Advertisement

Reversing Borcherds Lifts: A Survey

  • Bernhard HeimEmail author
  • Atsushi Murase
Conference paper
  • 674 Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 115)

Abstract

This is a survey on our results towards the reversing of the multiplicative theta lift of Borcherds. First results on this topic had been obtained by Bruinier, proving that meromorphic automorphic forms F on the orthogonal group G = O(2, n + 2) with special divisor are Borcherds lifts. Holomorphic automorphic forms on G are Borcherds lifts if and only if they have a certain symmetry property. This leads to several applications. Special divisors (linear combinations of Heegner divisors) can be characterized by a symmetry property among all effective principal divisors. This gives a new proof and a generalization of parts of Bruinier’s result. We obtain recursion formulas for the Fourier-Jacobi coefficients of a Borcherds lift. Hence we have a direct link between Fourier-Jacobi coefficients and divisors.

Mathematics Subject Classification (2010)

11F11 11F50 11F55 11G18 

Notes

Acknowledgement

The authors thank the referee for sharpening the structure of the survey.

References

  1. 1.
    D. Allcock, E. Freitag, Cubic surfaces and Borcherds products, Comment. Math. Helv. 77, 270–296 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    H. Aoki, T. Ibukiyama, Simple graded rings of Siegel modular forms, differential operators and Borcherds products. Int. J. Math. 16, 249–279 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    A. Barnard, The singular theta correspondence, lorentzian lattices and Borcherds-Kac-Moody algebras. Ph.D. Dissertation, U.C. Berkley (2003). arXiv:math/0307102v1 [math.GR]Google Scholar
  4. 4.
    R.E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109, 405–444 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    R.E. Borcherds, Automorphic forms on \(O_{s+2,2}(\mathbb{R})\) and infinite products, Invent. Math. 120. 161–213 (1995)Google Scholar
  6. 6.
    R.E. Borcherds, The moduli space of Enriques surfaces and the fake monster Lie superalgebra. Topology 35, 699–710 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    R.E. Borcherds, Automorphic forms with singularities on grassmannians. Invent. Math. 132, 491–562 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    R.E. Borcherds, The Gross-Kohnen-Zagier theorem in higher dimensions. Duke Math. J. 97, 219–233 (1999) Correction to “The Gross-Kohnen-Zagier theorem in higher dimensions”. Duke Math. J. 105, 183–184 (2000)Google Scholar
  9. 9.
    J.H. Bruinier, E. Freitag, Local Borcherds products. Ann. I. Fourier 51.1, 1–26 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    J.H. Bruinier, in Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors, Lecture Notes in Mathematics, vol. 1780 (Springer, New York, 2002)Google Scholar
  11. 11.
    J.H. Bruinier, J.I. Burgos Gil, U.Kühn, Borcherds products and arithmetic intersection theory on Hilbert modular surfaces. Duke Math. J. 139, 1–88 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    J.H. Bruinier, J. Funke, On the injectivity of the Kudla-Milson lift and surjectivity of the Borcherds lift, in Moonshine: The First Quarter Century and Beyond, ed. by J. Lepowski, J. McKay, M. Tuite (Cambridge University Press, Cambridge, 2010), pp. 12–39Google Scholar
  13. 13.
    J.H. Bruinier, On the converse theorem for Borcherds products. arXiv:1210.4821v1 [math.NT] 17 Oct 2012Google Scholar
  14. 14.
    M. Cheng, A. Dabholkar, Borcherds-Kac-Moody symmetry of \(\mathcal{N} = 4\) dyons. Comm. Num. Theory Phys. 3(1), 59–110 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    A. Dabholkar, S. Murthy, D. Zagier, Quantum black holes, wall crossing, and mock modular forms. arXiv:1208.4074v1 [hep-th] 20 Aug (2012)Google Scholar
  16. 16.
    T. Dern, A. Krieg, Graded rings of Hermitian modular forms of degree 2. Manuscripta Math. 110, 251–272 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    R. Dijkgraff, E. Verlinde, H. Verlinde, Counting dyons in N = 4 string theory. Nucl. Phys. B. 484, 543–561 (1997)CrossRefGoogle Scholar
  18. 18.
    M. Eichler, D. Zagier, in Theory of Jacobi Forms, Progress in Mathematics, vol. 55, (Birkhäuser, Boston, 1985)Google Scholar
  19. 19.
    E. Freitag, R. Salvati Manni, Modular forms for the even modular lattice of signature (2, 10). J. Algebraic Geom. 16, 753–791 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    V.A. Gritsenko, V.V. Nikulin, Igusa modular forms and ‘the simplest’ Lorentzian Kac-Moody algebras. Sb. Math. 187(11), 1601–1641 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    V.A. Gritsenko, V.V. Nikulin, Automorphic forms and Lorentzian Kac-Moody algebras. Part II. Int. J. Math. 9, 201–275 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    P. Guerzhoy, On the hecke equivariance of the borcherds isomorphism. Bull. London Math. Soc. 38, 93–96 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    J. Harvey, G. Moore, Algebras, BPS states, and strings. Nucl. Phys. B 463, 315–368 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    B. Heim, A. Murase, Symmetries for the Siegel theta functions, Borcherds lifts and automorphic Green functions. J. Number Theory 133(10), 3485–3499. arXiv: 1003.2248Google Scholar
  25. 25.
    S. Kondo, The moduli space of Enriques surfaces and the Borcherds products. J. Algebraic Geom. 11, 601–627 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    M. Kontsevich, Product formulas for modular forms on O(2, n). Séminaire Bourbaki, Vol. 1996/97. Astérisque No. 245, Exp. No. 821(3), 41–56 (1997)Google Scholar
  27. 27.
    N. Scheithauer, On the classification of automorphic products and generalized Kac-Moody algebras. Invent. math. 164, 641–678 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    N. Scheithauer, in Develompments and Trends in Infinite-Dimensional Lie Theory, ed. by K.-H. Neeb, A. Pianzola. Lie Algebras, Vertex Algebras, and Automorphic Forms. Progess in Mathematics, vol. 288 (Brikhauser, Boston, 2011), pp. 151–168Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.German University of Technology in Oman,Halban CampusMuscatSultanate of Oman
  2. 2.Department of Mathematical Science,Faculty of ScienceKyoto Sangyo University Motoyama, KamigamoKita-kuJapan

Personalised recommendations