Skip to main content

Geometric Properties of the GIT Quotient

  • Chapter
  • First Online:
Geometric Invariant Theory for Polarized Curves

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2122))

  • 1041 Accesses

Abstract

For any d > 2(2g − 2), consider the open and closed subscheme \(\mathrm{Ch}^{-1}(\mathrm{Chow}_{d}^{\mathit{ss}})^{o}\) of the Chow-semistable locus \(\mathrm{Ch}^{-1}(\mathrm{Chow}_{d}^{\mathit{ss}}) \subset \mathrm{ Hilb}_{d}\) consisting of connected curves, see (10.1). From now on, in order to shorten the notation, we set

$$\displaystyle{ H_{d}:=\mathrm{ Ch}^{-1}(\mathrm{Chow}_{ d}^{\mathit{ss}})^{o} \subset \mathrm{ Hilb}_{ d} }$$
(14.1)

and we call H d the main component of the Chow-semistable locus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Bini, C. Fontanari, F. Viviani, On the birational geometry of the universal Picard variety. Int. Math. Res. Not. 2012(4), 740–780 (2012)

    MATH  MathSciNet  Google Scholar 

  2. J.F. Boutot, Singularités rationnelles et quotients par les groupes réductifs. Invent. Math. 88, 65–68 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Caporaso, A compactification of the universal Picard variety over the moduli space of stable curves. J. Am. Math. Soc. 7, 589–660 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Casalaina-Martin, J. Kass, F. Viviani, The singularities and birational geometry of the universal compactified Jacobian (in preparation). Preprint available at arXiv:1408.3494

    Google Scholar 

  5. I. Dolgachev, Lectures on Invariant Theory. London Mathematical Society Lecture Note Series, vol. 296 (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  6. A. Grothendieck, J. Dieudonné, Eléments de Géométrie Algébrique III-Part 1. Publ. Math. Inst. Hautes Études Sci. 11 (1961)

    Google Scholar 

  7. M. Hochster, J.L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay. Adv. Math. 13, 115–175 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Kollár, S. Mori, Birational Geometry of Algebraic Varieties. With the collaboration of C.H. Clemens, A. Corti. Translated from the 1998 Japanese original. Cambridge Tracts in Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  9. H. Matsumura, Commutative Ring Theory. Translated from the Japanese by M. Reid, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 8 (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  10. E. Sernesi, Deformations of Algebraic Schemes. Grundlehren der mathematischen Wissenschaften, vol. 334 (Springer, New York, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bini, G., Felici, F., Melo, M., Viviani, F. (2014). Geometric Properties of the GIT Quotient. In: Geometric Invariant Theory for Polarized Curves. Lecture Notes in Mathematics, vol 2122. Springer, Cham. https://doi.org/10.1007/978-3-319-11337-1_14

Download citation

Publish with us

Policies and ethics