Advertisement

Bessel Periods of Theta Lifts to GSp(1, 1) and Central Values of Some L-Functions of Convolution Type

  • Hiro-aki NaritaEmail author
Conference paper
  • 641 Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 115)

Abstract

This article overviews our results presented in the international workshop on mathematics held at GUtech and Sultan Qaboos University in Oman. The main result is an explicit relation between a Bessel period of some theta lift to the indefinite symplectic group GSp(1, 1) and the central value of an L-function of convolution type for the lift (cf. Theorem 3.2).

Keywords

Algebraic Group Automorphic Form Maximal Compact Subgroup Convolution Type Strict Positivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author is very grateful to Berhard Heim for his invitation to the conference. His thank is also due to the referee for helpful comments.

References

  1. 1.
    M. Eichler, Über die Darstellbarkeit von Modulformen durch Thetareihen. J. Reine Angew. Math. 195, 156–171 (1955)zbMATHMathSciNetGoogle Scholar
  2. 2.
    M. Eichler, Quadratische Formen und Modulfunktionen. Acta Arith. 4, 217–239 (1958)zbMATHMathSciNetGoogle Scholar
  3. 3.
    H. Jacquet, R.P.Langlands, Automorphic Forms on GL(2), Lecture Notes in Math, vol. 114 (Springer, NewYork 1970)Google Scholar
  4. 4.
    I. Macdonald, Symmetric Functions and Hall polynomials (Oxford University Press, 1979)Google Scholar
  5. 5.
    A. Murase, CM-values and Central L-values of Elliptic Modular Forms (II), vol. 30 (Max-Planck-Institut für Mathematik Preprint Series, 2008)Google Scholar
  6. 6.
    A. Murase, H. Narita, Commutation relations of Hecke operators for Arakawa lifting. Tohoku Math. J. 60, 227–251 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    A. Murase, H. Narita, Fourier expansion of Arakawa lifting I: An explicit formula and examples of non-vanishing lifts. Israel J. Math. 187, 317–369 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    A. Murase, H. Narita, Fourier expansion of Arakawa lifting II: Relation with central L-values, preprint.Google Scholar
  9. 9.
    H. Narita, Jacquet-Langlands-Shimizu correspondence for theta lifts to GSp(2) and its inner forms I: An explicit functorial correspondence, with an appendix by Ralf Schmidt, preprint.Google Scholar
  10. 10.
    H. Narita, Jacquet-Langlands-Shimizu correspondence for theta lifts to GSp(2) and its inner forms II: An explicit formula for Bessel periods and non-vanishing of theta lifts, preprint.Google Scholar
  11. 11.
    M. Novodvorsky, Automorphic L-functions for symplectic group GSp(4), Proc. Symp. Pure Math. 33(2), 87–95 (1979)CrossRefMathSciNetGoogle Scholar
  12. 12.
    T. Okazaki, Paramodular forms on \(GSp_{2}(\mathbb{A})\), preprint.Google Scholar
  13. 13.
    B. Roberts, R. Schmidt, Local new forms for GSp(4), Lecture Notes in Math, vol. 1918 (Springer, NewYork, 2007)Google Scholar
  14. 14.
    H. Shimizu, Theta series and automorphic forms on GL 2. J. Math. Soc. Japan 24, 638–683 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    T. Sugano, On holomorphic cusp forms on quaternion unitary groups of degree 2. J. Fac. Sci. Univ. Tokyo 31, 521–568 (1985)MathSciNetGoogle Scholar
  16. 16.
    J. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de symetrie. Compos. Math. 54, 173–242 (1985)zbMATHMathSciNetGoogle Scholar
  17. 17.
    E.T. Whittaker, G.N. Watson, A Course of Modern Analysis (Cambridge university press, Cambridge 2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceKumamoto UniversityKurokamiJapan

Personalised recommendations