Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release 96:273–283. doi:10.1016/j.jconrel.2004.02.003

    CAS  PubMed  Google Scholar 

  158. Nasongkla N, Shuai X, Ai H, Weinberg BD, Pink J, Boothman DA, Gao J (2004) cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed Engl 43:6323–6327. doi:10.1002/anie.200460800

    CAS  PubMed  Google Scholar 

  159. Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K (2005) Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem 16:122–130. doi:10.1021/bc0498166

    CAS  PubMed  Google Scholar 

  160. Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, Kim NK, Bang YJ (2004) Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10:3708–3716. doi:10.1158/1078-0432.CCR-03-0655

    CAS  PubMed  Google Scholar 

  161. Jeong YI, Seo SJ, Park IK, Lee HC, Kang IC, Akaike T, Cho CS (2005) Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly(gamma-benzyl L-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety. Int J Pharm 296:151–161. doi:10.1016/j.ijpharm.2005.02.027

    CAS  PubMed  Google Scholar 

  162. Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B (2003) Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci U S A 100: 6039–6044. doi:10.1073/pnas.0931428100

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Elsabahy M, Perron ME, Bertrand N, Yu GE, Leroux JC (2007) Solubilization of docetaxel in poly(ethylene oxide)-block-poly(butylene/styrene oxide) micelles. Biomacromolecules 8:2250–2257. doi:10.1021/bm070226v

    CAS  PubMed  Google Scholar 

  164. Taillefer J, Brasseur N, van Lier JE, Lenaerts V, Le Garrec D, Leroux JC (2001) In-vitro and in-vivo evaluation of pH-responsive polymeric micelles in a photodynamic cancer therapy model. J Pharm Pharmacol 53:155–166. doi:10.1211/0022357011775352

    CAS  PubMed  Google Scholar 

  165. Le Garrec D, Taillefer J, Van Lier JE, Lenaerts V, Leroux JC (2002) Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model. J Drug Target 10:429–437. doi:10.1080/1061186021000001887

    PubMed  Google Scholar 

  166. Mizumura Y, Matsumura Y, Hamaguchi T, Nishiyama N, Kataoka K, Kawaguchi T, Hrushesky WJ, Moriyasu F, Kakizoe T (2001) Cisplatin‐incorporated polymeric micelles eliminate nephrotoxicity, while maintaining antitumor activity. Cancer Sci 92:328–336. doi:10.1111/j.1349-7006.2001.tb01099.x

    CAS  Google Scholar 

  167. Nishiyama N, Kato Y, Sugiyama Y, Kataoka K (2001) Cisplatin-loaded polymer-metal complex micelle with time-modulated decaying property as a novel drug delivery system. Pharm Res 18:1035–1041. doi:10.1023/A:1010908916184

    CAS  PubMed  Google Scholar 

  168. Nishiyama N, Yokoyama M, Aoyagi T, Okano T, Sakurai Y, Kataoka K (1999) Preparation and characterization of self-assembled polymer-metal complex micelle from cis-dichlorodiammineplatinum (II) and poly (ethylene glycol)-poly (α, β-aspartic acid) block copolymer in an aqueous medium. Langmuir 15:377–383. doi:10.1021/la980572l

    CAS  Google Scholar 

  169. Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–172. doi:10.1016/S0168-3659(01)00299-1

    CAS  PubMed  Google Scholar 

  170. Adams ML, Andes DR, Kwon GS (2003) Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity. Biomacromolecules 4:750–757. doi:10.1021/bm0257614

    CAS  PubMed  Google Scholar 

  171. Benahmed A, Ranger M, Leroux JC (2001) Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D, L-lactide). Pharm Res 18:323–328. doi:10.1023/A:1011054930439

    CAS  PubMed  Google Scholar 

  172. Singh M (1999) Transferrin as a targeting ligand for liposomes and anticancer drugs. Curr Pharm Des 5:443–452

    CAS  PubMed  Google Scholar 

  173. Qian ZM, Li H, Sun H, Ho K (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54:561–587

    CAS  PubMed  Google Scholar 

  174. Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750–763. doi:10.1038/nrc903

    CAS  PubMed  Google Scholar 

  175. Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B (2003) Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci 100: 6039–6044

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. doi:10.1038/346818a0

    CAS  PubMed  Google Scholar 

  177. Lupold SE, Hicke BJ, Lin Y, Coffey DS (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–4033

    CAS  PubMed  Google Scholar 

  178. Elsabahy M, Zhang M, Gan S-M, Waldron KC, Leroux J-C (2008) Synthesis and enzymatic stability of PEGylated oligonucleotide duplexes and their self-assemblies with polyamidoamine dendrimers. Soft Matter 4:294–302. doi:10.1039/B714221H

    CAS  Google Scholar 

  179. Yessine MA, Dufresne MH, Meier C, Petereit HU, Leroux JC (2007) Proton-actuated membrane-destabilizing polyion complex micelles. Bioconjug Chem 18:1010–1014. doi:10.1021/bc060159m

    CAS  PubMed  Google Scholar 

  180. Jeong JH, Kim SW, Park TG (2003) A new antisense oligonucleotide delivery system based on self-assembled ODN-PEG hybrid conjugate micelles. J Control Release 93:183–191. doi:10.1016/j.jconrel.2003.07.002

    CAS  PubMed  Google Scholar 

  181. Jeong JH, Kim SH, Kim SW, Park TG (2005) Polyelectrolyte complex micelles composed of c-raf antisense oligodeoxynucleotide-poly(ethylene glycol) conjugate and poly(ethylenimine): effect of systemic administration on tumor growth. Bioconjug Chem 16:1034–1037. doi:10.1021/bc0497315

    CAS  PubMed  Google Scholar 

  182. Jeong JH, Kim SW, Park TG (2003) Novel intracellular delivery system of antisense oligonucleotide by self-assembled hybrid micelles composed of DNA/PEG conjugate and cationic fusogenic peptide. Bioconjug Chem 14:473–479. doi:10.1021/bc025632k

    CAS  PubMed  Google Scholar 

  183. Kim SH, Jeong JH, Mok H, Lee SH, Kim SW, Park TG (2007) Folate receptor targeted delivery of polyelectrolyte complex micelles prepared from ODN-PEG-folate conjugate and cationic lipids. Biotechnol Prog 23:232–237. doi:10.1021/bp060243g

    CAS  PubMed  Google Scholar 

  184. Harada A, Togawa H, Kataoka K (2001) Physicochemical properties and nuclease resistance of antisense-oligodeoxynucleotides entrapped in the core of polyion complex micelles composed of poly(ethylene glycol)-poly(L-lysine) block copolymers. Eur J Pharm Sci 13:35–42. doi:10.1016/S0928-0987(00)00205-0

    CAS  PubMed  Google Scholar 

  185. Kakizawa Y, Harada A, Kataoka K (2001) Glutathione-sensitive stabilization of block copolymer micelles composed of antisense DNA and thiolated poly (ethylene glycol)-b lock-poly (l-lysine): a potential carrier for systemic delivery of antisense DNA. Biomacromolecules 2:491–497. doi:10.1021/bm000142l

    CAS  PubMed  Google Scholar 

  186. Itaka K, Kanayama N, Nishiyama N, Jang WD, Yamasaki Y, Nakamura K, Kawaguchi H, Kataoka K (2004) Supramolecular nanocarrier of siRNA from PEG-based block catiomer carrying diamine side chain with distinctive pKa directed to enhance intracellular gene silencing. J Am Chem Soc 126:13612–13613. doi:10.1021/ja047174r

    CAS  PubMed  Google Scholar 

  187. Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ (2005) Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res 65:8984–8992. doi:10.1158/0008-5472.CAN-05-0565

    CAS  PubMed  Google Scholar 

  188. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32:e149. doi:10.1093/nar/gnh140

    PubMed Central  PubMed  Google Scholar 

  189. Oishi M, Nagasaki Y, Itaka K, Nishiyama N, Kataoka K (2005) Lactosylated poly (ethylene glycol)-siRNA conjugate through acid-labile β-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J Am Chem Soc 127:1624–1625. doi:10.1021/ja044941d

    CAS  PubMed  Google Scholar 

  190. Woodle MC, Scaria P, Ganesh S, Subramanian K, Titmas R, Cheng C, Yang J, Pan Y, Weng K, Gu C, Torkelson S (2001) Sterically stabilized polyplex: ligand-mediated activity. J Control Release 74:309–311. doi:10.1016/S0168-3659(01)00339-X

    CAS  PubMed  Google Scholar 

  191. Mizejewski GJ (1999) Role of integrins in cancer: survey of expression patterns. Proc Soc Exp Biol Med 222:124–138

    CAS  PubMed  Google Scholar 

  192. Kamen BA, Smith AK (2004) A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv Drug Deliv Rev 56:1085–1097. doi:10.1016/j.addr.2004.01.002

    CAS  PubMed  Google Scholar 

  193. Jule E, Nagasaki Y, Kataoka K (2003) Lactose-installed poly(ethylene glycol)-poly(d, l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study. Bioconjug Chem 14:177–186

    CAS  PubMed  Google Scholar 

  194. Sugahara K, Togashi H, Takahashi K, Onodera Y, Sanjo M, Misawa K, Suzuki A, Adachi T, Ito J, Okumoto K (2003) Separate analysis of asialoglycoprotein receptors in the right and left hepatic lobes using 99mTc‐GSA SPECT. Hepatology 38:1401–1409. doi:10.1016/j.hep.2003.09.031

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rayasa S. Ramachandra Murthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Controlled Release Society

About this chapter

Cite this chapter

Murthy, R.S.R. (2015). Polymeric Micelles in Targeted Drug Delivery. In: Devarajan, P., Jain, S. (eds) Targeted Drug Delivery : Concepts and Design. Advances in Delivery Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-11355-5_16

Download citation

Publish with us

Policies and ethics