Skip to main content

Membranes Made of Hardened Cement Paste for Processing Wood Gas—Influence of Paste Composition on Separation Factors

  • Chapter
  • First Online:
Materials Challenges and Testing for Manufacturing, Mobility, Biomedical Applications and Climate

Abstract

The efficiency of wood gasification can be improved by applying membrane based gas separation operations in several of its sub-processes. In the present study the use of membranes made of hardened cement pastes for this purpose was investigated to provide a low cost alternative to conventional membrane materials. The pastes were tested for their diffusional properties in a Wicke-Kallenbach cell and analyzed with regard to their pore structure. The use of low water to binder ratios and slag and/or pozzolans led to a finer pore structure and higher separation factors; in particular, an approximately linear dependence of the separation factors on the threshold radii was observed. The results implicated that Knudsen diffusion is the prevailing diffusion mechanism in the membranes. Deviations from the theoretically expected separation factors were found, which may be ascribed to concentration polarization and channeling effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bridgwater AV (1995) The technical and economic feasibility of biomass gasification for power generation. Fuel 74:631–653

    Google Scholar 

  2. Gerber S, Behrendt F, Oevermann M (2010) An Eulerian modeling approach of wood gasification in a bubbling fluidized bed reactor using char as bed material. Fuel 89:2903–2917

    Google Scholar 

  3. Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, Chichester

    Google Scholar 

  4. Melin T, Rautenbach R (2007) Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, 3rd edn. Springer, Berlin

    Google Scholar 

  5. Caro J, Noack M, Kölsch P, Schäfer R (2000) Zeolite membranes – state of their development and perspective. Microporous Mesoporous Mater 38:3–24

    Google Scholar 

  6. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of art. Ind Eng Chem Res 48:4638–4663

    Google Scholar 

  7. Abbas A, Carcasses M, Ollivier J-P (1999) Gas permeability of concrete in relation to its degree of saturation. Mater Struct 32:3–8

    Google Scholar 

  8. Farage MCR, Sercombe J, Gallé C (2003) Rehydration and microstructure of cement paste after heating at temperatures up to 300 °C. Cem Concr Res 33:1047–1056

    Google Scholar 

  9. Lion M, Skoczylas F, Lafhaj Z, Sersar M (2005) Experimental study on a mortar. Temperature effects on porosity and permeability. Residual properties or direct measurements under temperature. Cem Concr Res 35:1937–1942

    Google Scholar 

  10. Sercombe J, Vidal R, Gallé C, Adenot F (2007) Experimental study of gas diffusion in cement paste. Cem Concr Res 37:579–588

    Google Scholar 

  11. Gluth GJG (2011) Die Porenstruktur von Zementstein und seine Eignung zur Gastrennung. PhD Thesis, Technische Universität Berlin, Berlin

    Google Scholar 

  12. Diamond S (2000) Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials. Cem Concr Res 30:1517–1525

    Google Scholar 

  13. Härdtl R (1995) Veränderungen des Betongefüges durch die Wirkung von Steinkohlen-flugasche und ihr Einfluß auf die Betoneigenschaften. Schriftenr Deutscher Ausschuss für Stahlbeton 448. Beuth, Berlin

    Google Scholar 

  14. Sing KSW (1967) Assessment of microporosity. Chem Ind (London) 829–830

    Google Scholar 

  15. Richardson IG, Groves GW (1992) Microstructure and microanalysis of hardened cement pastes involving ground granulated blast-furnace slag. J Mater Sci 27:6204–6212

    Google Scholar 

  16. Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford, London

    Google Scholar 

  17. Richardson IG (1999) The nature of C-S-H in hardened cements. Cem Concr Res 29:1131–1147

    Google Scholar 

  18. Hüttl R, Hillemeier B (2000) Hochleistungsbeton – Beispiel Säureresistenz. Betonwerk Fertigteiltech Int 66(1):52–60

    Google Scholar 

  19. Gluth GJG, Zhang W, Gaggl M, Hillemeier B, Behrendt F (2012) Multicomponent gas diffusion in hardened cement paste at temperatures up to 350 °C. Cem Concr Res 42:656–664

    Google Scholar 

  20. Bird RB, Stewart WE, Lightfoot EN (2007) Transport phenomena, revised 2nd edn. Wiley, New York

    Google Scholar 

  21. Wedler G (2004) Lehrbuch der Physikalischen Chemie, 5th edn. Wiley-VCH, Weinheim

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Fachangentur nachwachsende Rohstoffe e.V. (Agency for Renewable Resources) under grant no. 22010502.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gluth, G.J.G., Gaggl, M., Zhang, W., Hillemeier, B., Behrendt, F. (2014). Membranes Made of Hardened Cement Paste for Processing Wood Gas—Influence of Paste Composition on Separation Factors. In: Udomkichdecha, W., Böllinghaus, T., Manonukul, A., Lexow, J. (eds) Materials Challenges and Testing for Manufacturing, Mobility, Biomedical Applications and Climate. Springer, Cham. https://doi.org/10.1007/978-3-319-11340-1_20

Download citation

Publish with us

Policies and ethics