Advertisement

On Explicit Dimension Formulas for Spaces of Siegel Cusp Forms of Degree Two and Their Applications

  • Hidetaka KitayamaEmail author
Conference paper
  • 653 Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 115)

Abstract

In this article, we will survey our studies of explicit dimension formulas for Siegel cusp forms of degree two and their applications. After we summarize some known results in Sect. 3, we will explain a new result which was obtained in a joint work with Ibukiyama. It is an explicit dimension formula for Siegel paramodular cusp forms of square-free level. We will discuss its application in Sect. 5.

Keywords

Explicit Dimension Formula Siegel Cusp Forms Ibukiyama Square-free Level Vector-valued Siegel Modular Forms 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Aoki, T. Ibukiyama, Simple graded rings of Siegel modular forms, differential operators and Borcherds products. Internat. J. Math. 16, 249–279 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    T. Arakawa, Automorphic forms on quaternion unitary group of degree 2 (in Japanese). Master thesis. University of Tokyo (1975).Google Scholar
  3. 3.
    T. Arakawa, The dimension of the space of cusp forms on the Siegel upper half plane of degree two related to a quaternion unitary groups. J. Math. Soc. Japan 33, 125–145Google Scholar
  4. 4.
    U. Christian, Berechnung des Ranges der Schar der Spitzenformen zur Modulgruppe zweiten Grades und Stufe q > 2. J. Reine Angew. Math. 277 (1975) 130–154; Zur Berechnung des Ranges der Schar der Spitzenformen zur Modulgruppe zweiten Grades und Stufe q > 2. J. Reine Angew. Math. 296 (1977) 108–118.Google Scholar
  5. 5.
    C.H. van Dorp, Generators for a module of vector-valued Siegel modular forms of degree 2. arXiv:1301.2910v1 [math.AG].Google Scholar
  6. 6.
    M. Eichler,Über die darstellbarkeit von Modulformen durch Theta Reihen. J. Reine Angew. Math. 195, 159–171 (1956)Google Scholar
  7. 7.
    M. Eichler, Quadratische formen und modulformen. Acta arith. 4, 217–239 (1958)zbMATHMathSciNetGoogle Scholar
  8. 8.
    K. Hashimoto, The dimension of the spaces of cusp forms on Siegel upper half plane of degree two I. J. Fac. Sci. Univ. Tokyo sect. IA Math. 30, 403–488 (1983)zbMATHMathSciNetGoogle Scholar
  9. 9.
    K. Hashimoto, The dimension of the spaces of cusp forms on Siegel upper half plane of degree two II.The \(\mathbb{Q}\)-rank one case. Math. Ann. 266 539–559 (1984)Google Scholar
  10. 10.
    K. Hashimoto, T. Ibukiyama, On relations of dimensions of automorphic forms of \(Sp(2,\mathbb{R})\) and its compact twist Sp(2) (II), Automorphic forms and number theory. Adv. Stud. Pure Math. 7, 31–102 (1985)MathSciNetGoogle Scholar
  11. 11.
    Y. Hirai, On Eisenstein series on quaternion unitary groups of degree 2, J. Math. Soc. Japan 51, 93–128 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    T. Ibukiyama, On relations of dimensions of automorphic forms of \(Sp(2,\mathbb{R})\) and its compact twist Sp(2) (I), Automorphic forms and number theory, Adv. Stud. Pure Math. 7, 7–30 (1985)MathSciNetGoogle Scholar
  13. 13.
    T. Ibukiyama, On Siegel modular varieties of level 3. Internat. J. Math. 2, 17–35 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    T. Ibukiyama, Paramodular forms and compact twist, in Automorphic Forms on GSp(4) (Proceedings of the 9th Autumn Workshop on Number Theory; M. Furusawa, ed.) (2007), 37–48.Google Scholar
  15. 15.
    T. Ibukiyama, F. Onodera, On the graded ring of Modular forms of the Siegel paramodular group of level 2. Abh. Math. Sem. Univ. Hamburg 67, 297–305 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    T. Ibukiyama, Dimension Formulas of Siegel Modular Forms of Weight 3 and Supersingular Abelian Surfaces (Proceedings of the 4-th Spring Conference), 39–60 (2007)Google Scholar
  17. 17.
    T. Ibukiyama, Vector valued Siegel modular forms of symmetric tensor weight of small degrees, Comment. Math. Univ. St. Pauli 61, 51–75 (2012)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Y. Ihara, On certain arithmetical Dirichlet series. J. Math. Soc. Japan, 16, 214–225 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    T. Ibukiyama, N.-P. Skoruppa, A vanishing theorem for Siegel modular forms of weight one. Abh. Math. Sem. Univ. Hamburg 77, 229–235 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    J. Igusa, On Siegel modular forms of genus two II. Amer. J. Math. 86, 392–412 (1964)CrossRefMathSciNetGoogle Scholar
  21. 21.
    H. Jacquet, R.P. Langlands, Automorphic Forms on GL(2), Lecture Notes in Mathematics, vol. 260 (Springer, NewYork, 1972).Google Scholar
  22. 22.
    H. Kitayama, An explicit dimension formula for Siegel cusp forms with respect to the non-split symplectic groups. J. Math. Soc. Japan 63, 1263–1310 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    H. Kitayama, On the graded ring of Siegel modular forms of degree two with respect to a non-split symplectic group. Internat. J. Math. 23 (2012).Google Scholar
  24. 24.
    T. Kiyuna, Vector-valued Siegel modular forms of weight detk ⊗  Sym(8), preprint (2012).Google Scholar
  25. 25.
    R.P. Langlands, Problems in the Theory of Automorphic Forms, Lecture Notes in Mathematics, vol. 170 (Springer, NewYork, 1970) pp. 18–61.Google Scholar
  26. 26.
    Y. Morita, An explicit formula for the dimension of spaces of Siegel modular forms of degree two. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 21, 167–248 (1974)zbMATHMathSciNetGoogle Scholar
  27. 27.
    V. Platonov, A. Rapinchuk, Algebraic Groups and Number Theory (Academic Press, 1994)Google Scholar
  28. 28.
    C. Poor, D. Yuen, Dimensions of cusp forms for \(\Gamma _{0}(p)\) in degree two and small weights. Abh. Math. Sem. Univ. Hamburg 77, 185–222 (2007)CrossRefMathSciNetGoogle Scholar
  29. 29.
    C. Poor and D. Yuen, Paramodular cusp forms. arXiv:0912.0049v1. (2009)Google Scholar
  30. 30.
    T. Satoh, On certain vector valued Siegel modular forms of degree two, Math. Ann. 274, 335–352 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    G. Shimura,Arithmetic of alternating forms and quaternion hermitian forms. J. Math. Soc. Japan 15, 33–65 (1963)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    T. Sugano, On holomorphic cusp forms on quaternion unitary groups of degree 2, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31, 521–568 (1984)zbMATHMathSciNetGoogle Scholar
  33. 33.
    R. Tsushima, On the spaces of Siegel cusp forms of degree two. Amer. J. Math. 65, 843–885 (1982)CrossRefMathSciNetGoogle Scholar
  34. 34.
    R. Tsushima, An explicit dimension formula for the spaces of generalized automorphic forms with respect to \(Sp(2;\mathbb{Z})\). Proc. Japan Acad. Ser. A 59, 139–142 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    R. Tsushima, Dimension formula for the spaces of Siegel cusp forms and a certain exponential sum. Mem. Inst. Sci. Tech. Meiji Univ. 36, 1–56 (1997) http://www.math.meiji.ac.jp/~tsushima.
  36. 36.
    S. Wakatsuki, Dimension formulas for spaces of vector-valued Siegel cusp forms of degree two. J. Number Theory 132, 200–253 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    S. Wakatsuki, Multiplicity formulas for discrete series representations in \(L^{2}(\Gamma \setminus Sp(2;\mathbb{R}))\), J. Number Theory 133, 3394–3425 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    H. Yamaguchi, The parabolic contribution to the dimension of the space of cusp forms on Siegel space of degree two, unpublished (1976).Google Scholar
  39. 39.
    T. Yamazaki, On Siegel modular forms of degree two. Amer. J. Math. 98, 39–53 (1976)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of EducationWakayama UniversityWakayama-cityJapan

Personalised recommendations