Skip to main content

Prodrug Conjugate Strategies in Targeted Anticancer Drug Delivery Systems

  • Chapter
  • First Online:
Targeted Drug Delivery : Concepts and Design

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Chemotherapy is the mainstay in the treatment of various cancers for several decades; however, it suffers several clinical limitations. For example, anticancer drugs are often nonselective and are taken up by all forms of cells. Non-selectivity of the agents usually results in significant toxicity to normal cells, thus resulting in poor prognosis for patients. Hence, to improve the therapeutic efficacy of chemotherapy, improving the selectivity of anticancer drug is highly desired. Prodrug conjugation is one of the most beneficial strategies to enhance selectivity and efficacy of a chemotherapy drug. The classical prodrug approach is to overcome physicochemical (e.g., solubility, chemical instability) or biopharmaceutical problems (e.g., bioavailability, toxicity) associated with common anticancer drugs via a simple chemical modification. On the other hand, here we discuss targeted prodrug systems for delivering anticancer agents specifically to tumor cells, thereby sparing normal cells. This chapter focuses on various synthetic strategies in designing targeted prodrug conjugates and its rationale for cancer treatment. Various tumor-targeting ligands that are currently being explored are critically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

ADEPT:

Antibody-directed enzyme prodrug therapy

AuNP:

Gold nanoparticles

BCR:

Breakpoint cluster region protein

BTK:

Bruton’s tyrosine kinase

CDK inhibitor:

Cyclin-dependent kinase inhibitors

CLL:

Chronic lymphocytic leukemia

CPT:

Camptothecin

CTC:

Circulating tumor cells

Dox:

Doxorubicin

DTC:

Disseminated tumor cells

EGFR:

Epidermal growth factor receptor

EPR:

Enhanced permeability and retention

ERK:

Extracellular signal-regulated kinases

FISH:

Fluorescence in-situ hybridization

FOL:

Folic acid

FR:

Folate Receptor

GDEPT:

Gene-directed enzyme prodrug therapy

GnRH:

Gonadotropin-releasing hormone

GRP78:

Glucose-regulated protein 78

HCC:

Hepatocellular carcinoma

HER2:

human epidermal growth factor 2

HPLC:

High-performance liquid chromatography

IGFR:

Insulin-like growth factor receptor

KRAS:

Kirsten rat sarcoma

LHRH:

Luteinizing hormone releasing hormone

mAb:

Monoclonal antibodies

MAPK:

Mitogen-activated protein kinases

MCL:

Mantle cell lymphoma

mCRC:

Metastatic colorectal cancer

MDNS:

Magneto-Dendritic Nano System

MDR:

Multiple-drug resistance

mRNA:

Messenger ribonucleic acid

mTOR:

Mammalian target of rapamycin

NSCLC:

Non-small-cell lung cancer

PCR:

Polymerase chain reaction

PDGFRβ:

Platelet-derived growth factor receptor

PI3K:

Phosphatidylinositol 3-kinase

PIGF:

Placental growth factor

RCC:

Renal cell carcinoma

RET:

Rearranged during transfection

RGD:

Arginine-glycine-aspartic acid

SCCHN:

Squamous cell carcinoma of the head and neck

scFv:

Single chain variable fragment

siRNA:

Small interfering RNA

Tf:

Transferrin

Tf-PEG-AD:

Transferrin-conjugated poly (ethylene glycol)-adamantane

TfR:

Transferrin receptor

TPGS:

D-α-Tocopheryl polyethylene glycol succinate

US FDA:

United States Food and Drug administration

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Knox RJ, Connors TA (1997) Prodrugs in cancer chemotherapy. Pathol Oncol Res 3(4):309–324

    Article  CAS  PubMed  Google Scholar 

  2. Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Jarvinen T, Savolainen J (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7(3):255–270. doi:10.1038/nrd2468

    Article  CAS  PubMed  Google Scholar 

  3. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2(5):347–360. doi:10.1038/nrd1088

    Article  CAS  PubMed  Google Scholar 

  4. Singh Y, Palombo M, Sinko PJ (2008) Recent trends in targeted anticancer prodrug and conjugate design. Curr Med Chem 15(18):1802–1826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Muller CE (2009) Prodrug approaches for enhancing the bioavailability of drugs with low solubility. Chem Biodivers 6(11):2071–2083. doi:10.1002/cbdv.200900114

    Article  PubMed  Google Scholar 

  6. Minko T, Khandare JJ, Vetcher AA, Soldatenkov CA, Garbuzenko OB, Saad M, Pozharov VP (2008) Multifunctional nanotherapeutics for cancer. In: Torchilin VP (ed) Multifunctional pharmaceutical nanocarriers. Springer, New York, pp 309–336

    Chapter  Google Scholar 

  7. Minko T (2004) Drug targeting to the colon with lectins and neoglycoconjugates. Adv Drug Deliv Rev 56(4):491–509. doi:10.1016/j.addr.2003.10.017

    Article  CAS  PubMed  Google Scholar 

  8. Dharap SS, Wang Y, Chandna P, Khandare JJ, Qiu B, Gunaseelan S, Sinko PJ, Stein S, Farmanfarmaian A, Minko T (2005) Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc Natl Acad Sci U S A 102(36):12962–12967. doi:10.1073/pnas.0504274102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284

    Article  CAS  PubMed  Google Scholar 

  10. Mariano WA, Stella VJ (2007) Macromolecular prodrugs of small molecules. In: Stella V, Borchardt R, Hageman M, Oliyai R, Maag H, Tilley J (eds) Prodrugs, challenges and rewards part 1, vol 1. Springer-AAPS, New York, pp 289–321. doi:10.1007/978-0-387-49785-3

    Google Scholar 

  11. Greish K (2007) Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 15(7–8):457–464. doi:10.1080/10611860701539584

    Article  CAS  PubMed  Google Scholar 

  12. Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl 45(8):1198–1215. doi:10.1002/anie.200502113

    Article  CAS  PubMed  Google Scholar 

  13. Jain RK (1994) Barriers to drug delivery in solid tumors. Sci Am 271(1):58–65

    Article  CAS  PubMed  Google Scholar 

  14. Minko T, Dharap SS, Pakunlu RI, Wang Y (2004) Molecular targeting of drug delivery systems to cancer. Curr Drug Targets 5(4):389–406

    Article  CAS  PubMed  Google Scholar 

  15. Choksi A, Sarojini KV, Vadnal P, Dias C, Suresh PK, Khandare J (2013) Comparative anti-inflammatory activity of poly(amidoamine) (PAMAM) dendrimer-dexamethasone conjugates with dexamethasone-liposomes. Int J Pharm 449(1–2):28–36. doi:10.1016/j.ijpharm.2013.03.056

    Article  CAS  PubMed  Google Scholar 

  16. Banerjee SS, Aher N, Patil R, Khandare J (2012) Poly(ethylene glycol)-prodrug conjugates: concept, design, and applications. J Drug Deliv 2012:103973. doi:10.1155/2012/103973

    Article  PubMed Central  PubMed  Google Scholar 

  17. Maison W, Frangioni JV (2003) Improved chemical strategies for the targeted therapy of cancer. Angew Chem Int Ed 42(39):4726–4728. doi:10.1002/anie.200301666

    Article  CAS  Google Scholar 

  18. Khandare J, Minko T (2006) Polymer–drug conjugates: progress in polymeric prodrugs. Prog Polym Sci 31(4):359–397. doi:http://dx.doi.org/10.1016/j.progpolymsci.2005.09.004

  19. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760. doi:10.1038/nnano.2007.387

    Article  CAS  PubMed  Google Scholar 

  20. Administration USFDA (2014) Hematology/Oncology (Cancer) Approvals & Safety Notifications. http://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm279174.htm. Accessed 23 March 2014

  21. Collins I, Workman P (2006) New approaches to molecular cancer therapeutics. Nat Chem Biol 2(12):689–700. doi:10.1038/nchembio840

    Article  CAS  PubMed  Google Scholar 

  22. Park JW, Hong K, Kirpotin DB, Meyer O, Papahadjopoulos D, Benz CC (1997) Anti-HER2 immunoliposomes for targeted therapy of human tumors. Cancer Lett 118(2):153–160

    Article  CAS  PubMed  Google Scholar 

  23. Baselga J (2001) The EGFR as a target for anticancer therapy—focus on cetuximab. Eur J Cancer 37(Suppl 4):S16–S22

    Article  CAS  PubMed  Google Scholar 

  24. Fischer PM, Gianella-Borradori A (2003) CDK inhibitors in clinical development for the treatment of cancer. Expert Opin Investig Drugs 12(6):955–970. doi:10.1517/13543784.12.6.955

    Article  CAS  PubMed  Google Scholar 

  25. Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8(8):579–591. doi:10.1038/nrc2403

    Article  CAS  PubMed  Google Scholar 

  26. Dietel M, Johrens K, Laffert M, Hummel M, Blaker H, Muller BM, Lehmann A, Denkert C, Heppner FL, Koch A, Sers C, Anagnostopoulos I (2013) Predictive molecular pathology and its role in targeted cancer therapy: a review focussing on clinical relevance. Cancer Gene Ther 20(4):211–221. doi:10.1038/cgt.2013.13

    Article  CAS  PubMed  Google Scholar 

  27. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R, Patterson SD, Chang DD (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26(10):1626–1634. doi:10.1200/jco.2007.14.7116

    Article  CAS  PubMed  Google Scholar 

  28. Gilcrease MZ, Woodward WA, Nicolas MM, Corley LJ, Fuller GN, Esteva FJ, Tucker SL, Buchholz TA (2009) Even low-level HER2 expression may be associated with worse outcome in node-positive breast cancer. Am J Surg Pathol 33(5):759–767. doi:10.1097/PAS.0b013e31819437f9

    Article  PubMed Central  PubMed  Google Scholar 

  29. Hudziak RM, Schlessinger J, Ullrich A (1987) Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc Natl Acad Sci U S A 84(20):7159–7163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hudis CA (2007) Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med 357(1):39–51. doi:10.1056/NEJMra043186

    Article  CAS  PubMed  Google Scholar 

  31. Morrow PK, Wulf GM, Ensor J, Booser DJ, Moore JA, Flores PR, Xiong Y, Zhang S, Krop IE, Winer EP, Kindelberger DW, Coviello J, Sahin AA, Nunez R, Hortobagyi GN, Yu D, Esteva FJ (2011) Phase I/II study of trastuzumab in combination with everolimus (RAD001) in patients with HER2-overexpressing metastatic breast cancer who progressed on trastuzumab-based therapy. J Clin Oncol 29(23):3126–3132. doi:10.1200/jco.2010.32.2321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501. doi:10.1038/nrc839

    Article  CAS  PubMed  Google Scholar 

  33. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, Beijersbergen RL, Mills GB, van de Vijver MJ, Bernards R (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12(4):395–402. doi:10.1016/j.ccr.2007.08.030

    Article  CAS  PubMed  Google Scholar 

  34. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT, Hortobagyi GN, Hung MC, Yu D (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6(2):117–127. doi:10.1016/j.ccr.2004.06.022

    Article  CAS  PubMed  Google Scholar 

  35. Damodaran S, Olson EM (2012) Targeting the human epidermal growth factor receptor 2 pathway in breast cancer. Hosp Pract 40(4):7–15. doi:10.3810/hp.2012.10.997

    Article  Google Scholar 

  36. Jerusalem G, Fasolo A, Dieras V, Cardoso F, Bergh J, Vittori L, Zhang Y, Massacesi C, Sahmoud T, Gianni L (2011) Phase I trial of oral mTOR inhibitor everolimus in combination with trastuzumab and vinorelbine in pre-treated patients with HER2-overexpressing metastatic breast cancer. Breast Cancer Res Treat 125(2):447–455. doi:10.1007/s10549-010-1260-x

    Article  CAS  PubMed  Google Scholar 

  37. Bull C, Boltje TJ, Wassink M, de Graaf AM, van Delft FL, den Brok MH, Adema GJ (2013) Targeting aberrant sialylation in cancer cells using a fluorinated sialic acid analog impairs adhesion, migration, and in vivo tumor growth. Mol Cancer Ther 12(10):1935–1946. doi:10.1158/1535-7163.mct-13-0279

    Article  PubMed  Google Scholar 

  38. Khandare JJ, Wang Y, Singh AP, Vorsa N, Minko T (2007) Targeted sialic acid-doxorubicin prodrugs for intracellular delivery and cancer treatment. Pharm Res 24(11):2120–2130. doi:10.1007/s11095-007-9406-1

    Article  PubMed  Google Scholar 

  39. Cheng WW, Allen TM (2008) Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonal antibody, Fab' fragments and single chain Fv. J Control Release 126(1):50–58. doi:10.1016/j.jconrel.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  40. Sapra P, Moase EH, Ma J, Allen TM (2004) Improved therapeutic responses in a xenograft model of human B lymphoma (Namalwa) for liposomal vincristine versus liposomal doxorubicin targeted via anti-CD19 IgG2a or Fab' fragments. Clin Cancer Res 10(3):1100–1111

    Article  CAS  PubMed  Google Scholar 

  41. Chapman AP (2002) PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev 54(4):531–545

    Article  CAS  PubMed  Google Scholar 

  42. Maloney DG, Grillo-Lopez AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA, Janakiraman N, Foon KA, Liles TM, Dallaire BK, Wey K, Royston I, Davis T, Levy R (1997) IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 90(6):2188–2195

    CAS  PubMed  Google Scholar 

  43. Chan SY, Gordon AN, Coleman RE, Hall JB, Berger MS, Sherman ML, Eten CB, Finkler NJ (2003) A phase 2 study of the cytotoxic immunoconjugate CMB-401 (hCTM01-calicheamicin) in patients with platinum-sensitive recurrent epithelial ovarian carcinoma. Cancer Immunol Immunother 52(4):243–248. doi:10.1007/s00262-002-0343-x

    CAS  PubMed  Google Scholar 

  44. Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, Holcomb R, Hallett W, Tsou HR, Upeslacis J, Shochat D, Mountain A, Flowers DA, Bernstein I (2002) Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 13(1):47–58

    Article  CAS  PubMed  Google Scholar 

  45. Tai W, Mahato R, Cheng K (2010) The role of HER2 in cancer therapy and targeted drug delivery. J Control Release 146(3):264–275. doi:10.1016/j.jconrel.2010.04.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Marasco D, Perretta G, Sabatella M, Ruvo M (2008) Past and future perspectives of synthetic peptide libraries. Curr Protein Pept Sci 9(5):447–467

    Article  CAS  PubMed  Google Scholar 

  47. Koivunen E, Arap W, Rajotte D, Lahdenranta J, Pasqualini R (1999) Identification of receptor ligands with phage display peptide libraries. J Nucl Med 40(5):883–888

    CAS  PubMed  Google Scholar 

  48. Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97(2):391–410

    Article  CAS  PubMed  Google Scholar 

  49. Brown KC (2000) New approaches for cell-specific targeting: identification of cell-selective peptides from combinatorial libraries. Curr Opin Chem Biol 4(1):16–21

    Article  CAS  PubMed  Google Scholar 

  50. Pasqualini R, Koivunen E, Ruoslahti E (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15(6):542–546. doi:10.1038/nbt0697-542

    Article  CAS  PubMed  Google Scholar 

  51. Koivunen E, Wang B, Ruoslahti E (1995) Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology (N Y) 13(3):265–270

    Article  CAS  Google Scholar 

  52. Doorbar J, Winter G (1994) Isolation of a peptide antagonist to the thrombin receptor using phage display. J Mol Biol 244(4):361–369. doi:10.1006/jmbi.1994.1736

    Article  CAS  PubMed  Google Scholar 

  53. Oyama T, Sykes KF, Samli KN, Minna JD, Johnston SA, Brown KC (2003) Isolation of lung tumor specific peptides from a random peptide library: generation of diagnostic and cell-targeting reagents. Cancer Lett 202(2):219–230

    Article  CAS  PubMed  Google Scholar 

  54. Oyama T, Rombel IT, Samli KN, Zhou X, Brown KC (2006) Isolation of multiple cell-binding ligands from different phage displayed-peptide libraries. Biosens Bioelectron 21(10):1867–1875. doi:10.1016/j.bios.2005.11.016

    Article  CAS  PubMed  Google Scholar 

  55. McGuire MJ, Samli KN, Chang YC, Brown KC (2006) Novel ligands for cancer diagnosis: selection of peptide ligands for identification and isolation of B-cell lymphomas. Exp Hematol 34(4):443–452. doi:10.1016/j.exphem.2005.12.013

    Article  CAS  PubMed  Google Scholar 

  56. McGuire MJ, Samli KN, Johnston SA, Brown KC (2004) In vitro selection of a peptide with high selectivity for cardiomyocytes in vivo. J Mol Biol 342(1):171–182. doi:10.1016/j.jmb.2004.06.029

    Article  CAS  PubMed  Google Scholar 

  57. Samli KN, McGuire MJ, Newgard CB, Johnston SA, Brown KC (2005) Peptide-mediated targeting of the islets of Langerhans. Diabetes 54(7):2103–2108

    Article  CAS  PubMed  Google Scholar 

  58. Baines IC, Colas P (2006) Peptide aptamers as guides for small-molecule drug discovery. Drug Discov Today 11(7–8):334–341. doi:10.1016/j.drudis.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  59. Jabbari E (2009) Targeted delivery with peptidomimetic conjugated self-assembled nanoparticles. Pharm Res 26(3):612–630. doi:10.1007/s11095-008-9802-1

    Article  CAS  PubMed  Google Scholar 

  60. Curnis F, Gasparri A, Sacchi A, Longhi R, Corti A (2004) Coupling tumor necrosis factor-alpha with alphaV integrin ligands improves its antineoplastic activity. Cancer Res 64(2):565–571

    Article  CAS  PubMed  Google Scholar 

  61. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, Krajewski S, Lombardo CR, Rao R, Ruoslahti E, Bredesen DE, Pasqualini R (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5(9):1032–1038. doi:10.1038/12469

    Article  CAS  PubMed  Google Scholar 

  62. Laakkonen P, Akerman ME, Biliran H, Yang M, Ferrer F, Karpanen T, Hoffman RM, Ruoslahti E (2004) Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc Natl Acad Sci U S A 101(25):9381–9386. doi:10.1073/pnas.0403317101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Laakkonen P, Porkka K, Hoffman JA, Ruoslahti E (2002) A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat Med 8(7):751–755. doi:10.1038/nm720

    CAS  PubMed  Google Scholar 

  64. Zhang L, Giraudo E, Hoffman JA, Hanahan D, Ruoslahti E (2006) Lymphatic zip codes in premalignant lesions and tumors. Cancer Res 66(11):5696–5706. doi:10.1158/0008-5472.can-05-3876

    Article  CAS  PubMed  Google Scholar 

  65. Banerjee SS, Jalota-Badhwar A, Satavalekar SD, Bhansali SG, Aher ND, Mascarenhas RR, Paul D, Sharma S, Khandare JJ (2013) Transferrin-mediated rapid targeting, isolation, and detection of circulating tumor cells by multifunctional magneto-dendritic nanosystem. Adv Healthc Mater 2(6):800–805. doi:10.1002/adhm.201200164

    Article  CAS  PubMed  Google Scholar 

  66. Faulk WP, Taylor CG, Yeh CJ, McIntyre JA (1990) Preliminary clinical study of transferrin-adriamycin conjugate for drug delivery to acute leukemia patients. Mol Biother 2(1):57–60

    CAS  PubMed  Google Scholar 

  67. Head JF, Wang F, Elliott RL (1997) Antineoplastic drugs that interfere with iron metabolism in cancer cells. Adv Enzyme Regul 37:147–169

    Article  CAS  PubMed  Google Scholar 

  68. Rainov NG, Soling A (2005) Technology evaluation: transMID, KS Biomedix/Nycomed/Sosei/PharmaEngine. Curr Opin Mol Ther 7(5):483–492

    CAS  PubMed  Google Scholar 

  69. Bellocq NC, Pun SH, Jensen GS, Davis ME (2003) Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug Chem 14(6):1122–1132. doi:10.1021/bc034125f

    Article  CAS  PubMed  Google Scholar 

  70. Heidel JD, Yu Z, Liu JY, Rele SM, Liang Y, Zeidan RK, Kornbrust DJ, Davis ME (2007) Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci U S A 104(14):5715–5721. doi:10.1073/pnas.0701458104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ (2005) Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res 65(19):8984–8992. doi:10.1158/0008-5472.can-05-0565

    Article  CAS  PubMed  Google Scholar 

  72. Pun SH, Tack F, Bellocq NC, Cheng J, Grubbs BH, Jensen GS, Davis ME, Brewster M, Janicot M, Janssens B, Floren W, Bakker A (2004) Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol Ther 3(7):641–650

    Article  CAS  PubMed  Google Scholar 

  73. Wu J, Lu Y, Lee A, Pan X, Yang X, Zhao X, Lee RJ (2007) Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil. J Pharm Pharm Sci 10(3):350–357

    CAS  PubMed  Google Scholar 

  74. Choi CH, Alabi CA, Webster P, Davis ME (2010) Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A 107(3):1235–1240. doi:10.1073/pnas.0914140107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Khandare JJ, Chandna P, Wang Y, Pozharov VP, Minko T (2006) Novel polymeric prodrug with multivalent components for cancer therapy. J Pharmacol Exp Ther 317(3):929–937. doi:10.1124/jpet.105.098855

    Article  CAS  PubMed  Google Scholar 

  76. Chen X, Plasencia C, Hou Y, Neamati N (2005) Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery. J Med Chem 48(4):1098–1106. doi:10.1021/jm049165z

    Article  CAS  PubMed  Google Scholar 

  77. Yoneda Y, Steiniger SC, Capkova K, Mee JM, Liu Y, Kaufmann GF, Janda KD (2008) A cell-penetrating peptidic GRP78 ligand for tumor cell-specific prodrug therapy. Bioorg Med Chem Lett 18(5):1632–1636. doi:10.1016/j.bmcl.2008.01.060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Shin BK, Wang H, Yim AM, Le Naour F, Brichory F, Jang JH, Zhao R, Puravs E, Tra J, Michael CW, Misek DE, Hanash SM (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278(9):7607–7616. doi:10.1074/jbc.M210455200

    Article  CAS  PubMed  Google Scholar 

  79. Dubowchik GM, Firestone RA (1998) Cathepsin B-sensitive dipeptide prodrugs. 1. A model study of structural requirements for efficient release of doxorubicin. Bioorg Med Chem Lett 8(23):3341–3346

    Article  CAS  PubMed  Google Scholar 

  80. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 103(32):11838–11843. doi:10.1073/pnas.0602615103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Henne WA, Doorneweerd DD, Hilgenbrink AR, Kularatne SA, Low PS (2006) Synthesis and activity of a folate peptide camptothecin prodrug. Bioorg Med Chem Lett 16(20):5350–5355. doi:10.1016/j.bmcl.2006.07.076

    Article  CAS  PubMed  Google Scholar 

  82. Aronov O, Horowitz AT, Gabizon A, Gibson D (2003) Folate-targeted PEG as a potential carrier for carboplatin analogs. Synthesis and in vitro studies. Bioconjug Chem 14(3):563–574. doi:10.1021/bc025642l

    Article  CAS  PubMed  Google Scholar 

  83. Anbharasi V, Cao N, Feng SS (2010) Doxorubicin conjugated to D-alpha-tocopheryl polyethylene glycol succinate and folic acid as a prodrug for targeted chemotherapy. J Biomed Mater Res A 94(3):730–743. doi:10.1002/jbm.a.32734

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayant Khandare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Controlled Release Society

About this chapter

Cite this chapter

Banerjee, S., Todkar, K., Chate, G., Khandare, J. (2015). Prodrug Conjugate Strategies in Targeted Anticancer Drug Delivery Systems. In: Devarajan, P., Jain, S. (eds) Targeted Drug Delivery : Concepts and Design. Advances in Delivery Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-11355-5_11

Download citation

Publish with us

Policies and ethics